organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl piperidine-1-carboxyl­ate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 November 2009; accepted 26 November 2009; online 4 December 2009)

In the title compound, C12H15NO2, the dihedral angle between the benzene ring and the basal plane of the piperidine ring (which is in a chair conformation) is 49.55 (8)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and very weak C–H⋯π inter­actions.

Related literature

For related structures, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009a). Acta Cryst. E65, o1629.],b[Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009b). Acta Cryst. E65, o1363.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO2

  • Mr = 205.25

  • Monoclinic, P 21

  • a = 6.2091 (2) Å

  • b = 7.6881 (3) Å

  • c = 11.2838 (4) Å

  • β = 97.211 (2)°

  • V = 534.39 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.11 × 0.09 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.987, Tmax = 0.993

  • 6213 measured reflections

  • 1422 independent reflections

  • 1243 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.05

  • 1422 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.93 2.47 3.342 (2) 157
C5—H5⋯Cg2ii 0.93 2.99 3.632 (2) 128
C10—H10ACg2iii 0.97 2.97 3.848 (2) 151
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x, y+{\script{1\over 2}}, -z+1]. Cg2 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have recently reported the crystal structure of (II) Phenyl N-(2-methylphenyl)carbamate (Shahwar et al., 2009a) and (III) Phenyl N-phenylcarbamate (Shahwar et al., 2009b). The title compound (I, Fig. 1) is in continuation to synthesize various carbamates.

In (I), the benzene ring A (C1—C6) is of course planar. The group B (O1/O2/C7/N1/C8/C12) and C (C8/C9/C11/C12) are also planar with maximum r. m. s. deviations of 0.0127 and 0.0046 Å respectively, from the respective mean square planes. The dihedral angles between A/B, B/C and A/C are 56.37 (5)°, 50.95 (7)° and 49.55 (8)° respectively. The piperidine is in the chair conformation as the apical atoms N1 and C10 are at a distance of -0.6211 (26) and 0.6523 (30) Å respectively, from the basal plane (C8/C9/C11/C12). The molecules are stabilized in the form of polymeric chains (Table 1, Fig. 2). The C–H···π interactions (Table 1) also play a role in stabilizing the molecules.

Related literature top

For related structures, see: Shahwar et al. (2009a,b). Cg2 is the centroid of the C1–C6 ring.

Experimental top

Piperidine (0.01 M, 0.99 ml) and triethylamine (0.012 M, 1.66 ml) were added to 20 ml dichlorometnane in a 50 ml round bottom flask equipped with magnetic stirrer. Phenyl chloroformate (0.01 M, 1.26 ml) was added drop wise with continuous stirring of the contents of the flask. After complete addition the stirring was continued for 30 minutes. Extra dichloromethane was evaporated and then resulting solid was washed with 1M HCL and filtered to get pure product. Recrystallization of the crude product with ethyl acetate affoarded colourless needles of (I).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules are linked in polymeric chains.
Phenyl piperidine-1-carboxylate top
Crystal data top
C12H15NO2F(000) = 220
Mr = 205.25Dx = 1.276 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1422 reflections
a = 6.2091 (2) Åθ = 3.2–28.3°
b = 7.6881 (3) ŵ = 0.09 mm1
c = 11.2838 (4) ÅT = 296 K
β = 97.211 (2)°Needles, colorless
V = 534.39 (3) Å30.28 × 0.11 × 0.09 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1422 independent reflections
Radiation source: fine-focus sealed tube1243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 910
Tmin = 0.987, Tmax = 0.993l = 1514
6213 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.0354P]
where P = (Fo2 + 2Fc2)/3
1422 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H15NO2V = 534.39 (3) Å3
Mr = 205.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.2091 (2) ŵ = 0.09 mm1
b = 7.6881 (3) ÅT = 296 K
c = 11.2838 (4) Å0.28 × 0.11 × 0.09 mm
β = 97.211 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1243 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.993Rint = 0.022
6213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.14 e Å3
1422 reflectionsΔρmin = 0.22 e Å3
136 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00238 (19)0.6920 (2)0.32910 (10)0.0497 (4)
O20.3128 (2)0.83567 (19)0.31583 (11)0.0534 (4)
N10.2483 (2)0.7051 (2)0.48833 (12)0.0442 (4)
C10.0639 (3)0.6857 (2)0.20515 (14)0.0395 (5)
C20.2721 (3)0.7369 (3)0.16604 (16)0.0465 (6)
C30.3512 (3)0.7125 (4)0.04706 (18)0.0599 (7)
C40.2238 (4)0.6384 (3)0.03033 (18)0.0631 (8)
C50.0147 (4)0.5895 (3)0.01023 (19)0.0578 (7)
C60.0681 (3)0.6137 (3)0.12898 (16)0.0485 (6)
C70.2001 (3)0.7508 (2)0.37356 (14)0.0384 (5)
C80.1076 (3)0.6065 (3)0.55852 (15)0.0474 (6)
C90.0725 (3)0.7057 (3)0.67042 (15)0.0487 (6)
C100.2875 (3)0.7539 (3)0.74199 (17)0.0538 (6)
C110.4301 (3)0.8523 (3)0.66545 (17)0.0521 (6)
C120.4601 (3)0.7516 (3)0.55382 (17)0.0486 (5)
H20.358440.787030.218430.0558*
H30.492200.746690.019160.0719*
H40.278880.621320.109980.0757*
H50.071790.539930.042280.0693*
H60.210070.581900.156630.0582*
H8A0.173460.494720.580310.0569*
H8B0.031200.585590.510880.0569*
H9A0.010980.634690.719190.0584*
H9B0.009860.810540.648550.0584*
H10A0.261130.825420.809520.0646*
H10B0.361580.649100.772650.0646*
H11A0.364520.964110.643390.0626*
H11B0.570690.873410.711140.0626*
H12A0.541020.821530.503110.0584*
H12B0.542740.646710.575250.0584*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (7)0.0749 (9)0.0328 (6)0.0111 (7)0.0056 (5)0.0005 (7)
O20.0542 (7)0.0587 (8)0.0497 (7)0.0108 (7)0.0159 (6)0.0040 (7)
N10.0396 (7)0.0565 (9)0.0366 (7)0.0128 (7)0.0047 (6)0.0020 (7)
C10.0429 (9)0.0422 (9)0.0336 (8)0.0044 (8)0.0057 (7)0.0045 (8)
C20.0404 (9)0.0524 (10)0.0481 (10)0.0005 (9)0.0106 (8)0.0029 (9)
C30.0429 (10)0.0806 (16)0.0539 (11)0.0016 (10)0.0034 (8)0.0127 (12)
C40.0619 (13)0.0892 (18)0.0366 (10)0.0035 (12)0.0003 (9)0.0017 (10)
C50.0645 (12)0.0676 (13)0.0425 (10)0.0097 (10)0.0120 (9)0.0034 (9)
C60.0469 (10)0.0573 (11)0.0415 (9)0.0120 (9)0.0068 (8)0.0056 (9)
C70.0368 (8)0.0406 (8)0.0395 (8)0.0010 (8)0.0110 (7)0.0063 (8)
C80.0497 (10)0.0552 (10)0.0366 (9)0.0162 (9)0.0027 (7)0.0026 (8)
C90.0488 (9)0.0599 (12)0.0376 (9)0.0028 (9)0.0066 (7)0.0040 (8)
C100.0637 (12)0.0561 (11)0.0386 (9)0.0001 (10)0.0054 (8)0.0060 (9)
C110.0461 (10)0.0503 (11)0.0559 (11)0.0050 (9)0.0096 (8)0.0079 (9)
C120.0360 (8)0.0536 (10)0.0549 (10)0.0043 (8)0.0002 (7)0.0031 (9)
Geometric parameters (Å, º) top
O1—C11.4037 (19)C2—H20.9300
O1—C71.371 (2)C3—H30.9300
O2—C71.206 (2)C4—H40.9300
N1—C71.339 (2)C5—H50.9300
N1—C81.463 (2)C6—H60.9300
N1—C121.470 (2)C8—H8A0.9700
C1—C21.370 (3)C8—H8B0.9700
C1—C61.376 (3)C9—H9A0.9700
C2—C31.383 (3)C9—H9B0.9700
C3—C41.373 (3)C10—H10A0.9700
C4—C51.374 (3)C10—H10B0.9700
C5—C61.386 (3)C11—H11A0.9700
C8—C91.514 (3)C11—H11B0.9700
C9—C101.517 (3)C12—H12A0.9700
C10—C111.515 (3)C12—H12B0.9700
C11—C121.510 (3)
C1—O1—C7119.90 (13)C1—C6—H6121.00
C7—N1—C8125.71 (14)C5—C6—H6121.00
C7—N1—C12119.99 (15)N1—C8—H8A110.00
C8—N1—C12114.30 (14)N1—C8—H8B110.00
O1—C1—C2116.02 (15)C9—C8—H8A110.00
O1—C1—C6121.82 (16)C9—C8—H8B110.00
C2—C1—C6121.75 (16)H8A—C8—H8B108.00
C1—C2—C3118.64 (18)C8—C9—H9A109.00
C2—C3—C4120.71 (19)C8—C9—H9B109.00
C3—C4—C5119.83 (19)C10—C9—H9A109.00
C4—C5—C6120.4 (2)C10—C9—H9B109.00
C1—C6—C5118.69 (18)H9A—C9—H9B108.00
O1—C7—O2123.27 (15)C9—C10—H10A109.00
O1—C7—N1110.54 (14)C9—C10—H10B109.00
O2—C7—N1126.16 (16)C11—C10—H10A109.00
N1—C8—C9110.42 (17)C11—C10—H10B109.00
C8—C9—C10110.97 (16)H10A—C10—H10B108.00
C9—C10—C11110.91 (16)C10—C11—H11A109.00
C10—C11—C12111.21 (18)C10—C11—H11B109.00
N1—C12—C11110.36 (15)C12—C11—H11A109.00
C1—C2—H2121.00C12—C11—H11B109.00
C3—C2—H2121.00H11A—C11—H11B108.00
C2—C3—H3120.00N1—C12—H12A110.00
C4—C3—H3120.00N1—C12—H12B110.00
C3—C4—H4120.00C11—C12—H12A110.00
C5—C4—H4120.00C11—C12—H12B110.00
C4—C5—H5120.00H12A—C12—H12B108.00
C6—C5—H5120.00
C7—O1—C1—C2139.17 (18)O1—C1—C2—C3171.8 (2)
C7—O1—C1—C648.0 (2)C6—C1—C2—C31.0 (3)
C1—O1—C7—O218.0 (3)O1—C1—C6—C5171.01 (18)
C1—O1—C7—N1163.81 (15)C2—C1—C6—C51.4 (3)
C8—N1—C7—O10.1 (2)C1—C2—C3—C40.0 (4)
C8—N1—C7—O2178.06 (18)C2—C3—C4—C50.7 (4)
C12—N1—C7—O1178.78 (15)C3—C4—C5—C60.3 (4)
C12—N1—C7—O23.1 (3)C4—C5—C6—C10.7 (3)
C7—N1—C8—C9124.65 (18)N1—C8—C9—C1054.5 (2)
C12—N1—C8—C956.5 (2)C8—C9—C10—C1154.4 (2)
C7—N1—C12—C11124.72 (18)C9—C10—C11—C1254.5 (2)
C8—N1—C12—C1156.3 (2)C10—C11—C12—N154.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.473.342 (2)157
C5—H5···Cg2ii0.932.993.632 (2)128
C10—H10A···Cg2iii0.972.973.848 (2)151
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z; (iii) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO2
Mr205.25
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)6.2091 (2), 7.6881 (3), 11.2838 (4)
β (°) 97.211 (2)
V3)534.39 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.11 × 0.09
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.987, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
6213, 1422, 1243
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.05
No. of reflections1422
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.932.473.342 (2)157
C5—H5···Cg2ii0.932.993.632 (2)128
C10—H10A···Cg2iii0.972.973.848 (2)151
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z; (iii) x, y+1/2, z+1.
 

Acknowledgements

DS is grateful to Dr I. U. Khan and M. N. Arshad for their assistance with the crystallographic data collection.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Yasmeen, A. & Ullah, S. (2009a). Acta Cryst. E65, o1629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009b). Acta Cryst. E65, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds