supplementary materials


Acta Cryst. (2010). E66, o214    [ doi:10.1107/S160053680905394X ]

4-Chloro-N-(2-methoxyphenyl)benzamide

A. Saeed, R. A. Khera and J. Simpson

Abstract top

The title compound, C14H12ClNO2, was prepared by refluxing 4-chlorobenzoyl chloride with o-anisidine in CHCl3. The methoxyphenyl-amide segment of the molecule is almost planar, with a dihedral angle of 5.10 (7)° between the benzene ring and the C-N-C(O)-C fragment. A weak intramolecular N-H...O contact forms an S(5) ring and contributes to the planarity of this portion of the molecule. The two benzene rings are inclined at an angle of 26.74 (7)°. In the crystal structure, intermolecular Cl...O interactions of 3.1874 (9) Å generate centrosymmetric dimers. These are further linked by C-H...O and C-H...[pi] interactions, forming inversion related sheets parallel to [001].

Comment top

Our work on benzamide derivatives has been described in a previous paper (Saeed et al., 2008). The methoxyphenyl amide segment of the molecule is planar with a dihedral angle of 5.10 (7) ° between benzene ring and the C8—N1—C1(O1)—C2 fragment. A weak intramolecular N1—H1N···O91 contact forms an S(5) ring (Bernstein et al., 1995) and contributes to the planarity of this portion of the molecule. The O91 and C91 atoms of the methoxy group also lie close to the C8···C13 ring plane with deviations 0.0171 (17) Å for O91 and -0.040 (2)Å for C91 respectively. The two benzene rings are inclined at an angle of 26.74 (7) °. Bond distances within the molecule are similar to those observed in comparable structures (Balasubramanyam et al.,2003; Saeed et al., 2007; Gowda et al., 2008).

In the crystal structure intermolecular Cl1···O1 interactions, 3.1874 (9) Å, generate centrosymmetric dimers, Fig. 2. Molecules in these dimers are further linked by C4—H4···O1 and C6—H6···Cg interactions (Cg is the centroid of the C8···C13 ring), Table 1, forming inversion related sheets parallel to 001, Fig 3.

Related literature top

For background to our work on benzamide derivatives, see: Saeed et al. (2008). For related structures, see: Balasubramanyam et al. (2003); Gowda et al. (2008); Saeed et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A freshly prepared solution of 4-chlorobenzoyl chloride (1 mmol) in CHCl3 was treated with o-anisidine (1 mmol) under a nitrogen atmosphere at reflux for 2.5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from methanol afforded the title compound (87%) as colourless crystals: Anal. calcd. for C14H12ClNO2: C, 64.25; H, 4.62; N, 5.35%; found: C, 64.09; H, 4.71; N, 5.43%.

Refinement top

The H atom on N1 was located in a difference Fourier map and refined isotropically. All other H-atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for the CH3 H atoms. The crystal was relatively weakly diffracting reducing the overall fraction of measured reflections.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Cl···O contacts in (I) (dashed lines) linking the molecules into centrosymmetric dimers.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the b axis, with hydrogen bonds drawn as dashed lines and representative C—H···π interactions shown as dotted lines. Red spheres represent the centroids of the C8···C13 rings.
4-Chloro-N-(2-methoxyphenyl)benzamide top
Crystal data top
C14H12ClNO2Z = 2
Mr = 261.70F(000) = 272
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6938 (5) ÅCell parameters from 5193 reflections
b = 9.2339 (6) Åθ = 5.2–66.5°
c = 9.8723 (7) ŵ = 0.31 mm1
α = 66.683 (3)°T = 89 K
β = 89.943 (3)°Irregular block, colourless
γ = 69.536 (3)°0.68 × 0.55 × 0.38 mm
V = 595.69 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4037 independent reflections
Radiation source: fine-focus sealed tube3359 reflections with I > 2σ(I)
graphiteRint = 0.034
ω scansθmax = 33.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1011
Tmin = 0.762, Tmax = 1.000k = 1414
9701 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.107P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C14H12ClNO2γ = 69.536 (3)°
Mr = 261.70V = 595.69 (7) Å3
Triclinic, P1Z = 2
a = 7.6938 (5) ÅMo Kα radiation
b = 9.2339 (6) ŵ = 0.31 mm1
c = 9.8723 (7) ÅT = 89 K
α = 66.683 (3)°0.68 × 0.55 × 0.38 mm
β = 89.943 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4037 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3359 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 1.000Rint = 0.034
9701 measured reflectionsθmax = 33.4°
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129Δρmax = 0.49 e Å3
S = 1.11Δρmin = 0.41 e Å3
4037 reflectionsAbsolute structure: ?
167 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.96801 (14)0.46684 (13)0.22602 (12)0.01253 (19)
H1N0.884 (2)0.424 (2)0.2472 (19)0.015*
O11.05224 (13)0.67559 (12)0.23889 (11)0.01810 (19)
C10.94176 (16)0.60270 (14)0.25817 (13)0.0119 (2)
C20.76731 (16)0.65786 (14)0.32264 (13)0.0115 (2)
C30.60538 (16)0.63062 (15)0.29623 (13)0.0128 (2)
H30.60340.57370.23480.015*
C40.44720 (16)0.68559 (15)0.35862 (14)0.0137 (2)
H40.33700.66790.33960.016*
C50.45387 (16)0.76691 (15)0.44926 (13)0.0134 (2)
Cl10.25804 (4)0.83363 (4)0.53040 (3)0.01918 (10)
C60.61287 (17)0.79600 (15)0.47773 (13)0.0141 (2)
H60.61480.85140.54050.017*
C70.76861 (16)0.74244 (15)0.41260 (13)0.0129 (2)
H70.87720.76350.42940.015*
C81.12198 (15)0.38098 (14)0.17333 (13)0.0111 (2)
C91.11216 (15)0.24043 (14)0.15384 (13)0.0119 (2)
O910.95021 (12)0.21277 (11)0.18506 (10)0.01454 (18)
C910.92918 (17)0.07592 (16)0.16205 (15)0.0170 (2)
H91A0.92120.10170.05540.026*
H91B0.81420.06200.19670.026*
H91C1.03780.02970.21830.026*
C101.25940 (16)0.14161 (15)0.10850 (14)0.0142 (2)
H101.25140.04790.09460.017*
C111.41951 (17)0.18041 (16)0.08331 (14)0.0156 (2)
H111.52190.11150.05410.019*
C121.42992 (17)0.31922 (16)0.10069 (14)0.0156 (2)
H121.53910.34530.08260.019*
C131.28124 (16)0.42081 (15)0.14455 (14)0.0139 (2)
H131.28830.51670.15480.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0111 (4)0.0137 (4)0.0177 (5)0.0062 (3)0.0069 (4)0.0100 (4)
O10.0149 (4)0.0190 (4)0.0284 (5)0.0099 (3)0.0084 (4)0.0148 (4)
C10.0107 (5)0.0131 (5)0.0137 (5)0.0044 (4)0.0027 (4)0.0073 (4)
C20.0111 (5)0.0111 (4)0.0125 (5)0.0037 (4)0.0023 (4)0.0057 (4)
C30.0118 (5)0.0143 (5)0.0147 (5)0.0051 (4)0.0034 (4)0.0084 (4)
C40.0115 (5)0.0152 (5)0.0160 (5)0.0054 (4)0.0037 (4)0.0078 (4)
C50.0132 (5)0.0130 (5)0.0134 (5)0.0035 (4)0.0047 (4)0.0062 (4)
Cl10.01588 (16)0.02343 (17)0.02268 (17)0.00678 (12)0.00998 (12)0.01468 (13)
C60.0162 (5)0.0139 (5)0.0143 (5)0.0053 (4)0.0037 (4)0.0083 (4)
C70.0129 (5)0.0133 (5)0.0145 (5)0.0051 (4)0.0023 (4)0.0078 (4)
C80.0100 (4)0.0108 (4)0.0118 (5)0.0029 (4)0.0029 (4)0.0052 (4)
C90.0103 (5)0.0124 (5)0.0128 (5)0.0039 (4)0.0031 (4)0.0056 (4)
O910.0123 (4)0.0148 (4)0.0228 (5)0.0073 (3)0.0080 (3)0.0122 (3)
C910.0149 (5)0.0163 (5)0.0261 (6)0.0077 (4)0.0052 (5)0.0135 (5)
C100.0125 (5)0.0134 (5)0.0171 (5)0.0035 (4)0.0047 (4)0.0082 (4)
C110.0113 (5)0.0168 (5)0.0178 (6)0.0028 (4)0.0054 (4)0.0085 (4)
C120.0115 (5)0.0177 (5)0.0172 (5)0.0059 (4)0.0048 (4)0.0068 (4)
C130.0128 (5)0.0149 (5)0.0161 (5)0.0068 (4)0.0045 (4)0.0074 (4)
Geometric parameters (Å, °) top
N1—C11.3613 (14)C7—H70.9500
N1—C81.4039 (13)C8—C131.3961 (15)
N1—H1N0.860 (17)C8—C91.4119 (15)
O1—C11.2288 (13)C9—O911.3683 (13)
C1—C21.4977 (15)C9—C101.3841 (15)
C2—C71.3977 (15)O91—C911.4301 (13)
C2—C31.3982 (15)C91—H91A0.9800
C3—C41.3901 (15)C91—H91B0.9800
C3—H30.9500C91—H91C0.9800
C4—C51.3879 (16)C10—C111.3947 (16)
C4—H40.9500C10—H100.9500
C5—C61.3920 (16)C11—C121.3873 (16)
C5—Cl11.7408 (11)C11—H110.9500
Cl1—O91i3.1874 (9)C12—C131.3951 (16)
C6—C71.3891 (15)C12—H120.9500
C6—H60.9500C13—H130.9500
C1—N1—C8128.16 (9)C13—C8—C9119.25 (10)
C1—N1—H1N115.7 (11)N1—C8—C9115.41 (9)
C8—N1—H1N116.0 (11)O91—C9—C10124.96 (10)
O1—C1—N1123.69 (10)O91—C9—C8114.45 (9)
O1—C1—C2121.14 (10)C10—C9—C8120.58 (10)
N1—C1—C2115.16 (9)C9—O91—C91117.00 (9)
C7—C2—C3119.14 (10)O91—C91—H91A109.5
C7—C2—C1117.28 (10)O91—C91—H91B109.5
C3—C2—C1123.57 (10)H91A—C91—H91B109.5
C4—C3—C2120.95 (10)O91—C91—H91C109.5
C4—C3—H3119.5H91A—C91—H91C109.5
C2—C3—H3119.5H91B—C91—H91C109.5
C5—C4—C3118.53 (10)C9—C10—C11119.63 (10)
C5—C4—H4120.7C9—C10—H10120.2
C3—C4—H4120.7C11—C10—H10120.2
C4—C5—C6121.93 (10)C12—C11—C10120.28 (10)
C4—C5—Cl1119.03 (9)C12—C11—H11119.9
C6—C5—Cl1119.04 (9)C10—C11—H11119.9
C7—C6—C5118.73 (10)C11—C12—C13120.49 (10)
C7—C6—H6120.6C11—C12—H12119.8
C5—C6—H6120.6C13—C12—H12119.8
C6—C7—C2120.71 (11)C12—C13—C8119.75 (10)
C6—C7—H7119.6C12—C13—H13120.1
C2—C7—H7119.6C8—C13—H13120.1
C13—C8—N1125.31 (10)
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O910.855 (17)2.165 (19)2.5810 (16)109.7 (15)
C4—H4···O1ii0.952.373.3060 (15)167
C6—H6···Cg1iii0.953.333.911 (2)133
Symmetry codes: (ii) x−1, y, z; (iii) −x+2, −y+1, −z+1.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O910.855 (17)2.165 (19)2.5810 (16)109.7 (15)
C4—H4···O1i0.952.373.3060 (15)167
C6—H6···Cg1ii0.953.333.911 (2)133
Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y+1, −z+1.
Acknowledgements top

We thank the University of Otago for purchase of the diffractometer.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Balasubramanyam, K., Swaminathan, V., Ranganathan, A. & Kundu, T. K. (2003). J. Biol. Chem. 278, 19134–19140.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.

Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Saeed, A., Hussain, S. & Bolte, M. (2007). Acta Cryst. E63, o4843.

Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). publCIF. In preparation.