organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2-meth­oxy­phen­yl)benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 2 December 2009; accepted 15 December 2009; online 19 December 2009)

The title compound, C14H12ClNO2, was prepared by refluxing 4-chloro­benzoyl chloride with o-anisidine in CHCl3. The methoxy­phen­yl–amide segment of the mol­ecule is almost planar, with a dihedral angle of 5.10 (7)° between the benzene ring and the C—N—C(O)—C fragment. A weak intra­molecular N—H⋯O contact forms an S(5) ring and contributes to the planarity of this portion of the mol­ecule. The two benzene rings are inclined at an angle of 26.74 (7)°. In the crystal structure, inter­molecular Cl⋯O inter­actions of 3.1874 (9) Å generate centrosymmetric dimers. These are further linked by C—H⋯O and C—H⋯π inter­actions, forming inversion related sheets parallel to [001].

Related literature

For background to our work on benzamide derivatives, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]). For related structures, see: Balasubramanyam et al. (2003[Balasubramanyam, K., Swaminathan, V., Ranganathan, A. & Kundu, T. K. (2003). J. Biol. Chem. 278, 19134-19140.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.]); Saeed et al. (2007[Saeed, A., Hussain, S. & Bolte, M. (2007). Acta Cryst. E63, o4843.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO2

  • Mr = 261.70

  • Triclinic, [P \overline 1]

  • a = 7.6938 (5) Å

  • b = 9.2339 (6) Å

  • c = 9.8723 (7) Å

  • α = 66.683 (3)°

  • β = 89.943 (3)°

  • γ = 69.536 (3)°

  • V = 595.69 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 89 K

  • 0.68 × 0.55 × 0.38 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 1.000

  • 9701 measured reflections

  • 4037 independent reflections

  • 3359 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.129

  • S = 1.11

  • 4037 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O91 0.855 (17) 2.165 (19) 2.5810 (16) 109.7 (15)
C4—H4⋯O1i 0.95 2.37 3.3060 (15) 167
C6—H6⋯Cg1ii 0.95 3.33 3.911 (2) 133
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Our work on benzamide derivatives has been described in a previous paper (Saeed et al., 2008). The methoxyphenyl amide segment of the molecule is planar with a dihedral angle of 5.10 (7) ° between benzene ring and the C8—N1—C1(O1)—C2 fragment. A weak intramolecular N1—H1N···O91 contact forms an S(5) ring (Bernstein et al., 1995) and contributes to the planarity of this portion of the molecule. The O91 and C91 atoms of the methoxy group also lie close to the C8···C13 ring plane with deviations 0.0171 (17) Å for O91 and -0.040 (2)Å for C91 respectively. The two benzene rings are inclined at an angle of 26.74 (7) °. Bond distances within the molecule are similar to those observed in comparable structures (Balasubramanyam et al.,2003; Saeed et al., 2007; Gowda et al., 2008).

In the crystal structure intermolecular Cl1···O1 interactions, 3.1874 (9) Å, generate centrosymmetric dimers, Fig. 2. Molecules in these dimers are further linked by C4—H4···O1 and C6—H6···Cg interactions (Cg is the centroid of the C8···C13 ring), Table 1, forming inversion related sheets parallel to 001, Fig 3.

Related literature top

For background to our work on benzamide derivatives, see: Saeed et al. (2008). For related structures, see: Balasubramanyam et al. (2003); Gowda et al. (2008); Saeed et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A freshly prepared solution of 4-chlorobenzoyl chloride (1 mmol) in CHCl3 was treated with o-anisidine (1 mmol) under a nitrogen atmosphere at reflux for 2.5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from methanol afforded the title compound (87%) as colourless crystals: Anal. calcd. for C14H12ClNO2: C, 64.25; H, 4.62; N, 5.35%; found: C, 64.09; H, 4.71; N, 5.43%.

Refinement top

The H atom on N1 was located in a difference Fourier map and refined isotropically. All other H-atoms were placed in calculated positions and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and 0.98 Å, Uiso = 1.5Ueq (C) for the CH3 H atoms. The crystal was relatively weakly diffracting reducing the overall fraction of measured reflections.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Cl···O contacts in (I) (dashed lines) linking the molecules into centrosymmetric dimers.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the b axis, with hydrogen bonds drawn as dashed lines and representative C—H···π interactions shown as dotted lines. Red spheres represent the centroids of the C8···C13 rings.
4-Chloro-N-(2-methoxyphenyl)benzamide top
Crystal data top
C14H12ClNO2Z = 2
Mr = 261.70F(000) = 272
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6938 (5) ÅCell parameters from 5193 reflections
b = 9.2339 (6) Åθ = 5.2–66.5°
c = 9.8723 (7) ŵ = 0.31 mm1
α = 66.683 (3)°T = 89 K
β = 89.943 (3)°Irregular block, colourless
γ = 69.536 (3)°0.68 × 0.55 × 0.38 mm
V = 595.69 (7) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4037 independent reflections
Radiation source: fine-focus sealed tube3359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 33.4°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1011
Tmin = 0.762, Tmax = 1.000k = 1414
9701 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.107P]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C14H12ClNO2γ = 69.536 (3)°
Mr = 261.70V = 595.69 (7) Å3
Triclinic, P1Z = 2
a = 7.6938 (5) ÅMo Kα radiation
b = 9.2339 (6) ŵ = 0.31 mm1
c = 9.8723 (7) ÅT = 89 K
α = 66.683 (3)°0.68 × 0.55 × 0.38 mm
β = 89.943 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4037 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3359 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 1.000Rint = 0.034
9701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.49 e Å3
4037 reflectionsΔρmin = 0.41 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.96801 (14)0.46684 (13)0.22602 (12)0.01253 (19)
H1N0.884 (2)0.424 (2)0.2472 (19)0.015*
O11.05224 (13)0.67559 (12)0.23889 (11)0.01810 (19)
C10.94176 (16)0.60270 (14)0.25817 (13)0.0119 (2)
C20.76731 (16)0.65786 (14)0.32264 (13)0.0115 (2)
C30.60538 (16)0.63062 (15)0.29623 (13)0.0128 (2)
H30.60340.57370.23480.015*
C40.44720 (16)0.68559 (15)0.35862 (14)0.0137 (2)
H40.33700.66790.33960.016*
C50.45387 (16)0.76691 (15)0.44926 (13)0.0134 (2)
Cl10.25804 (4)0.83363 (4)0.53040 (3)0.01918 (10)
C60.61287 (17)0.79600 (15)0.47773 (13)0.0141 (2)
H60.61480.85140.54050.017*
C70.76861 (16)0.74244 (15)0.41260 (13)0.0129 (2)
H70.87720.76350.42940.015*
C81.12198 (15)0.38098 (14)0.17333 (13)0.0111 (2)
C91.11216 (15)0.24043 (14)0.15384 (13)0.0119 (2)
O910.95021 (12)0.21277 (11)0.18506 (10)0.01454 (18)
C910.92918 (17)0.07592 (16)0.16205 (15)0.0170 (2)
H91A0.92120.10170.05540.026*
H91B0.81420.06200.19670.026*
H91C1.03780.02970.21830.026*
C101.25940 (16)0.14161 (15)0.10850 (14)0.0142 (2)
H101.25140.04790.09460.017*
C111.41951 (17)0.18041 (16)0.08331 (14)0.0156 (2)
H111.52190.11150.05410.019*
C121.42992 (17)0.31922 (16)0.10069 (14)0.0156 (2)
H121.53910.34530.08260.019*
C131.28124 (16)0.42081 (15)0.14455 (14)0.0139 (2)
H131.28830.51670.15480.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0111 (4)0.0137 (4)0.0177 (5)0.0062 (3)0.0069 (4)0.0100 (4)
O10.0149 (4)0.0190 (4)0.0284 (5)0.0099 (3)0.0084 (4)0.0148 (4)
C10.0107 (5)0.0131 (5)0.0137 (5)0.0044 (4)0.0027 (4)0.0073 (4)
C20.0111 (5)0.0111 (4)0.0125 (5)0.0037 (4)0.0023 (4)0.0057 (4)
C30.0118 (5)0.0143 (5)0.0147 (5)0.0051 (4)0.0034 (4)0.0084 (4)
C40.0115 (5)0.0152 (5)0.0160 (5)0.0054 (4)0.0037 (4)0.0078 (4)
C50.0132 (5)0.0130 (5)0.0134 (5)0.0035 (4)0.0047 (4)0.0062 (4)
Cl10.01588 (16)0.02343 (17)0.02268 (17)0.00678 (12)0.00998 (12)0.01468 (13)
C60.0162 (5)0.0139 (5)0.0143 (5)0.0053 (4)0.0037 (4)0.0083 (4)
C70.0129 (5)0.0133 (5)0.0145 (5)0.0051 (4)0.0023 (4)0.0078 (4)
C80.0100 (4)0.0108 (4)0.0118 (5)0.0029 (4)0.0029 (4)0.0052 (4)
C90.0103 (5)0.0124 (5)0.0128 (5)0.0039 (4)0.0031 (4)0.0056 (4)
O910.0123 (4)0.0148 (4)0.0228 (5)0.0073 (3)0.0080 (3)0.0122 (3)
C910.0149 (5)0.0163 (5)0.0261 (6)0.0077 (4)0.0052 (5)0.0135 (5)
C100.0125 (5)0.0134 (5)0.0171 (5)0.0035 (4)0.0047 (4)0.0082 (4)
C110.0113 (5)0.0168 (5)0.0178 (6)0.0028 (4)0.0054 (4)0.0085 (4)
C120.0115 (5)0.0177 (5)0.0172 (5)0.0059 (4)0.0048 (4)0.0068 (4)
C130.0128 (5)0.0149 (5)0.0161 (5)0.0068 (4)0.0045 (4)0.0074 (4)
Geometric parameters (Å, º) top
N1—C11.3613 (14)C7—H70.9500
N1—C81.4039 (13)C8—C131.3961 (15)
N1—H1N0.860 (17)C8—C91.4119 (15)
O1—C11.2288 (13)C9—O911.3683 (13)
C1—C21.4977 (15)C9—C101.3841 (15)
C2—C71.3977 (15)O91—C911.4301 (13)
C2—C31.3982 (15)C91—H91A0.9800
C3—C41.3901 (15)C91—H91B0.9800
C3—H30.9500C91—H91C0.9800
C4—C51.3879 (16)C10—C111.3947 (16)
C4—H40.9500C10—H100.9500
C5—C61.3920 (16)C11—C121.3873 (16)
C5—Cl11.7408 (11)C11—H110.9500
Cl1—O91i3.1874 (9)C12—C131.3951 (16)
C6—C71.3891 (15)C12—H120.9500
C6—H60.9500C13—H130.9500
C1—N1—C8128.16 (9)C13—C8—C9119.25 (10)
C1—N1—H1N115.7 (11)N1—C8—C9115.41 (9)
C8—N1—H1N116.0 (11)O91—C9—C10124.96 (10)
O1—C1—N1123.69 (10)O91—C9—C8114.45 (9)
O1—C1—C2121.14 (10)C10—C9—C8120.58 (10)
N1—C1—C2115.16 (9)C9—O91—C91117.00 (9)
C7—C2—C3119.14 (10)O91—C91—H91A109.5
C7—C2—C1117.28 (10)O91—C91—H91B109.5
C3—C2—C1123.57 (10)H91A—C91—H91B109.5
C4—C3—C2120.95 (10)O91—C91—H91C109.5
C4—C3—H3119.5H91A—C91—H91C109.5
C2—C3—H3119.5H91B—C91—H91C109.5
C5—C4—C3118.53 (10)C9—C10—C11119.63 (10)
C5—C4—H4120.7C9—C10—H10120.2
C3—C4—H4120.7C11—C10—H10120.2
C4—C5—C6121.93 (10)C12—C11—C10120.28 (10)
C4—C5—Cl1119.03 (9)C12—C11—H11119.9
C6—C5—Cl1119.04 (9)C10—C11—H11119.9
C7—C6—C5118.73 (10)C11—C12—C13120.49 (10)
C7—C6—H6120.6C11—C12—H12119.8
C5—C6—H6120.6C13—C12—H12119.8
C6—C7—C2120.71 (11)C12—C13—C8119.75 (10)
C6—C7—H7119.6C12—C13—H13120.1
C2—C7—H7119.6C8—C13—H13120.1
C13—C8—N1125.31 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O910.855 (17)2.165 (19)2.5810 (16)109.7 (15)
C4—H4···O1ii0.952.373.3060 (15)167
C6—H6···Cg1iii0.953.333.911 (2)133
Symmetry codes: (ii) x1, y, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H12ClNO2
Mr261.70
Crystal system, space groupTriclinic, P1
Temperature (K)89
a, b, c (Å)7.6938 (5), 9.2339 (6), 9.8723 (7)
α, β, γ (°)66.683 (3), 89.943 (3), 69.536 (3)
V3)595.69 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.68 × 0.55 × 0.38
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.762, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9701, 4037, 3359
Rint0.034
(sin θ/λ)max1)0.775
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.129, 1.11
No. of reflections4037
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O910.855 (17)2.165 (19)2.5810 (16)109.7 (15)
C4—H4···O1i0.952.373.3060 (15)167.0
C6—H6···Cg1ii0.953.333.911 (2)132.6
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals
First citationBalasubramanyam, K., Swaminathan, V., Ranganathan, A. & Kundu, T. K. (2003). J. Biol. Chem. 278, 19134–19140.  Web of Science CSD CrossRef PubMed CAS
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.  Web of Science CSD CrossRef IUCr Journals
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationSaeed, A., Hussain, S. & Bolte, M. (2007). Acta Cryst. E63, o4843.  Web of Science CSD CrossRef IUCr Journals
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). publCIF. In preparation.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds