organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Nitro­phen­yl)-5-phenyl­furan

aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: heyh@swu.edu.cn

(Received 23 November 2009; accepted 9 December 2009; online 12 December 2009)

The mol­ecular skeleton of the title mol­ecule, C16H11NO3, is nearly planar with the two aromatic rings forming a dihedral angle of 2.73 (7)°. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into ribbons extended along [101]. The crystal packing exhibits also ππ inter­actions, as indicated by the short centroid–centroid distances between the aromatic rings [3.681 (3) Å] and between the aromatic and furan rings [3.811 (3) Å] of neighbouring mol­ecules.

Related literature

For details of the synthesis, see: Wang et al. (2009[Wang, G., Guan, Z., Tang, R. & He, Y. (2009). J. Heterocycl. Chem. 46, 540-543.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11NO3

  • Mr = 265.26

  • Monoclinic, P 21 /n

  • a = 7.3213 (15) Å

  • b = 16.290 (3) Å

  • c = 10.904 (2) Å

  • β = 100.81 (3)°

  • V = 1277.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 113 K

  • 0.24 × 0.22 × 0.19 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.977, Tmax = 0.982

  • 10136 measured reflections

  • 2924 independent reflections

  • 1168 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.174

  • S = 1.00

  • 2924 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.95 2.51 3.373 (3) 152
C12—H12⋯O2ii 0.95 2.61 3.435 (3) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), has been obtained as a by-product in our ongoing research of highly substituted furan derivatives (Wang et al., 2009).

In (I) (Fig. 1), two aromatic rings form a dihedral angle of 2.73 (7) °. Weak intermolecular C—H···O hydrogen bonds (Table 1) and π-π stacking interactions with centroid-centroid separations of 3.681 (3) and 3.811 (3) Å consolidate the crystal packing.

Related literature top

For details of the synthesis, see: Wang et al. (2009).

Experimental top

A solution of ethyl 2-benzoyl-4-(4-nitrophenyl)-4-oxobutanoate (0.353 g, 0.7 mmol) in ionic liquid [bmim]HSO4 (1.6 g, 6.7 mmol) was stirred at 150 °C for 4 h in oil bath. After cooling to r.t., the reaction mixture was extracted with diethyl ether thoroughly. The combined extracts were washed with water, brine,dried (Na2SO4),and filtered. The solvents were removed and the residue was purified by flash chromatography (petroleum ether / dichloromethane 2:1) to get Ethyl 5-(4-nitrophenyl)-2-phenylfuran-3-carboxylate (240 mg, 71%) and the title compound (50 mg,14%) as yellow crystals.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å, Uiso=1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
2-(4-Nitrophenyl)-5-phenylfuran top
Crystal data top
C16H11NO3F(000) = 552
Mr = 265.26Dx = 1.379 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3213 (15) ÅCell parameters from 3226 reflections
b = 16.290 (3) Åθ = 2.3–27.7°
c = 10.904 (2) ŵ = 0.10 mm1
β = 100.81 (3)°T = 113 K
V = 1277.3 (4) Å3Block, orange
Z = 40.24 × 0.22 × 0.19 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2924 independent reflections
Radiation source: rotating anode1168 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.070
Detector resolution: 7.31 pixels mm-1θmax = 27.6°, θmin = 3.1°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2121
Tmin = 0.977, Tmax = 0.982l = 1214
10136 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.063 w = 1/[σ2(Fo2) + (0.0654P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.22 e Å3
2924 reflectionsΔρmin = 0.19 e Å3
182 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (10)
Secondary atom site location: difference Fourier map
Crystal data top
C16H11NO3V = 1277.3 (4) Å3
Mr = 265.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3213 (15) ŵ = 0.10 mm1
b = 16.290 (3) ÅT = 113 K
c = 10.904 (2) Å0.24 × 0.22 × 0.19 mm
β = 100.81 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2924 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1168 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.982Rint = 0.070
10136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063182 parameters
wR(F2) = 0.174H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2924 reflectionsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83658 (18)0.47058 (7)0.09998 (13)0.0540 (5)
O20.3323 (3)0.56325 (12)0.48419 (15)0.0968 (7)
O30.3467 (3)0.69148 (10)0.43913 (17)0.0971 (7)
N10.3792 (3)0.61960 (13)0.41169 (19)0.0685 (6)
C10.4782 (3)0.60055 (13)0.2862 (2)0.0528 (6)
C20.5230 (3)0.66262 (13)0.2022 (2)0.0632 (7)
H20.48560.71740.22400.076*
C30.6219 (3)0.64521 (13)0.0866 (2)0.0612 (7)
H30.65240.68820.02750.073*
C40.6791 (3)0.56563 (12)0.05378 (19)0.0504 (6)
C50.6301 (3)0.50391 (12)0.1400 (2)0.0569 (6)
H50.66570.44890.11850.068*
C60.5298 (3)0.52119 (12)0.2572 (2)0.0595 (6)
H60.49710.47870.31690.071*
C70.7901 (3)0.55033 (12)0.0684 (2)0.0554 (6)
C90.9599 (3)0.54956 (13)0.2595 (2)0.0696 (8)
H91.02680.56720.33820.084*
C80.8639 (3)0.59996 (14)0.1642 (2)0.0700 (8)
H80.85300.65800.16660.084*
C100.9392 (3)0.47133 (13)0.2184 (2)0.0547 (6)
C111.0059 (3)0.39286 (13)0.2725 (2)0.0552 (6)
C121.0985 (3)0.38948 (14)0.3963 (2)0.0673 (7)
H121.11580.43820.44500.081*
C131.1648 (3)0.31612 (15)0.4481 (2)0.0787 (8)
H131.22780.31450.53260.094*
C141.1415 (4)0.24587 (16)0.3802 (3)0.0848 (9)
H141.18720.19530.41730.102*
C151.0523 (4)0.24782 (14)0.2581 (3)0.0847 (9)
H151.03710.19860.21040.102*
C160.9841 (3)0.32104 (13)0.2038 (2)0.0683 (7)
H160.92210.32200.11910.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0608 (9)0.0479 (9)0.0501 (10)0.0013 (7)0.0021 (8)0.0039 (7)
O20.1211 (16)0.0947 (14)0.0616 (12)0.0146 (11)0.0160 (11)0.0143 (10)
O30.1200 (16)0.0727 (13)0.0855 (14)0.0136 (10)0.0141 (12)0.0234 (10)
N10.0684 (13)0.0728 (14)0.0594 (14)0.0080 (10)0.0007 (11)0.0052 (11)
C10.0501 (12)0.0567 (13)0.0489 (13)0.0029 (10)0.0023 (10)0.0059 (10)
C20.0694 (15)0.0474 (13)0.0655 (16)0.0056 (11)0.0063 (12)0.0013 (11)
C30.0701 (15)0.0471 (13)0.0605 (15)0.0021 (10)0.0031 (12)0.0038 (11)
C40.0537 (13)0.0457 (12)0.0507 (13)0.0042 (9)0.0072 (10)0.0037 (10)
C50.0726 (15)0.0420 (12)0.0540 (14)0.0031 (10)0.0063 (12)0.0040 (10)
C60.0739 (16)0.0502 (13)0.0516 (14)0.0001 (10)0.0048 (12)0.0039 (10)
C70.0614 (13)0.0468 (12)0.0547 (14)0.0027 (10)0.0029 (11)0.0032 (10)
C90.0815 (17)0.0579 (15)0.0600 (15)0.0001 (12)0.0111 (13)0.0044 (12)
C80.0825 (17)0.0520 (14)0.0660 (16)0.0046 (12)0.0102 (13)0.0033 (12)
C100.0535 (13)0.0579 (14)0.0484 (14)0.0008 (10)0.0015 (11)0.0047 (10)
C110.0484 (12)0.0554 (13)0.0588 (15)0.0014 (10)0.0023 (11)0.0082 (11)
C120.0727 (16)0.0644 (15)0.0594 (16)0.0006 (12)0.0015 (13)0.0066 (12)
C130.0857 (18)0.0737 (18)0.0680 (18)0.0021 (14)0.0076 (15)0.0174 (14)
C140.100 (2)0.0590 (16)0.087 (2)0.0009 (14)0.0049 (17)0.0195 (14)
C150.106 (2)0.0523 (15)0.087 (2)0.0018 (13)0.0051 (17)0.0046 (14)
C160.0772 (16)0.0555 (14)0.0641 (16)0.0037 (12)0.0074 (13)0.0029 (12)
Geometric parameters (Å, º) top
O1—C101.367 (2)C9—C101.350 (3)
O1—C71.371 (2)C9—C81.405 (3)
O2—N11.218 (2)C9—H90.9500
O3—N11.221 (2)C8—H80.9500
N1—C11.457 (3)C10—C111.453 (3)
C1—C21.363 (3)C11—C161.382 (3)
C1—C61.367 (3)C11—C121.394 (3)
C2—C31.360 (3)C12—C131.371 (3)
C2—H20.9500C12—H120.9500
C3—C41.388 (3)C13—C141.357 (3)
C3—H30.9500C13—H130.9500
C4—C51.377 (3)C14—C151.369 (3)
C4—C71.446 (3)C14—H140.9500
C5—C61.379 (3)C15—C161.382 (3)
C5—H50.9500C15—H150.9500
C6—H60.9500C16—H160.9500
C7—C81.351 (3)
C10—O1—C7107.20 (15)C10—C9—H9126.4
O2—N1—O3123.0 (2)C8—C9—H9126.4
O2—N1—C1118.64 (19)C7—C8—C9107.1 (2)
O3—N1—C1118.31 (19)C7—C8—H8126.4
C2—C1—C6121.7 (2)C9—C8—H8126.4
C2—C1—N1119.23 (19)C9—C10—O1109.24 (17)
C6—C1—N1119.06 (19)C9—C10—C11133.4 (2)
C3—C2—C1119.2 (2)O1—C10—C11117.31 (18)
C3—C2—H2120.4C16—C11—C12118.48 (19)
C1—C2—H2120.4C16—C11—C10122.0 (2)
C2—C3—C4121.1 (2)C12—C11—C10119.55 (19)
C2—C3—H3119.5C13—C12—C11120.3 (2)
C4—C3—H3119.5C13—C12—H12119.9
C5—C4—C3118.56 (19)C11—C12—H12119.9
C5—C4—C7122.16 (18)C14—C13—C12120.8 (2)
C3—C4—C7119.27 (18)C14—C13—H13119.6
C4—C5—C6120.60 (19)C12—C13—H13119.6
C4—C5—H5119.7C13—C14—C15120.0 (2)
C6—C5—H5119.7C13—C14—H14120.0
C1—C6—C5118.91 (19)C15—C14—H14120.0
C1—C6—H6120.5C14—C15—C16120.3 (2)
C5—C6—H6120.5C14—C15—H15119.9
C8—C7—O1109.16 (18)C16—C15—H15119.9
C8—C7—C4133.11 (19)C11—C16—C15120.2 (2)
O1—C7—C4117.73 (17)C11—C16—H16119.9
C10—C9—C8107.3 (2)C15—C16—H16119.9
O2—N1—C1—C2176.6 (2)O1—C7—C8—C90.1 (3)
O3—N1—C1—C23.1 (3)C4—C7—C8—C9179.7 (2)
O2—N1—C1—C65.8 (3)C10—C9—C8—C70.6 (3)
O3—N1—C1—C6174.4 (2)C8—C9—C10—O11.0 (3)
C6—C1—C2—C30.2 (4)C8—C9—C10—C11179.3 (2)
N1—C1—C2—C3177.37 (19)C7—O1—C10—C91.1 (2)
C1—C2—C3—C40.6 (4)C7—O1—C10—C11179.68 (19)
C2—C3—C4—C51.4 (3)C9—C10—C11—C16171.6 (2)
C2—C3—C4—C7177.7 (2)O1—C10—C11—C166.5 (3)
C3—C4—C5—C61.4 (3)C9—C10—C11—C126.9 (4)
C7—C4—C5—C6177.6 (2)O1—C10—C11—C12174.98 (19)
C2—C1—C6—C50.2 (4)C16—C11—C12—C130.4 (4)
N1—C1—C6—C5177.36 (19)C10—C11—C12—C13179.0 (2)
C4—C5—C6—C10.6 (4)C11—C12—C13—C140.0 (4)
C10—O1—C7—C80.8 (2)C12—C13—C14—C150.5 (4)
C10—O1—C7—C4179.61 (18)C13—C14—C15—C160.6 (4)
C5—C4—C7—C8175.4 (2)C12—C11—C16—C150.4 (4)
C3—C4—C7—C83.6 (4)C10—C11—C16—C15178.9 (2)
C5—C4—C7—O14.1 (3)C14—C15—C16—C110.1 (4)
C3—C4—C7—O1176.93 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.513.373 (3)152
C12—H12···O2ii0.952.613.435 (3)146
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H11NO3
Mr265.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.3213 (15), 16.290 (3), 10.904 (2)
β (°) 100.81 (3)
V3)1277.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.22 × 0.19
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.977, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
10136, 2924, 1168
Rint0.070
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.174, 1.00
No. of reflections2924
No. of parameters182
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.952.513.373 (3)151.9
C12—H12···O2ii0.952.613.435 (3)145.9
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

This work was funded in 2007 as a selected project in scientific and technological activities for returned scholars by the State Personnel Ministry.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Guan, Z., Tang, R. & He, Y. (2009). J. Heterocycl. Chem. 46, 540–543.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds