metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­di­chlorido­manganese(II)]-μ-1,1′-bis­­(1H-1,2,4-triazol-1-ylmeth­yl)ferrocene]

aEditorial Department of Journal of Zhongzhou University, Zhongzhou University, Zhengzhou 450044, People's Republic of China, bExperiment Administrative Center, Zhongzhou University, Zhengzhou 450044, People's Republic of China, and cHenan Association for Science and Technology, Zhengzhou 450003, People's Republic of China
*Correspondence e-mail: zhouxl2008@126.com

(Received 9 December 2009; accepted 14 December 2009; online 24 December 2009)

In the title complex, [FeMn(C8H8N3)2Cl2(H2O)2]n, the MnII atom, located on an inversion center, is octa­hedrally coordinated by two N atoms from two adjacent 1,1′-bis­(1H-1,2,4-triazol-1-ylmeth­yl)ferrocene (btmf) ligands and two Cl atoms forming the equatorial plane, with the axial positions occupied by two O atoms of coordinated water mol­ecules. The btmf ligands link adjoining MnII atoms into a zigzag chain along the a axis. The crystal structure is stabilized by inter­molecular O—H⋯N hydrogen bonds, which link the chains, forming a two-dimensional layer parallel to (10[\overline{1}]); O—H⋯Cl inter­actions link the layers, forming a three-dimensional network.

Related literature

For ferrocene complexes, see: Li et al. (2003[Li, G., Hou, H. W., Li, L. K., Meng, X. R., Fan, Y. T. & Zhu, Y. (2003). Inorg. Chem. 42, 4995-5004.]); Beer (1992[Beer, P. D. (1992). Inorg. Chem. 39, 79-157.]); Togni & Haltermann (1998[Togni, A. & Haltermann, R. L. (1998). Metallocenes. New York: Wiley-VCH.]); Gao et al. (2006[Gao, Y., Twamley, B. & Shreeve, J. M. (2006). Organometallics, 25, 3364-3369.]); He et al. (2008[He, C., Zhang, B. G., Xie, L. X., Liu, Y. & Duan, C. Y. (2008). CrystEngComm, 10, 759-764.]). For related btmf complexes, see: Zhou et al. (2007[Zhou, X.-L., Meng, X.-R. & Hou, H.-W. (2007). Acta Cryst. E63, m1717.]); Sonoda & Moritani (1971[Sonoda, A. & Moritani, I. (1971). J. Organomet. Chem. 26, 133-140.]); Wilkes et al. (1995[Wilkes, S. B., Butler, L. R., Underhill, A. E., Hursthouse, M. B., Hibbs, D. E. & Malik, K. M. S. (1995). J. Chem. Soc. Dalton Trans. pp. 897-903.]).

[Scheme 1]

Experimental

Crystal data
  • [FeMn(C8H8N3)2Cl2(H2O)2]

  • Mr = 510.07

  • Triclinic, [P \overline 1]

  • a = 5.9596 (7) Å

  • b = 7.1630 (8) Å

  • c = 12.4226 (14) Å

  • α = 98.963 (2)°

  • β = 101.076 (2)°

  • γ = 103.939 (2)°

  • V = 493.6 (1) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 298 K

  • 0.26 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.671, Tmax = 0.851

  • 2618 measured reflections

  • 1751 independent reflections

  • 1655 reflections with I > 2σ(I)

  • Rint = 0.007

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.06

  • 1751 reflections

  • 130 parameters

  • H-atom parameters constrained

  • Δρmax = 1.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯Cl1i 0.83 2.28 3.1021 (17) 170
O1—H2W⋯N3ii 0.82 2.16 2.921 (3) 154
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It is well known that ferrocene complexes undergo reversible redox reactions(Li et al., 2003; Togni & Haltermann, 1998; Beer et al., 1992). Moreover, ferrocene-based bidentate ligands are excellent building blocks and used to metal-organic polymers and supramolecular architectures(Gao et al., 2006; He et al., 2008). Recently, we have been employed ferrocene-containing ligand 1,1'-bis[(1H-1,2,4-triazol-1- yl)methyl]ferrocene(btmf) to construct Co(II) metal-organic polymer (Zhou et al., 2007). Following on from our research work on the coordination chemistry of ferrocene-based bidentate, we focused on the effect of metal ions on the metal-organic polymers. In this paper, we report here the synthesis and crystal structure of the title complex (I).

The MnII and iron atoms are located on inversion center. MnII is octahedrally coordinated by two N atoms from two adjacent btmf ligands and two Cl atoms forming the equatorial plane, whereas axial positions are occupied by two O atoms of coordinated water molecules. The distances of Mn-N, Mn-Cl and Mn-O bonds are within normal range. The torsion angle between ferrocene moiety and triazole motif is 62.4 (3)°, which is near to our reported CoII compound(Zhou et al., 2007). Each btmf molecular clips serve as bridge to link two adjacent MnII centers into a 1D zigzag chain, as shown in Fig. 1. Comparison of {Co(btmf)2(CH3CH2OH)(H2O)] ClO4)2.3(CH3CH2OH)}n (Zhou et al., 2007) and the title compound indicates that the metal ions may play critical role in modulating the resulting structure.

The structure is further stabilized by intermolecular O-H···N, O-H···Cl hydrogen bonds(Table. 1). The O-H···N hydrogen bonds links the chains forming a two dimensionnal layer parallel to the (1 0 -1) plane (Fig. 2) whereas the O-H···Cl interactions links these layers to form a thre dimensionnal network.

Related literature top

For ferrocene complexes, see: Li et al. (2003); Beer (1992); Togni & Haltermann (1998); Gao et al. (2006); He et al. (2008). For related btmf complexes, see: Zhou et al. (2007); Sonoda & Moritani (1971); Wilkes et al. (1995).

Experimental top

The preparation of btmf ligand followed established method presented in the literature (Wilkes et al., 1995, Sonoda et al., 1971). The synthesis process of the title compound of (I) was same as the {Co(btmf)2(CH3CH2OH)(H2O)] ClO4)2.3(CH3CH2OH)}n (Zhou et al., 2007) compound except for Co(ClO4)2 by MnCl2(1.3mg, 0.01mmol). The well colorless crystals were obtained.

Refinement top

The H atoms of btmf ligand were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93-0.98Å, with Uiso(H)=1.2Ueq(C). The H atoms of water molecules were located in a difference map and refined with restraints of O-H=0.83 (1)Å, and with Uiso(H)=1.5Ueq(O). The highest peak of residual density is located 1.94Å from C4 atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labeling scheme. Ellipsoids are drawn at the the 30% probability level. H atoms are shown as spheres of arbitrary radii. [Symmetric codes: (i) -x, 1-y, -z; (ii) -x+1, 1-y, 1-z].
[Figure 2] Fig. 2. Partial packing view showing the formation of layers parallel to the (1 0 -1) plane through O-H···N hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity.
catena-Poly[[diaquadichloridomanganese(II)]-µ-1,1'-bis(1H- 1,2,4-triazol-1-ylmethyl)ferrocene] top
Crystal data top
[FeMn(C8H8N3)2Cl2(H2O)2]Z = 1
Mr = 510.07F(000) = 259
Triclinic, P1Dx = 1.716 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9596 (7) ÅCell parameters from 1751 reflections
b = 7.1630 (8) Åθ = 3.0–25.2°
c = 12.4226 (14) ŵ = 1.67 mm1
α = 98.963 (2)°T = 298 K
β = 101.076 (2)°Block, colorless
γ = 103.939 (2)°0.26 × 0.16 × 0.10 mm
V = 493.6 (1) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
1751 independent reflections
Radiation source: fine-focus sealed tube1655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.007
ϕ and ω scanθmax = 25.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 67
Tmin = 0.671, Tmax = 0.851k = 88
2618 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.035P)2 + 0.4359P]
where P = (Fo2 + 2Fc2)/3
1751 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[FeMn(C8H8N3)2Cl2(H2O)2]γ = 103.939 (2)°
Mr = 510.07V = 493.6 (1) Å3
Triclinic, P1Z = 1
a = 5.9596 (7) ÅMo Kα radiation
b = 7.1630 (8) ŵ = 1.67 mm1
c = 12.4226 (14) ÅT = 298 K
α = 98.963 (2)°0.26 × 0.16 × 0.10 mm
β = 101.076 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
1751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1655 reflections with I > 2σ(I)
Tmin = 0.671, Tmax = 0.851Rint = 0.007
2618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 1.32 e Å3
1751 reflectionsΔρmin = 0.32 e Å3
130 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.00000.50000.00000.02935 (14)
Mn10.50000.50000.50000.02631 (14)
Cl10.90203 (9)0.74119 (8)0.57695 (5)0.03530 (16)
O10.6247 (3)0.3669 (2)0.35390 (13)0.0326 (4)
H1W0.75740.35230.37800.049*
H2W0.52840.25830.32700.049*
N10.3881 (3)0.7148 (3)0.40001 (16)0.0314 (4)
N20.1856 (3)0.8317 (3)0.27483 (15)0.0290 (4)
N30.4163 (4)0.9406 (3)0.29279 (18)0.0372 (5)
C10.5298 (4)0.8646 (3)0.3686 (2)0.0343 (5)
H10.69350.91000.39820.041*
C20.1739 (4)0.7009 (3)0.33907 (19)0.0316 (5)
H20.03400.61120.34130.038*
C30.0041 (4)0.8607 (4)0.19119 (19)0.0341 (5)
H3A0.01191.00050.19980.041*
H3B0.15640.79890.20520.041*
C40.0033 (4)0.7779 (3)0.07253 (19)0.0291 (5)
C50.1944 (5)0.7898 (3)0.0235 (2)0.0374 (6)
H50.35350.84450.06110.045*
C60.1073 (6)0.7037 (4)0.0928 (2)0.0472 (7)
H60.19950.69090.14460.057*
C70.1441 (6)0.6408 (4)0.1162 (2)0.0477 (7)
H70.24640.58010.18600.057*
C80.2126 (5)0.6868 (4)0.0143 (2)0.0374 (6)
H80.36810.66150.00580.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0377 (3)0.0268 (2)0.0252 (2)0.0149 (2)0.00395 (19)0.00533 (18)
Mn10.0237 (3)0.0282 (3)0.0254 (3)0.00630 (19)0.00377 (18)0.00518 (19)
Cl10.0235 (3)0.0334 (3)0.0426 (3)0.0039 (2)0.0030 (2)0.0017 (2)
O10.0270 (8)0.0310 (8)0.0367 (9)0.0056 (7)0.0068 (7)0.0032 (7)
N10.0306 (10)0.0324 (10)0.0294 (10)0.0076 (8)0.0049 (8)0.0060 (8)
N20.0316 (10)0.0268 (9)0.0271 (10)0.0090 (8)0.0051 (8)0.0026 (7)
N30.0344 (11)0.0319 (11)0.0405 (12)0.0027 (9)0.0042 (9)0.0098 (9)
C10.0287 (12)0.0330 (12)0.0362 (13)0.0044 (10)0.0023 (10)0.0058 (10)
C20.0309 (12)0.0330 (12)0.0306 (12)0.0077 (10)0.0080 (9)0.0073 (9)
C30.0369 (13)0.0349 (13)0.0318 (12)0.0183 (10)0.0042 (10)0.0025 (10)
C40.0353 (12)0.0233 (11)0.0312 (12)0.0138 (9)0.0057 (9)0.0069 (9)
C50.0447 (15)0.0290 (12)0.0425 (14)0.0118 (11)0.0153 (11)0.0109 (10)
C60.076 (2)0.0427 (15)0.0377 (14)0.0286 (14)0.0258 (14)0.0191 (12)
C70.076 (2)0.0406 (14)0.0286 (13)0.0322 (14)0.0025 (12)0.0076 (11)
C80.0408 (14)0.0335 (12)0.0382 (13)0.0204 (11)0.0008 (11)0.0055 (10)
Geometric parameters (Å, º) top
Fe1—C62.056 (3)N1—C11.356 (3)
Fe1—C6i2.056 (3)N2—C21.320 (3)
Fe1—C7i2.057 (2)N2—N31.364 (3)
Fe1—C72.057 (2)N2—C31.460 (3)
Fe1—C42.060 (2)N3—C11.317 (3)
Fe1—C4i2.060 (2)C1—H10.9300
Fe1—C8i2.057 (2)C2—H20.9300
Fe1—C82.057 (2)C3—C41.502 (3)
Fe1—C52.064 (2)C3—H3A0.9700
Fe1—C5i2.064 (2)C3—H3B0.9700
Mn1—O1ii2.2527 (16)C4—C51.417 (3)
Mn1—O12.2527 (16)C4—C81.420 (3)
Mn1—N1ii2.2639 (19)C5—C61.421 (4)
Mn1—N12.2639 (19)C5—H50.9300
Mn1—Cl12.5000 (6)C6—C71.414 (4)
Mn1—Cl1ii2.5000 (6)C6—H60.9300
O1—H1W0.8274C7—C81.418 (4)
O1—H2W0.8224C7—H70.9300
N1—C21.326 (3)C8—H80.9300
C6—Fe1—C6i180.00 (11)O1—Mn1—Cl1ii89.68 (4)
C6—Fe1—C7i139.78 (13)N1ii—Mn1—Cl1ii89.38 (5)
C6i—Fe1—C7i40.22 (13)N1—Mn1—Cl1ii90.62 (5)
C6—Fe1—C740.22 (13)Cl1—Mn1—Cl1ii180.0
C6i—Fe1—C7139.78 (13)Mn1—O1—H1W108.5
C7i—Fe1—C7180.00 (11)Mn1—O1—H2W105.9
C6—Fe1—C467.93 (10)H1W—O1—H2W109.2
C6i—Fe1—C4112.07 (10)C2—N1—C1102.58 (19)
C7i—Fe1—C4112.05 (10)C2—N1—Mn1128.23 (16)
C7—Fe1—C467.95 (10)C1—N1—Mn1127.89 (16)
C6—Fe1—C4i112.07 (10)C2—N2—N3109.41 (19)
C6i—Fe1—C4i67.93 (10)C2—N2—C3129.1 (2)
C7i—Fe1—C4i67.95 (10)N3—N2—C3121.46 (19)
C7—Fe1—C4i112.05 (10)C1—N3—N2102.70 (19)
C4—Fe1—C4i180.0N3—C1—N1114.4 (2)
C6—Fe1—C8i112.35 (11)N3—C1—H1122.8
C6i—Fe1—C8i67.65 (11)N1—C1—H1122.8
C7i—Fe1—C8i40.31 (11)N2—C2—N1110.9 (2)
C7—Fe1—C8i139.69 (11)N2—C2—H2124.5
C4—Fe1—C8i139.64 (9)N1—C2—H2124.5
C4i—Fe1—C8i40.36 (9)N2—C3—C4113.50 (18)
C6—Fe1—C867.65 (11)N2—C3—H3A108.9
C6i—Fe1—C8112.35 (11)C4—C3—H3A108.9
C7i—Fe1—C8139.69 (11)N2—C3—H3B108.9
C7—Fe1—C840.31 (11)C4—C3—H3B108.9
C4—Fe1—C840.36 (9)H3A—C3—H3B107.7
C4i—Fe1—C8139.64 (9)C5—C4—C8107.6 (2)
C8i—Fe1—C8180.0C5—C4—C3128.2 (2)
C6—Fe1—C540.36 (11)C8—C4—C3124.0 (2)
C6i—Fe1—C5139.64 (11)C5—C4—Fe170.05 (13)
C7i—Fe1—C5112.36 (11)C8—C4—Fe169.72 (12)
C7—Fe1—C567.64 (11)C3—C4—Fe1129.76 (16)
C4—Fe1—C540.21 (9)C4—C5—C6108.2 (2)
C4i—Fe1—C5139.79 (9)C4—C5—Fe169.75 (13)
C8i—Fe1—C5112.51 (10)C6—C5—Fe169.51 (15)
C8—Fe1—C567.49 (10)C4—C5—H5125.9
C6—Fe1—C5i139.64 (11)C6—C5—H5125.9
C6i—Fe1—C5i40.36 (11)Fe1—C5—H5126.4
C7i—Fe1—C5i67.64 (11)C7—C6—C5108.0 (2)
C7—Fe1—C5i112.36 (11)C7—C6—Fe169.95 (15)
C4—Fe1—C5i139.79 (9)C5—C6—Fe170.13 (14)
C4i—Fe1—C5i40.21 (9)C7—C6—H6126.0
C8i—Fe1—C5i67.49 (10)C5—C6—H6126.0
C8—Fe1—C5i112.51 (10)Fe1—C6—H6125.5
C5—Fe1—C5i180.0C6—C7—C8107.9 (2)
O1ii—Mn1—O1180.00 (5)C6—C7—Fe169.83 (14)
O1ii—Mn1—N1ii89.33 (6)C8—C7—Fe169.84 (13)
O1—Mn1—N1ii90.67 (6)C6—C7—H7126.0
O1ii—Mn1—N190.67 (6)C8—C7—H7126.0
O1—Mn1—N189.33 (6)Fe1—C7—H7125.9
N1ii—Mn1—N1180.00 (8)C4—C8—C7108.3 (2)
O1ii—Mn1—Cl189.68 (4)C4—C8—Fe169.93 (12)
O1—Mn1—Cl190.32 (4)C7—C8—Fe169.85 (14)
N1ii—Mn1—Cl190.62 (5)C4—C8—H8125.8
N1—Mn1—Cl189.38 (5)C7—C8—H8125.8
O1ii—Mn1—Cl1ii90.32 (4)Fe1—C8—H8126.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1iii0.832.283.1021 (17)170
O1—H2W···N3iv0.822.162.921 (3)154
Symmetry codes: (iii) x+2, y+1, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[FeMn(C8H8N3)2Cl2(H2O)2]
Mr510.07
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.9596 (7), 7.1630 (8), 12.4226 (14)
α, β, γ (°)98.963 (2), 101.076 (2), 103.939 (2)
V3)493.6 (1)
Z1
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.26 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.671, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
2618, 1751, 1655
Rint0.007
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.06
No. of reflections1751
No. of parameters130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.32, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Cl1i0.832.283.1021 (17)169.8
O1—H2W···N3ii0.822.162.921 (3)154.0
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors thank the Basical Frontier Foundation of Henan (No. 092300410066) for financial support.

References

First citationBeer, P. D. (1992). Inorg. Chem. 39, 79–157.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGao, Y., Twamley, B. & Shreeve, J. M. (2006). Organometallics, 25, 3364–3369.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, C., Zhang, B. G., Xie, L. X., Liu, Y. & Duan, C. Y. (2008). CrystEngComm, 10, 759–764.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, G., Hou, H. W., Li, L. K., Meng, X. R., Fan, Y. T. & Zhu, Y. (2003). Inorg. Chem. 42, 4995–5004.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonoda, A. & Moritani, I. (1971). J. Organomet. Chem. 26, 133–140.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Haltermann, R. L. (1998). Metallocenes. New York: Wiley-VCH.  Google Scholar
First citationWilkes, S. B., Butler, L. R., Underhill, A. E., Hursthouse, M. B., Hibbs, D. E. & Malik, K. M. S. (1995). J. Chem. Soc. Dalton Trans. pp. 897–903.  CrossRef Web of Science Google Scholar
First citationZhou, X.-L., Meng, X.-R. & Hou, H.-W. (2007). Acta Cryst. E63, m1717.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds