organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,3S)-3-Hy­droxy­meth­yl-N-iso­propyl-2,2-di­methyl­cyclo­propane­carboxamide

aDepartment of Applied Chemistry, China Agriculture University, 100193, Beijing, People's Republic of China
*Correspondence e-mail: Houshc@cau.edu.cn, Wangmincau@yahoo.com.cn

(Received 4 October 2009; accepted 30 November 2009; online 12 December 2009)

The asymmetric unit of the title compound, C10H19NO2, prepared from (−)-1R-cis-caronaldehyde, contains two independent mol­ecules. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds form an extensive three-dimensional hydrogen-bonding network.

Related literature

For details of the synthesis, see Huang et al. (2001[ Huang, P. Q., Zheng, X. & Deng, X. M. (2001). Tetrahedron Lett. 42, 9039-9041.]). For the crystal structures of related derivatives of (−)-1R-cis-caronaldehyde, see: Na & Wang (2009[ Na, R. & Wang, M. (2009). Acta Cryst. E65, o1230.]); Wang et al. (2009[ Wang, B., Ye, N., Li, Z., Zhong, J. & Hou, S. (2009). Acta Cryst. E65, o2474.]).

[Scheme 1]

Experimental

Crystal data
  • C10H19NO2

  • Mr = 185.26

  • Orthorhombic, P 21 21 21

  • a = 9.4628 (19) Å

  • b = 12.298 (3) Å

  • c = 18.710 (4) Å

  • V = 2177.4 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.62 mm−1

  • T = 173 K

  • 0.53 × 0.43 × 0.39 mm

Data collection
  • Rigaku R-AXIS Rapid IP area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[ Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.734, Tmax = 0.794

  • 15043 measured reflections

  • 2271 independent reflections

  • 2129 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.110

  • S = 1.06

  • 2271 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.84 1.96 2.796 (3) 174
O3—H3⋯O1ii 0.84 1.98 2.782 (3) 160
N1—H1⋯O4 0.88 2.03 2.906 (3) 176
N2—H2⋯O2iii 0.88 2.09 2.964 (3) 171
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2001[ Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our study of new (-)-1R-cis-caronaldehyde derivatives (Na & Wang, 2009; Wang et al., 2009), we present here the crystal structure of the title compound (I).

The asymmetric unit of (I) contains two independent molecules (Fig. 1). The crystal structure is stabilized by intermolecular O—H···O and O—H···N hydrogen bonds (Table 1).

Related literature top

For details of the synthesis, see Huang et al. (2001). For the crystal structures of related derivatives of (-)-1R-cis-caronaldehyde, see: Na & Wang (2009); Wang et al. (2009).

Experimental top

We have synthesized the title compound following the known procedure (Huang et al., 2001).

(1R,5S)-4-hydroxy-6,6-dimethyl-3-oxa-bicyclo[3.1.0]-hex-an-2-one (2.84 g, 20 mmol) was dissolved in the mixture of 30 ml of Et2O and 5 ml of MeOH. This solution was cooled to 0°C and a solution of diazomethane in ether was added. The solution was slowly allowed to warm to room temperature without additional heating. The reaction mixture was concentrated under reduced pressure. The crude product was passed through a silica gel column (hexane/ethyl acetate = 6:1) to afford (1R,3S)-Methyl-3-formyl-2,2-dimethylcyclopropane-carboxylate as a colorless oil (2.9 g, 93% yield). [α]D18= -73.4(c 0.99, CHCl3); IR (neat) 2957, 1731, 1701, 1439, 1379, 1200, 1137, 1119, 839 cm-1; 1H NMR (500 MHz, CDCl3): δ 1.27 (s,3H), 1.55 (s, 3H), 1.83–1.86 (m, 1H), 2.12 (d, 1H, J = 9.5 Hz), 3.71 (s, 3H),9.75 (d, 1H, J = 9.5 Hz,); 13CNMR (125 MHz, CDCl3): δ 15.5, 28.3, 29.8, 36.1, 40.9, 52.2, 170.4,200.4; HRMS (TOF): m/z calcd for C8H13NO3 [M+H+]: 157.0859, found: 157.0865.

NaBH4 (3.78 g, 100 mmol) was dissolved in 60 ml of dry MeOH,and a solution of (1R,3S)-Methyl-3-formyl-2,2-dimethylcyclopropane-carboxylate (15.6 g,100 mmol) in MeOH was added slowly into above mixture. After it, the reaction was kept for 30 min. Then, saturated HCl (1 ml) was added to stop the reactionand extracted with ether (40 ml x3). The organic layer was dried over anhydrousNa2SO4. Then, concentrated to give alight yellow oil (13.74 g, 87% yield). To a solution of benzene (60 ml) was added the light yellow oil (8 g, 50 mmol), the mixture was refluxed for 2 h. Then, concentrated under reduced pressure (2 m mH g, 56°C) to give (1R,5S)-6,6-Dimethyl-3-oxa-bicyclo[3.1.0]hexan-2-one with 90% yield. 1HNMR (500 MHz, DMSO): δ 1.176 (3H, s),1.184 (3H, s), 1.943–1.958 (1H,m), 2.034–2.059 (1H, m), 4.14–4.16 (d, 1H, J = 9.5 Hz), 4.350–4.381(1H, m); 13C NMR (125 MHz, DMSO): δ 14.37, 22.99, 25.18, 30.01, 30.47, 66.49, 174.92.

The isopropanamine (2.2 ml, 20 mmol) was dissolved in dry THF (10 ml), cooled to -15°C, and, DIBAL-H (13 ml, 20 mmol) was injected. After themixture was sirred for 20 min, the solution was allowed to warm to 30°C and to react for 3 h. Then, it was cooled to -5 °C, and a solution of (1R,5S)-6,6-Dimethyl-3-oxa-bicyclo[3.1.0]hexan-2-one (2.2 ml) in THF (7.5 ml) was added withstirring for 10 min. After 20 h at room temperture, the reaction was quenched with water (10 ml) and 4 N HCl (15 ml) and the mixture was extracted several times with Et2O. The combined organic phases were washed with 1 N HCl, then, dried over Na2SO4 and concentrated under reduced pressure to give the products (1R,3S)-N-isopropyl-3-(hydroxymethyl)-2,2-dimethylcyclopropanecarboxamide (3.48 g, 87% yield). [α]D20= 41.0 (c 1.14, CHCl3); IR(KBr): 3272.57, 2960.39, 1654.66, 1630.67, 1547.28, 1450.94, 1240.11, 1198.22,1120.70, 1027.72, 699.99 cm-1.1H NMR (500 MHz, DMSO): δ 1.144–1.200 (3H, s), 1.372–1.428 (3H, s), 1.657 (2H,m), 3.123–3.150 (1H,m), 3.840–3.883 (1H, m), 3.972–4.028 (1H, m), 4.442–4.458 (2H, m), 6.067 (1H, m), 7.264–7.302 (3H, m), 7.333–7.363 (2H, m). 13CNMR (125 MHz, DMSO): δ 15.48,24.15, 28.59, 31.81, 32.59, 43.80, 59.08, 127.56, 127.76, 128.74,138.18, 171.26.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.98 - 1.00 Å, O—H = 0.84 Å, and with Uiso (H) = 1.2-1.5Ueq of the parent atom. In the absence of any significant anomalous scatterers in the molecule, the 1671 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I), with atomic labels and 30% probability displacement ellipsoids. Some of H atoms omitted for clarity.
(1R,3S)-3-Hydroxymethyl-N-isopropyl-2,2- dimethylcyclopropanecarboxamide top
Crystal data top
C10H19NO2Dx = 1.130 Mg m3
Mr = 185.26Cu Kα radiation, λ = 1.54186 Å
Orthorhombic, P212121Cell parameters from 426 reflections
a = 9.4628 (19) Åθ = 2.2–68.3°
b = 12.298 (3) ŵ = 0.62 mm1
c = 18.710 (4) ÅT = 173 K
V = 2177.4 (8) Å3Block, colourless
Z = 80.53 × 0.43 × 0.39 mm
F(000) = 816
Data collection top
Rigaku R-AXIS Rapid IP area-detector
diffractometer
2271 independent reflections
Radiation source: rotating anode2129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω scans at fixed χ = 45°θmax = 68.2°, θmin = 4.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 111
Tmin = 0.734, Tmax = 0.794k = 1414
15043 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0502P)2 + 1.0161P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.26 e Å3
2271 reflectionsΔρmin = 0.19 e Å3
240 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (5)
Secondary atom site location: difference Fourier map
Crystal data top
C10H19NO2V = 2177.4 (8) Å3
Mr = 185.26Z = 8
Orthorhombic, P212121Cu Kα radiation
a = 9.4628 (19) ŵ = 0.62 mm1
b = 12.298 (3) ÅT = 173 K
c = 18.710 (4) Å0.53 × 0.43 × 0.39 mm
Data collection top
Rigaku R-AXIS Rapid IP area-detector
diffractometer
2271 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2129 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.794Rint = 0.046
15043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042240 parameters
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2271 reflectionsΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6210 (2)1.20449 (16)0.05202 (10)0.0338 (5)
H1A0.69361.24250.04540.041*
O20.5838 (2)0.94520 (18)0.20498 (10)0.0365 (5)
O31.1281 (2)0.81763 (16)0.47435 (11)0.0408 (5)
H31.06580.80160.50450.049*
O41.0762 (2)0.8858 (2)0.28306 (11)0.0440 (6)
N10.7727 (2)0.87180 (18)0.26112 (11)0.0273 (5)
H10.86390.87950.26890.033*
N21.2844 (2)0.88054 (19)0.22414 (11)0.0286 (5)
H21.37500.89660.22340.034*
C10.8241 (3)1.0016 (2)0.08897 (14)0.0287 (6)
C20.7827 (3)1.1031 (2)0.12682 (14)0.0281 (6)
H2A0.85951.15890.12750.034*
C30.8184 (3)1.0024 (2)0.17075 (13)0.0280 (6)
H3A0.91381.00580.19360.034*
C40.7151 (4)0.9388 (2)0.04695 (15)0.0370 (7)
H4A0.62610.93690.07370.055*
H4B0.74870.86440.03910.055*
H4C0.69960.97440.00070.055*
C50.9697 (3)0.9970 (3)0.05666 (17)0.0428 (8)
H5A0.96641.02480.00760.064*
H5B1.00300.92150.05620.064*
H5C1.03451.04160.08510.064*
C60.6372 (3)1.1523 (2)0.12027 (14)0.0320 (6)
H6A0.56491.09470.12560.038*
H6B0.62281.20620.15890.038*
C70.7133 (3)0.9388 (2)0.21314 (13)0.0264 (6)
C80.6914 (3)0.8114 (2)0.31424 (14)0.0297 (6)
H8A0.59760.79290.29290.036*
C90.7659 (4)0.7061 (3)0.33356 (18)0.0479 (8)
H9A0.76390.65670.29250.072*
H9B0.71760.67200.37410.072*
H9C0.86410.72160.34660.072*
C100.6663 (3)0.8800 (3)0.38007 (15)0.0389 (7)
H10A0.62600.95020.36600.058*
H10B0.75610.89200.40490.058*
H10C0.60040.84230.41200.058*
C111.2353 (3)1.0709 (2)0.37272 (15)0.0321 (6)
C121.2361 (3)0.9684 (2)0.41652 (14)0.0282 (6)
H12A1.31650.96410.45110.034*
C131.2821 (3)0.9638 (2)0.33829 (13)0.0279 (6)
H13A1.38690.95860.33260.033*
C141.0943 (4)1.1208 (3)0.35373 (18)0.0494 (9)
H14A1.08111.18810.38090.074*
H14B1.01841.06960.36550.074*
H14C1.09181.13700.30250.074*
C151.3528 (4)1.1522 (3)0.38644 (18)0.0465 (8)
H15A1.31331.21760.40860.070*
H15B1.39791.17160.34110.070*
H15C1.42311.11980.41850.070*
C161.1006 (3)0.9219 (2)0.44476 (15)0.0307 (6)
H16A1.06110.97050.48190.037*
H16B1.03070.91560.40560.037*
C171.2042 (3)0.9076 (2)0.28063 (14)0.0289 (6)
C181.2337 (3)0.8174 (2)0.16345 (14)0.0315 (6)
H18A1.13030.83160.15760.038*
C191.3086 (3)0.8541 (3)0.09619 (15)0.0442 (8)
H19A1.29260.93210.08910.066*
H19B1.27140.81380.05510.066*
H19C1.41010.84030.10080.066*
C201.2542 (4)0.6969 (2)0.17724 (17)0.0427 (8)
H20A1.20340.67610.22080.064*
H20B1.35510.68140.18320.064*
H20C1.21740.65520.13660.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (10)0.0340 (10)0.0398 (10)0.0030 (9)0.0071 (9)0.0073 (9)
O20.0173 (10)0.0533 (13)0.0389 (10)0.0032 (9)0.0001 (8)0.0135 (10)
O30.0351 (12)0.0369 (11)0.0504 (12)0.0051 (10)0.0140 (10)0.0123 (10)
O40.0170 (9)0.0769 (16)0.0381 (11)0.0034 (11)0.0003 (8)0.0046 (11)
N10.0200 (11)0.0331 (12)0.0289 (11)0.0030 (10)0.0005 (9)0.0055 (10)
N20.0175 (10)0.0384 (12)0.0299 (11)0.0025 (10)0.0008 (9)0.0020 (10)
C10.0235 (14)0.0336 (14)0.0290 (13)0.0024 (12)0.0038 (11)0.0071 (12)
C20.0211 (13)0.0326 (14)0.0306 (13)0.0036 (12)0.0021 (11)0.0038 (12)
C30.0183 (13)0.0355 (15)0.0303 (13)0.0028 (11)0.0002 (10)0.0056 (12)
C40.0430 (17)0.0373 (15)0.0306 (13)0.0019 (14)0.0012 (13)0.0005 (12)
C50.0321 (17)0.0566 (19)0.0397 (16)0.0110 (15)0.0106 (13)0.0122 (16)
C60.0296 (14)0.0322 (14)0.0342 (14)0.0035 (12)0.0012 (12)0.0016 (12)
C70.0222 (13)0.0326 (13)0.0245 (12)0.0019 (11)0.0005 (11)0.0001 (11)
C80.0271 (15)0.0330 (15)0.0291 (13)0.0041 (12)0.0012 (11)0.0057 (11)
C90.059 (2)0.0370 (16)0.0481 (18)0.0053 (17)0.0123 (17)0.0107 (14)
C100.0395 (17)0.0424 (16)0.0348 (15)0.0007 (15)0.0027 (13)0.0011 (13)
C110.0330 (15)0.0273 (13)0.0359 (14)0.0038 (12)0.0047 (13)0.0027 (11)
C120.0248 (14)0.0315 (14)0.0284 (12)0.0008 (12)0.0006 (11)0.0024 (11)
C130.0196 (13)0.0321 (14)0.0319 (13)0.0012 (12)0.0022 (11)0.0002 (11)
C140.048 (2)0.0483 (18)0.0523 (19)0.0195 (18)0.0151 (16)0.0168 (16)
C150.056 (2)0.0368 (16)0.0469 (18)0.0090 (16)0.0116 (17)0.0012 (14)
C160.0282 (15)0.0316 (14)0.0322 (13)0.0024 (12)0.0026 (12)0.0042 (12)
C170.0180 (13)0.0384 (15)0.0304 (13)0.0011 (11)0.0017 (11)0.0059 (12)
C180.0208 (13)0.0446 (16)0.0291 (13)0.0036 (13)0.0025 (11)0.0002 (12)
C190.0355 (17)0.067 (2)0.0299 (14)0.0078 (16)0.0013 (13)0.0012 (15)
C200.0419 (19)0.0409 (16)0.0454 (17)0.0066 (15)0.0034 (15)0.0043 (14)
Geometric parameters (Å, º) top
O1—C61.437 (3)C9—H9A0.9800
O1—H1A0.8400C9—H9B0.9800
O2—C71.237 (3)C9—H9C0.9800
O3—C161.421 (3)C10—H10A0.9800
O3—H30.8400C10—H10B0.9800
O4—C171.242 (3)C10—H10C0.9800
N1—C71.342 (3)C11—C121.504 (4)
N1—C81.460 (3)C11—C141.511 (4)
N1—H10.8800C11—C151.517 (4)
N2—C171.343 (3)C11—C131.531 (4)
N2—C181.457 (3)C12—C161.500 (4)
N2—H20.8800C12—C131.528 (4)
C1—C21.488 (4)C12—H12A1.0000
C1—C51.506 (4)C13—C171.478 (4)
C1—C41.510 (4)C13—H13A1.0000
C1—C31.531 (4)C14—H14A0.9800
C2—C61.509 (4)C14—H14B0.9800
C2—C31.525 (4)C14—H14C0.9800
C2—H2A1.0000C15—H15A0.9800
C3—C71.493 (4)C15—H15B0.9800
C3—H3A1.0000C15—H15C0.9800
C4—H4A0.9800C16—H16A0.9900
C4—H4B0.9800C16—H16B0.9900
C4—H4C0.9800C18—C191.513 (4)
C5—H5A0.9800C18—C201.516 (4)
C5—H5B0.9800C18—H18A1.0000
C5—H5C0.9800C19—H19A0.9800
C6—H6A0.9900C19—H19B0.9800
C6—H6B0.9900C19—H19C0.9800
C8—C101.512 (4)C20—H20A0.9800
C8—C91.518 (4)C20—H20B0.9800
C8—H8A1.0000C20—H20C0.9800
C6—O1—H1A106.9H10A—C10—H10B109.5
C16—O3—H3110.2C8—C10—H10C109.5
C7—N1—C8123.2 (2)H10A—C10—H10C109.5
C7—N1—H1117.1H10B—C10—H10C109.5
C8—N1—H1117.3C12—C11—C14118.2 (2)
C17—N2—C18124.0 (2)C12—C11—C15117.1 (3)
C17—N2—H2120.5C14—C11—C15114.8 (3)
C18—N2—H2115.3C12—C11—C1360.44 (17)
C2—C1—C5117.7 (3)C14—C11—C13120.3 (3)
C2—C1—C4119.8 (2)C15—C11—C13115.2 (2)
C5—C1—C4113.4 (3)C16—C12—C11120.5 (2)
C2—C1—C360.66 (17)C16—C12—C13124.5 (2)
C5—C1—C3115.7 (2)C11—C12—C1360.68 (17)
C4—C1—C3120.0 (2)C16—C12—H12A113.7
C1—C2—C6122.6 (2)C11—C12—H12A113.7
C1—C2—C361.09 (17)C13—C12—H12A113.7
C6—C2—C3124.9 (2)C17—C13—C12125.1 (2)
C1—C2—H2A112.9C17—C13—C11124.4 (2)
C6—C2—H2A112.9C12—C13—C1158.88 (17)
C3—C2—H2A112.9C17—C13—H13A112.8
C7—C3—C2124.3 (2)C12—C13—H13A112.8
C7—C3—C1123.5 (2)C11—C13—H13A112.8
C2—C3—C158.25 (17)C11—C14—H14A109.5
C7—C3—H3A113.3C11—C14—H14B109.5
C2—C3—H3A113.3H14A—C14—H14B109.5
C1—C3—H3A113.3C11—C14—H14C109.5
C1—C4—H4A109.5H14A—C14—H14C109.5
C1—C4—H4B109.5H14B—C14—H14C109.5
H4A—C4—H4B109.5C11—C15—H15A109.5
C1—C4—H4C109.5C11—C15—H15B109.5
H4A—C4—H4C109.5H15A—C15—H15B109.5
H4B—C4—H4C109.5C11—C15—H15C109.5
C1—C5—H5A109.5H15A—C15—H15C109.5
C1—C5—H5B109.5H15B—C15—H15C109.5
H5A—C5—H5B109.5O3—C16—C12109.0 (2)
C1—C5—H5C109.5O3—C16—H16A109.9
H5A—C5—H5C109.5C12—C16—H16A109.9
H5B—C5—H5C109.5O3—C16—H16B109.9
O1—C6—C2110.4 (2)C12—C16—H16B109.9
O1—C6—H6A109.6H16A—C16—H16B108.3
C2—C6—H6A109.6O4—C17—N2121.8 (3)
O1—C6—H6B109.6O4—C17—C13124.1 (3)
C2—C6—H6B109.6N2—C17—C13114.1 (2)
H6A—C6—H6B108.1N2—C18—C19109.6 (2)
O2—C7—N1122.4 (2)N2—C18—C20110.3 (2)
O2—C7—C3124.1 (2)C19—C18—C20111.9 (3)
N1—C7—C3113.4 (2)N2—C18—H18A108.3
N1—C8—C10110.7 (2)C19—C18—H18A108.3
N1—C8—C9110.6 (2)C20—C18—H18A108.3
C10—C8—C9110.8 (2)C18—C19—H19A109.5
N1—C8—H8A108.2C18—C19—H19B109.5
C10—C8—H8A108.2H19A—C19—H19B109.5
C9—C8—H8A108.2C18—C19—H19C109.5
C8—C9—H9A109.5H19A—C19—H19C109.5
C8—C9—H9B109.5H19B—C19—H19C109.5
H9A—C9—H9B109.5C18—C20—H20A109.5
C8—C9—H9C109.5C18—C20—H20B109.5
H9A—C9—H9C109.5H20A—C20—H20B109.5
H9B—C9—H9C109.5C18—C20—H20C109.5
C8—C10—H10A109.5H20A—C20—H20C109.5
C8—C10—H10B109.5H20B—C20—H20C109.5
C5—C1—C2—C6139.5 (3)C14—C11—C12—C164.3 (4)
C4—C1—C2—C65.2 (4)C15—C11—C12—C16139.9 (3)
C3—C1—C2—C6115.0 (3)C13—C11—C12—C16115.0 (3)
C5—C1—C2—C3105.5 (3)C14—C11—C12—C13110.8 (3)
C4—C1—C2—C3109.8 (3)C15—C11—C12—C13105.0 (3)
C1—C2—C3—C7111.2 (3)C16—C12—C13—C173.9 (4)
C6—C2—C3—C70.1 (4)C11—C12—C13—C17112.5 (3)
C6—C2—C3—C1111.4 (3)C16—C12—C13—C11108.6 (3)
C2—C1—C3—C7112.7 (3)C12—C11—C13—C17113.6 (3)
C5—C1—C3—C7138.6 (3)C14—C11—C13—C176.2 (4)
C4—C1—C3—C73.2 (4)C15—C11—C13—C17138.2 (3)
C5—C1—C3—C2108.7 (3)C14—C11—C13—C12107.3 (3)
C4—C1—C3—C2109.5 (3)C15—C11—C13—C12108.2 (3)
C1—C2—C6—O174.7 (3)C11—C12—C16—O3171.1 (2)
C3—C2—C6—O1150.0 (2)C13—C12—C16—O397.7 (3)
C8—N1—C7—O28.4 (4)C18—N2—C17—O44.6 (4)
C8—N1—C7—C3172.5 (2)C18—N2—C17—C13175.1 (2)
C2—C3—C7—O216.9 (4)C12—C13—C17—O422.4 (4)
C1—C3—C7—O254.9 (4)C11—C13—C17—O451.1 (4)
C2—C3—C7—N1164.0 (2)C12—C13—C17—N2157.3 (2)
C1—C3—C7—N1124.3 (3)C11—C13—C17—N2129.2 (3)
C7—N1—C8—C1085.8 (3)C17—N2—C18—C19147.4 (3)
C7—N1—C8—C9151.0 (3)C17—N2—C18—C2089.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.841.962.796 (3)174
O3—H3···O1ii0.841.982.782 (3)160
N1—H1···O40.882.032.906 (3)176
N2—H2···O2iii0.882.092.964 (3)171
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y+2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H19NO2
Mr185.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.4628 (19), 12.298 (3), 18.710 (4)
V3)2177.4 (8)
Z8
Radiation typeCu Kα
µ (mm1)0.62
Crystal size (mm)0.53 × 0.43 × 0.39
Data collection
DiffractometerRigaku R-AXIS Rapid IP area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.734, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
15043, 2271, 2129
Rint0.046
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.110, 1.06
No. of reflections2271
No. of parameters240
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: RAPID-AUTO (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.841.962.796 (3)174.1
O3—H3···O1ii0.841.982.782 (3)159.6
N1—H1···O40.882.032.906 (3)175.5
N2—H2···O2iii0.882.092.964 (3)170.7
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+3/2, y+2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant Nos. 20472111 and 20742004) is gratefully acknowledged.

References

First citation Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citation Huang, P. Q., Zheng, X. & Deng, X. M. (2001). Tetrahedron Lett. 42, 9039–9041.  Web of Science CrossRef CAS Google Scholar
First citation Na, R. & Wang, M. (2009). Acta Cryst. E65, o1230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Wang, B., Ye, N., Li, Z., Zhong, J. & Hou, S. (2009). Acta Cryst. E65, o2474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds