organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­methyl­phen­yl)-4-methyl­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 8 December 2009; accepted 9 December 2009; online 16 December 2009)

In the title compound, C15H17NO2S, the dihedral angle between the two aromatic rings is 53.9 (1)°. The crystal structure features inversion-related dimers linked by N—H⋯O hydrogen bonds.

Related literature

For preparation of the title compound, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]). For our study of the effects of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o15.]); Nirmala et al. (2009a[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009a). Acta Cryst. E65, o3208.],b[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009b). Acta Cryst. E65, o3225.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Triclinic, [P \overline 1]

  • a = 8.311 (1) Å

  • b = 8.521 (1) Å

  • c = 11.412 (1) Å

  • α = 99.86 (1)°

  • β = 97.62 (1)°

  • γ = 108.14 (1)°

  • V = 741.60 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 299 K

  • 0.45 × 0.45 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.909, Tmax = 0.919

  • 4897 measured reflections

  • 3025 independent reflections

  • 2525 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.06

  • 3025 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.11 (2) 2.933 (2) 170 (2)
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the effect of substituents on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2010; Nirmala et al., 2009a,b), the structure of N-(3,5-dimethylphenyl)4-methylbenzenesulfonamide (I) has been determined. The conformation of the N—C bond in the C1—SO2—NH—C7 segment of the structure has gauche torsions with respect to the S O bonds (Fig. 1). Further, the conformation of the N—H bond is anti to one of the 3-methyl groups and syn to the other in the aniline benzene ring. The molecule is bent at the S atom with the C1—SO2—NH—C7 torsion angle of 56.8 (2)°, compared to the values of -51.6 (3)° in N-(phenyl)4-methylbenzenesulfonamide (II) (Gowda et al., 2010), 56.7 (3)° in N-(3-methylphenyl)4-methylbenzenesulfonamide (III) (Nirmala et al., 2009a), 67.9 (2)° in N-(3,5-dimethylphenyl)benzenesulfonamide(IV)(Nirmala et al., 2009b) and -61.0 (2)° in N-(2,5-dimethylphenyl)4-methylbenzenesulfonamide (V) and -61.8 (2)° in N-(3,4-dimethylphenyl)4-methylbenzenesulfonamide (VI) (Gowda et al., 2010).

The two benzene rings in (I) are tilted relative to each other by 53.9 (1)° compared to the values of 68.4 (1)° in (II), 83.9 (1)° in (III), 54.6 (1)° in (IV), 49.4 (1)° in (V) and 47.8 (1)° in (VI). The other bond parameters are similar to those observed in (II), (III), (IV), (V), (VI) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into inversion-related dimers. Part of the crystal structure is shown in Fig. 2.

Related literature top

For preparation of the title compound, see: Shetty & Gowda (2005). For our study of the effects of substituents on the structures of N-(aryl)-arylsulfonamides, see: Gowda et al. (2010); Nirmala et al. (2009a,b). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,5-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant N-(3,5-dimethylphenyl)4-methylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(3,5-Dimethylphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C15H17NO2SZ = 2
Mr = 275.36F(000) = 292
Triclinic, P1Dx = 1.233 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.311 (1) ÅCell parameters from 2279 reflections
b = 8.521 (1) Åθ = 2.6–27.7°
c = 11.412 (1) ŵ = 0.22 mm1
α = 99.86 (1)°T = 299 K
β = 97.62 (1)°Prism, colourless
γ = 108.14 (1)°0.45 × 0.45 × 0.40 mm
V = 741.60 (14) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3025 independent reflections
Radiation source: fine-focus sealed tube2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 109
Tmin = 0.909, Tmax = 0.919k = 1010
4897 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1701P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.025
3025 reflectionsΔρmax = 0.27 e Å3
179 parametersΔρmin = 0.31 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.087 (7)
Crystal data top
C15H17NO2Sγ = 108.14 (1)°
Mr = 275.36V = 741.60 (14) Å3
Triclinic, P1Z = 2
a = 8.311 (1) ÅMo Kα radiation
b = 8.521 (1) ŵ = 0.22 mm1
c = 11.412 (1) ÅT = 299 K
α = 99.86 (1)°0.45 × 0.45 × 0.40 mm
β = 97.62 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
3025 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2525 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.919Rint = 0.012
4897 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
3025 reflectionsΔρmin = 0.31 e Å3
179 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81313 (5)1.06718 (5)0.37422 (4)0.04434 (17)
O10.91624 (16)1.14988 (15)0.49312 (11)0.0528 (3)
O20.76542 (18)1.16623 (17)0.29675 (13)0.0587 (4)
N10.92841 (19)0.9671 (2)0.30816 (13)0.0485 (4)
H1N0.977 (3)0.928 (3)0.3581 (17)0.058*
C10.6248 (2)0.9101 (2)0.38708 (15)0.0413 (4)
C20.4799 (2)0.8575 (3)0.29635 (18)0.0550 (5)
H20.47940.90970.23120.066*
C30.3358 (2)0.7272 (3)0.3029 (2)0.0612 (5)
H30.23780.69260.24180.073*
C40.3338 (2)0.6468 (2)0.3982 (2)0.0565 (5)
C50.4797 (3)0.7038 (3)0.4893 (2)0.0617 (5)
H50.47940.65310.55520.074*
C60.6256 (2)0.8341 (2)0.48470 (17)0.0541 (5)
H60.72300.87010.54640.065*
C70.8582 (2)0.8517 (2)0.19231 (15)0.0457 (4)
C80.8165 (3)0.9108 (3)0.09055 (17)0.0566 (5)
H80.83231.02520.09760.068*
C90.7514 (3)0.7991 (3)0.02150 (18)0.0640 (5)
C100.7315 (3)0.6301 (3)0.03010 (19)0.0695 (6)
H100.68720.55490.10540.083*
C110.7759 (3)0.5689 (3)0.07052 (19)0.0629 (5)
C120.8382 (2)0.6827 (3)0.18233 (17)0.0530 (4)
H120.86680.64470.25120.064*
C130.1768 (3)0.5018 (3)0.4026 (3)0.0824 (8)
H13A0.08040.54060.40610.099*
H13B0.19930.45920.47340.099*
H13C0.15050.41310.33130.099*
C140.7039 (4)0.8623 (4)0.1327 (2)0.0946 (9)
H14A0.58120.83690.15100.113*
H14B0.73920.80750.20030.113*
H14C0.76130.98270.11740.113*
C150.7573 (4)0.3850 (3)0.0585 (3)0.0952 (9)
H15A0.65050.31530.00460.114*
H15B0.75770.35790.13680.114*
H15C0.85200.36450.02660.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (3)0.0386 (2)0.0471 (3)0.00888 (17)0.00667 (18)0.01407 (18)
O10.0526 (7)0.0424 (7)0.0528 (7)0.0073 (5)0.0022 (6)0.0067 (6)
O20.0648 (8)0.0499 (7)0.0652 (8)0.0178 (6)0.0106 (7)0.0280 (7)
N10.0437 (8)0.0558 (9)0.0448 (8)0.0144 (7)0.0068 (6)0.0145 (7)
C10.0405 (8)0.0376 (8)0.0448 (9)0.0119 (7)0.0082 (7)0.0093 (7)
C20.0479 (10)0.0609 (12)0.0535 (11)0.0149 (9)0.0042 (8)0.0176 (9)
C30.0420 (10)0.0599 (12)0.0691 (13)0.0089 (8)0.0020 (9)0.0045 (10)
C40.0468 (10)0.0402 (9)0.0802 (14)0.0109 (8)0.0223 (9)0.0072 (9)
C50.0647 (12)0.0540 (11)0.0706 (13)0.0150 (9)0.0225 (10)0.0281 (10)
C60.0514 (10)0.0519 (10)0.0546 (11)0.0096 (8)0.0049 (8)0.0203 (9)
C70.0406 (9)0.0540 (10)0.0431 (9)0.0136 (7)0.0111 (7)0.0153 (8)
C80.0644 (12)0.0592 (12)0.0521 (11)0.0235 (10)0.0135 (9)0.0224 (9)
C90.0738 (14)0.0770 (14)0.0473 (11)0.0312 (11)0.0081 (9)0.0224 (10)
C100.0846 (15)0.0734 (14)0.0468 (11)0.0286 (12)0.0047 (10)0.0075 (10)
C110.0757 (14)0.0589 (12)0.0533 (11)0.0238 (10)0.0093 (10)0.0123 (9)
C120.0574 (11)0.0605 (11)0.0465 (10)0.0229 (9)0.0109 (8)0.0207 (9)
C130.0585 (13)0.0538 (12)0.130 (2)0.0071 (10)0.0356 (14)0.0180 (14)
C140.126 (2)0.113 (2)0.0554 (14)0.0512 (19)0.0057 (14)0.0353 (14)
C150.140 (3)0.0633 (15)0.0771 (17)0.0353 (16)0.0095 (17)0.0107 (13)
Geometric parameters (Å, º) top
S1—O21.4220 (13)C8—C91.383 (3)
S1—O11.4353 (13)C8—H80.9300
S1—N11.6414 (16)C9—C101.382 (3)
S1—C11.7570 (17)C9—C141.513 (3)
N1—C71.431 (2)C10—C111.393 (3)
N1—H1N0.830 (15)C10—H100.9300
C1—C21.378 (2)C11—C121.388 (3)
C1—C61.381 (2)C11—C151.506 (3)
C2—C31.378 (3)C12—H120.9300
C2—H20.9300C13—H13A0.9600
C3—C41.381 (3)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.382 (3)C14—H14A0.9600
C4—C131.506 (3)C14—H14B0.9600
C5—C61.380 (3)C14—H14C0.9600
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C121.380 (3)C15—H15C0.9600
C7—C81.387 (2)
O2—S1—O1119.35 (8)C7—C8—H8120.1
O2—S1—N1108.43 (8)C10—C9—C8119.03 (19)
O1—S1—N1104.34 (8)C10—C9—C14120.8 (2)
O2—S1—C1108.50 (8)C8—C9—C14120.1 (2)
O1—S1—C1109.14 (8)C9—C10—C11122.0 (2)
N1—S1—C1106.34 (8)C9—C10—H10119.0
C7—N1—S1120.83 (12)C11—C10—H10119.0
C7—N1—H1N112.8 (15)C12—C11—C10117.9 (2)
S1—N1—H1N109.6 (15)C12—C11—C15121.0 (2)
C2—C1—C6120.44 (16)C10—C11—C15121.1 (2)
C2—C1—S1119.58 (13)C7—C12—C11120.66 (17)
C6—C1—S1119.90 (13)C7—C12—H12119.7
C3—C2—C1119.53 (18)C11—C12—H12119.7
C3—C2—H2120.2C4—C13—H13A109.5
C1—C2—H2120.2C4—C13—H13B109.5
C2—C3—C4121.32 (18)H13A—C13—H13B109.5
C2—C3—H3119.3C4—C13—H13C109.5
C4—C3—H3119.3H13A—C13—H13C109.5
C5—C4—C3118.06 (17)H13B—C13—H13C109.5
C5—C4—C13121.2 (2)C9—C14—H14A109.5
C3—C4—C13120.7 (2)C9—C14—H14B109.5
C4—C5—C6121.66 (19)H14A—C14—H14B109.5
C4—C5—H5119.2C9—C14—H14C109.5
C6—C5—H5119.2H14A—C14—H14C109.5
C5—C6—C1118.96 (18)H14B—C14—H14C109.5
C5—C6—H6120.5C11—C15—H15A109.5
C1—C6—H6120.5C11—C15—H15B109.5
C12—C7—C8120.51 (18)H15A—C15—H15B109.5
C12—C7—N1119.34 (16)C11—C15—H15C109.5
C8—C7—N1120.11 (17)H15A—C15—H15C109.5
C9—C8—C7119.83 (19)H15B—C15—H15C109.5
C9—C8—H8120.1
O2—S1—N1—C759.70 (15)C2—C1—C6—C50.6 (3)
O1—S1—N1—C7172.11 (13)S1—C1—C6—C5176.08 (15)
C1—S1—N1—C756.80 (15)S1—N1—C7—C12116.91 (17)
O2—S1—C1—C224.58 (17)S1—N1—C7—C865.4 (2)
O1—S1—C1—C2156.11 (15)C12—C7—C8—C91.2 (3)
N1—S1—C1—C291.87 (16)N1—C7—C8—C9178.92 (17)
O2—S1—C1—C6158.72 (15)C7—C8—C9—C101.0 (3)
O1—S1—C1—C627.19 (17)C7—C8—C9—C14179.4 (2)
N1—S1—C1—C684.83 (16)C8—C9—C10—C110.3 (4)
C6—C1—C2—C30.6 (3)C14—C9—C10—C11179.3 (2)
S1—C1—C2—C3176.04 (15)C9—C10—C11—C121.4 (4)
C1—C2—C3—C40.5 (3)C9—C10—C11—C15178.5 (3)
C2—C3—C4—C51.6 (3)C8—C7—C12—C110.1 (3)
C2—C3—C4—C13178.55 (19)N1—C7—C12—C11177.81 (17)
C3—C4—C5—C61.7 (3)C10—C11—C12—C71.2 (3)
C13—C4—C5—C6178.5 (2)C15—C11—C12—C7178.7 (2)
C4—C5—C6—C10.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.11 (2)2.933 (2)170 (2)
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.311 (1), 8.521 (1), 11.412 (1)
α, β, γ (°)99.86 (1), 97.62 (1), 108.14 (1)
V3)741.60 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.45 × 0.45 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.909, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
4897, 3025, 2525
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.06
No. of reflections3025
No. of parameters179
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.830 (15)2.111 (16)2.933 (2)170 (2)
Symmetry code: (i) x+2, y+2, z+1.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o15.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009a). Acta Cryst. E65, o3208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009b). Acta Cryst. E65, o3225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds