organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o239-o240

Bis(2,4,6-tri­amino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate

aCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China, and bInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: ssfeng@sxu.edu.cn miaoli@sxu.edu.cn

(Received 22 November 2009; accepted 20 December 2009; online 24 December 2009)

In the title hydrated mol­ecular salt, 2C3H7N6+·HPO42−·3H2O, three of the O atoms of the hydrogen phosphate anion are disordered over two positions, with relative occupancies of 0.763 (1) and 0.237 (1). In the crystal, the components are linked by N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds

Related literature

For related structures, see: Choi et al. (2004[Choi, C. S., Venkatraman, R., Kim, E. H., Hwang, H. S. & Kang, S. K. (2004). Acta Cryst. C60, o295-o296.]); Janczak & Perpétuo (2001a[Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 123-125.],b[Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120-1122.],c[Janczak, J. & Perpétuo, G. J. (2001c). Acta Cryst. C57, 1431-1433.], 2002[Janczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o455-o459.], 2003[Janczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, o349-o352.], 2004[Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211-o214.]); Li et al. (2005[Li, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811-o813.]); Perpétuo & Janczak (2002[Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112-o114.]); Zhang et al. (2004[Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, o462-o463.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H7N6+·HPO42−·3H2O

  • Mr = 404.32

  • Triclinic, [P \overline 1]

  • a = 6.767 (4) Å

  • b = 10.548 (7) Å

  • c = 12.497 (8) Å

  • α = 91.865 (11)°

  • β = 105.609 (10)°

  • γ = 108.020 (9)°

  • V = 810.3 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.933, Tmax = 0.954

  • 3823 measured reflections

  • 2803 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.178

  • S = 1.06

  • 2803 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O5i 0.77 (4) 2.06 (4) 2.791 (4) 158 (4)
N4—H4B⋯O4Aii 0.86 2.22 2.998 (5) 151
N4—H4A⋯N7iii 0.86 2.20 3.059 (5) 177
N5—H5B⋯O7 0.86 1.97 2.822 (5) 170
N5—H5A⋯O6iv 0.86 2.41 3.258 (5) 167
N6—H6B⋯O5i 0.86 2.28 3.009 (5) 143
N6—H6A⋯N9v 0.86 2.17 3.031 (5) 176
N8—H8⋯O3A 0.84 (3) 1.93 (4) 2.742 (7) 164 (3)
N10—H10B⋯O2A 0.86 2.11 2.952 (5) 168
N10—H10A⋯O2Avi 0.86 1.99 2.744 (5) 146
N11—H11B⋯O4Avii 0.86 2.53 3.147 (6) 129
N11—H11B⋯O1vii 0.86 2.33 3.121 (5) 152
N11—H11A⋯N1v 0.86 2.02 2.884 (4) 178
N12—H12B⋯O6viii 0.86 2.07 2.840 (5) 149
N12—H12A⋯N2iii 0.86 2.08 2.935 (4) 172
O1—H1⋯O3Avii 0.82 1.76 2.535 (5) 157
O5—H5D⋯O3Ai 0.85 1.89 2.739 (5) 177
O5—H5C⋯O4A 0.85 2.00 2.726 (6) 142
O6—H6D⋯O1ix 0.85 1.97 2.787 (4) 161
O6—H6C⋯O4A 0.85 2.02 2.838 (6) 162
O7—H7B⋯O1ix 0.85 2.57 3.257 (5) 139
O7—H7B⋯O2Aix 0.85 2.28 2.958 (6) 137
O7—H7A⋯O5i 0.85 2.28 3.006 (6) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+2, -z; (iv) -x+2, -y+2, -z+1; (v) -x, -y+1, -z; (vi) -x+1, -y+2, -z+1; (vii) -x, -y+1, -z+1; (viii) x-1, y, z-1; (ix) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In previous work, we reported a compound of 2,4,6-triamino-1,3,5-triazin-1-ium with organic anion linked via weak interactions (Li et al., 2005). As continuing interest, here, we present the results of the crystal structure of another ion pair adduct containing monoprotonated melaminium, inorganic anion (hydrogen phosphate), and solvent water, (I, Fig. 1 & Table 1).

The aromatic rings both monoprotonated melaminium exhibit significant distortions from the ideal hexagonal form. Thus, the internal C—N—C angles at the protonated N atoms (C1—N3—C2 and C6 N8 C5) are significantly greater than the other two ring (i.e. C1—N2—C2, C1—N1—C3, C5—N7—C4, C6—N9—C4) angles, and the internal N2—C1—N1and N7—C4—N9 angle, i.e. containing only non-protonated N atoms is greater than either of the remaining N—C—N angles containing both protonated and non-protonated N atoms (Table 1). This feature of the structure is similar to our previous report (Li et al., 2005) and the other reported mono-protonated melaminium cations (Janczak & Perpétuo, 2001a,b,c, 2002, 2003, 2004; Perpétuo & Janczak, 2002; Zhang et al., 2004; Choi et al., 2004).

Between charged residues and the water molecules interact extensively by a combination of ionic, H-bonds (Table 2) as well as π-π interactions as shown in Fig 2. Neighboring melaminium residues are interconnected by double N—H···N H-bonds, leading to the formation of layers.

Related literature top

For related structures, see: Choi et al. (2004); Janczak & Perpétuo (2001a,b,c, 2002, 2003, 2004); Li et al. (2005); Perpétuo & Janczak (2002); Zhang et al. (2004).

Experimental top

Hot solutions of melamine and meta-phosphoric acid in a 1:1 molar ratio were mixed and, after allowed the mixture to stand at room temperature for a few days, colourless blocks of (I) were desposited.

Refinement top

H atoms attached to N (except N3 and N8) and O1 atoms of (I) were placed in geometrically idealized positions with N—H = 0.86 Å O1—H = 0.82 Å and refined with Uiso=1.2Ueq [N] or Uiso=1.5Ueq [O1]. H atoms attached to O (water) N3 and N8 atom were located from the difference Fourier maps and refined their global Uiso=1.2Ueq. The N3—H, N8—H, and O—H distances are in the range 0.768 - 0.851 Å. The O2, O3, and, O4 atoms from hydrogen phosphate anion of crystallization in (I) were found to be disordered and were modelled over two sets of positions using restraints on the anisotropic displacement parameters of these O atoms. The major and minor disorder components had refined occupancies of O2A 0.77 (1), O3A 0.76 (1), O4A 0.76 (1) % and O2B 0.23 (1) O3B 0.24 (1)O4B 0.24 (1)%, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. The packing of (I) viewed down the a axis.
Bis(2,4,6-triamino-1,3,5-triazin-1-ium) hydrogen phosphate trihydrate top
Crystal data top
2C3H7N6+·HPO42·3H2OZ = 2
Mr = 404.32F(000) = 424
Triclinic, P1Dx = 1.657 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.767 (4) ÅCell parameters from 1970 reflections
b = 10.548 (7) Åθ = 2.5–28.0°
c = 12.497 (8) ŵ = 0.24 mm1
α = 91.865 (11)°T = 296 K
β = 105.609 (10)°Block, colourless
γ = 108.020 (9)°0.30 × 0.25 × 0.20 mm
V = 810.3 (9) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
2803 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 78
Tmin = 0.933, Tmax = 0.954k = 1112
3823 measured reflectionsl = 147
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0996P)2 + 0.520P]
where P = (Fo2 + 2Fc2)/3
2803 reflections(Δ/σ)max = 0.003
274 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
2C3H7N6+·HPO42·3H2Oγ = 108.020 (9)°
Mr = 404.32V = 810.3 (9) Å3
Triclinic, P1Z = 2
a = 6.767 (4) ÅMo Kα radiation
b = 10.548 (7) ŵ = 0.24 mm1
c = 12.497 (8) ÅT = 296 K
α = 91.865 (11)°0.30 × 0.25 × 0.20 mm
β = 105.609 (10)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2027 reflections with I > 2σ(I)
Tmin = 0.933, Tmax = 0.954Rint = 0.029
3823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.33 e Å3
2803 reflectionsΔρmin = 0.53 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5323 (6)0.7920 (4)0.0156 (3)0.0352 (8)
C20.6740 (6)0.8584 (4)0.1714 (3)0.0359 (8)
C30.4373 (6)0.6393 (4)0.1008 (3)0.0337 (8)
C40.0847 (5)0.8128 (3)0.0751 (3)0.0317 (8)
C50.2296 (6)0.8597 (4)0.2627 (3)0.0372 (8)
C60.0212 (5)0.6489 (4)0.1803 (3)0.0329 (8)
N10.4191 (5)0.6664 (3)0.0031 (2)0.0352 (7)
N20.6575 (5)0.8903 (3)0.0688 (2)0.0355 (7)
N30.5651 (5)0.7323 (3)0.1889 (3)0.0363 (7)
H30.577 (6)0.712 (4)0.248 (3)0.029 (10)*
N40.5233 (5)0.8212 (3)0.1176 (3)0.0436 (8)
H4A0.59550.90020.12800.052*
H4B0.44530.76130.17410.052*
N50.7957 (5)0.9458 (3)0.2586 (3)0.0459 (8)
H5A0.86721.02580.24990.055*
H5B0.80470.92350.32490.055*
N60.3325 (5)0.5192 (3)0.1207 (3)0.0418 (8)
H6A0.25150.45770.06590.050*
H6B0.34500.50210.18860.050*
N70.2203 (5)0.9023 (3)0.1634 (2)0.0358 (7)
N80.1115 (5)0.7333 (3)0.2726 (3)0.0374 (7)
H80.126 (5)0.703 (3)0.334 (3)0.021 (8)*
N90.0400 (4)0.6864 (3)0.0791 (2)0.0330 (7)
N100.3541 (5)0.9350 (4)0.3562 (3)0.0552 (10)
H10A0.43431.01570.35500.066*
H10B0.35580.90390.41910.066*
N110.1322 (5)0.5270 (3)0.1931 (3)0.0420 (8)
H11A0.21780.47090.13540.050*
H11B0.11930.50310.25910.050*
N120.0741 (5)0.8512 (3)0.0246 (2)0.0379 (7)
H12A0.15200.93050.03100.045*
H12B0.01070.79690.08340.045*
P10.24796 (15)0.68587 (9)0.57240 (7)0.0335 (3)
O10.0294 (5)0.6330 (3)0.6053 (3)0.0599 (9)
H10.04820.56140.56690.090*
O2A0.2963 (6)0.8336 (3)0.5671 (3)0.0445 (14)0.767 (9)
O3A0.2088 (7)0.6098 (4)0.4601 (4)0.0353 (15)0.757 (14)
O4A0.4058 (6)0.6486 (5)0.6643 (3)0.0507 (16)0.765 (11)
O2B0.176 (2)0.7686 (13)0.4856 (10)0.046 (5)0.233 (9)
O3B0.279 (2)0.5614 (14)0.5130 (13)0.040 (5)0.243 (14)
O4B0.4481 (19)0.7567 (17)0.6642 (10)0.048 (5)0.235 (11)
O50.4731 (5)0.4107 (3)0.6295 (3)0.0606 (9)
H5C0.44050.47920.60780.091*
H5D0.57570.40630.60410.091*
O60.8660 (5)0.7583 (4)0.7442 (3)0.0753 (11)
H6C0.72990.74310.71890.113*
H6D0.89840.70380.70610.113*
O70.8612 (6)0.8583 (4)0.4724 (3)0.0799 (11)
H7A0.73200.80590.44200.120*
H7B0.94180.80930.48090.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (18)0.040 (2)0.040 (2)0.0123 (16)0.0150 (15)0.0077 (16)
C20.0342 (19)0.039 (2)0.042 (2)0.0175 (16)0.0177 (16)0.0081 (17)
C30.0292 (18)0.038 (2)0.040 (2)0.0133 (15)0.0165 (15)0.0067 (16)
C40.0274 (18)0.039 (2)0.0343 (19)0.0133 (15)0.0146 (15)0.0090 (15)
C50.0281 (18)0.047 (2)0.035 (2)0.0074 (16)0.0143 (15)0.0034 (16)
C60.0272 (18)0.044 (2)0.0321 (19)0.0140 (16)0.0127 (14)0.0088 (15)
N10.0342 (17)0.0360 (17)0.0369 (17)0.0086 (13)0.0161 (13)0.0076 (13)
N20.0348 (16)0.0349 (17)0.0402 (17)0.0088 (13)0.0193 (13)0.0082 (13)
N30.0397 (18)0.0396 (18)0.0358 (19)0.0147 (14)0.0188 (15)0.0119 (15)
N40.0468 (19)0.0413 (18)0.0375 (18)0.0038 (15)0.0161 (14)0.0071 (14)
N50.054 (2)0.0432 (19)0.0371 (18)0.0088 (15)0.0154 (15)0.0043 (15)
N60.0464 (19)0.0408 (19)0.0396 (18)0.0101 (15)0.0188 (15)0.0120 (14)
N70.0302 (16)0.0381 (17)0.0375 (17)0.0053 (13)0.0146 (13)0.0040 (13)
N80.0384 (18)0.047 (2)0.0266 (17)0.0108 (15)0.0130 (14)0.0108 (14)
N90.0303 (15)0.0344 (17)0.0331 (16)0.0065 (13)0.0119 (12)0.0084 (12)
N100.048 (2)0.062 (2)0.0367 (19)0.0071 (17)0.0125 (16)0.0012 (16)
N110.0438 (18)0.0413 (18)0.0323 (17)0.0017 (14)0.0111 (14)0.0125 (13)
N120.0408 (18)0.0368 (17)0.0337 (17)0.0056 (14)0.0150 (13)0.0101 (13)
P10.0332 (5)0.0360 (5)0.0311 (5)0.0064 (4)0.0142 (4)0.0090 (4)
O10.0576 (19)0.0512 (19)0.068 (2)0.0043 (14)0.0431 (16)0.0138 (15)
O2A0.047 (2)0.039 (2)0.047 (3)0.0066 (17)0.022 (2)0.0108 (18)
O3A0.036 (2)0.037 (2)0.033 (2)0.0065 (16)0.0155 (18)0.0097 (17)
O4A0.058 (3)0.059 (4)0.038 (2)0.028 (2)0.0091 (17)0.0085 (18)
O2B0.060 (9)0.058 (9)0.030 (8)0.032 (7)0.015 (7)0.015 (6)
O3B0.042 (7)0.045 (8)0.039 (9)0.019 (6)0.015 (6)0.006 (6)
O4B0.039 (7)0.054 (12)0.047 (7)0.012 (6)0.008 (5)0.011 (6)
O50.073 (2)0.075 (2)0.065 (2)0.0440 (18)0.0458 (17)0.0388 (16)
O60.065 (2)0.121 (3)0.0487 (19)0.050 (2)0.0113 (16)0.0150 (18)
O70.085 (3)0.086 (3)0.077 (2)0.036 (2)0.025 (2)0.037 (2)
Geometric parameters (Å, º) top
C1—N41.311 (5)N6—H6A0.8600
C1—N21.346 (5)N6—H6B0.8600
C1—N11.347 (5)N8—H80.84 (3)
C2—N51.303 (5)N10—H10A0.8600
C2—N21.320 (5)N10—H10B0.8600
C2—N31.363 (5)N11—H11A0.8600
C3—N61.315 (5)N11—H11B0.8600
C3—N11.320 (4)N12—H12A0.8600
C3—N31.347 (5)N12—H12B0.8600
C4—N121.313 (4)P1—O4B1.480 (12)
C4—N71.343 (5)P1—O2B1.488 (10)
C4—N91.350 (4)P1—O2A1.498 (4)
C5—N101.305 (5)P1—O4A1.498 (4)
C5—N71.326 (5)P1—O3A1.510 (4)
C5—N81.355 (5)P1—O11.581 (3)
C6—N111.313 (5)P1—O3B1.584 (11)
C6—N91.323 (4)O1—H10.8200
C6—N81.346 (5)O5—H5C0.8501
N3—H30.77 (4)O5—H5D0.8500
N4—H4A0.8600O6—H6C0.8500
N4—H4B0.8600O6—H6D0.8501
N5—H5A0.8600O7—H7A0.8508
N5—H5B0.8600O7—H7B0.8500
N4—C1—N2116.9 (3)H6A—N6—H6B120.0
N4—C1—N1118.0 (3)C5—N7—C4115.4 (3)
N2—C1—N1125.1 (3)C6—N8—C5119.8 (3)
N5—C2—N2121.1 (3)C6—N8—H8118 (2)
N5—C2—N3118.1 (3)C5—N8—H8122 (2)
N2—C2—N3120.7 (3)C6—N9—C4115.6 (3)
N6—C3—N1120.4 (3)C5—N10—H10A120.0
N6—C3—N3118.3 (3)C5—N10—H10B120.0
N1—C3—N3121.3 (3)H10A—N10—H10B120.0
N12—C4—N7117.0 (3)C6—N11—H11A120.0
N12—C4—N9116.9 (3)C6—N11—H11B120.0
N7—C4—N9126.1 (3)H11A—N11—H11B120.0
N10—C5—N7122.6 (4)C4—N12—H12A120.0
N10—C5—N8115.9 (3)C4—N12—H12B120.0
N7—C5—N8121.5 (3)H12A—N12—H12B120.0
N11—C6—N9120.4 (3)O4B—P1—O2B116.0 (8)
N11—C6—N8118.1 (3)O2A—P1—O4A115.2 (3)
N9—C6—N8121.5 (3)O2A—P1—O3A112.0 (2)
C3—N1—C1116.4 (3)O4A—P1—O3A112.0 (3)
C2—N2—C1116.6 (3)O4B—P1—O1116.8 (5)
C3—N3—C2119.9 (3)O2B—P1—O197.5 (5)
C3—N3—H3118 (3)O2A—P1—O1107.06 (18)
C2—N3—H3122 (3)O4A—P1—O1102.7 (2)
C1—N4—H4A120.0O3A—P1—O1106.93 (17)
C1—N4—H4B120.0O4B—P1—O3B109.3 (8)
H4A—N4—H4B120.0O2B—P1—O3B108.8 (9)
C2—N5—H5A120.0O1—P1—O3B107.7 (4)
C2—N5—H5B120.0P1—O1—H1109.5
H5A—N5—H5B120.0H5C—O5—H5D107.7
C3—N6—H6A120.0H6C—O6—H6D107.7
C3—N6—H6B120.0H7A—O7—H7B106.2
N6—C3—N1—C1179.9 (3)N10—C5—N7—C4179.9 (4)
N3—C3—N1—C10.9 (5)N8—C5—N7—C41.0 (5)
N4—C1—N1—C3177.9 (3)N12—C4—N7—C5179.0 (3)
N2—C1—N1—C31.1 (5)N9—C4—N7—C50.1 (5)
N5—C2—N2—C1178.3 (3)N11—C6—N8—C5179.6 (3)
N3—C2—N2—C11.1 (5)N9—C6—N8—C50.2 (5)
N4—C1—N2—C2176.9 (3)N10—C5—N8—C6180.0 (3)
N1—C1—N2—C22.1 (5)N7—C5—N8—C61.0 (5)
N6—C3—N3—C2179.2 (3)N11—C6—N9—C4178.6 (3)
N1—C3—N3—C21.8 (5)N8—C6—N9—C41.2 (5)
N5—C2—N3—C3179.9 (3)N12—C4—N9—C6178.0 (3)
N2—C2—N3—C30.8 (5)N7—C4—N9—C61.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.77 (4)2.06 (4)2.791 (4)158 (4)
N4—H4B···O4Aii0.862.222.998 (5)151
N4—H4A···N7iii0.862.203.059 (5)177
N5—H5B···O70.861.972.822 (5)170
N5—H5A···O6iv0.862.413.258 (5)167
N6—H6B···O5i0.862.283.009 (5)143
N6—H6A···N9v0.862.173.031 (5)176
N8—H8···O3A0.84 (3)1.93 (4)2.742 (7)164 (3)
N10—H10B···O2A0.862.112.952 (5)168
N10—H10A···O2Avi0.861.992.744 (5)146
N11—H11B···O4Avii0.862.533.147 (6)129
N11—H11B···O1vii0.862.333.121 (5)152
N11—H11A···N1v0.862.022.884 (4)178
N12—H12B···O6viii0.862.072.840 (5)149
N12—H12A···N2iii0.862.082.935 (4)172
O1—H1···O3Avii0.821.762.535 (5)157
O5—H5D···O3Ai0.851.892.739 (5)177
O5—H5C···O4A0.852.002.726 (6)142
O6—H6D···O1ix0.851.972.787 (4)161
O6—H6C···O4A0.852.022.838 (6)162
O7—H7B···O1ix0.852.573.257 (5)139
O7—H7B···O2Aix0.852.282.958 (6)137
O7—H7A···O5i0.852.283.006 (6)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+2, z; (iv) x+2, y+2, z+1; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1; (viii) x1, y, z1; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C3H7N6+·HPO42·3H2O
Mr404.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.767 (4), 10.548 (7), 12.497 (8)
α, β, γ (°)91.865 (11), 105.609 (10), 108.020 (9)
V3)810.3 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.933, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
3823, 2803, 2027
Rint0.029
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.178, 1.06
No. of reflections2803
No. of parameters274
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.77 (4)2.06 (4)2.791 (4)158 (4)
N4—H4B···O4Aii0.862.222.998 (5)151
N4—H4A···N7iii0.862.203.059 (5)177
N5—H5B···O70.861.972.822 (5)170
N5—H5A···O6iv0.862.413.258 (5)167
N6—H6B···O5i0.862.283.009 (5)143
N6—H6A···N9v0.862.173.031 (5)176
N8—H8···O3A0.84 (3)1.93 (4)2.742 (7)164 (3)
N10—H10B···O2A0.862.112.952 (5)168
N10—H10A···O2Avi0.861.992.744 (5)146
N11—H11B···O4Avii0.862.533.147 (6)129
N11—H11B···O1vii0.862.333.121 (5)152
N11—H11A···N1v0.862.022.884 (4)178
N12—H12B···O6viii0.862.072.840 (5)149
N12—H12A···N2iii0.862.082.935 (4)172
O1—H1···O3Avii0.821.762.535 (5)157
O5—H5D···O3Ai0.851.892.739 (5)177
O5—H5C···O4A0.852.002.726 (6)142
O6—H6D···O1ix0.851.972.787 (4)161
O6—H6C···O4A0.852.022.838 (6)162
O7—H7B···O1ix0.852.573.257 (5)139
O7—H7B···O2Aix0.852.282.958 (6)137
O7—H7A···O5i0.852.283.006 (6)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+1, y+2, z; (iv) x+2, y+2, z+1; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1; (viii) x1, y, z1; (ix) x+1, y, z.
 

Acknowledgements

This work was supported by the Science Foundation of Shanxi Datong University of China (No.2005k03) and the Doctoral Start-up Foundation of Shanxi University.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, C. S., Venkatraman, R., Kim, E. H., Hwang, H. S. & Kang, S. K. (2004). Acta Cryst. C60, o295–o296.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 123–125.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 1120–1122.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2001c). Acta Cryst. C57, 1431–1433.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2002). Acta Cryst. C58, o455–o459.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, o349–o352.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJanczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, o211–o214.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, X.-M., Lu, L.-P., Feng, S.-S., Zhang, H.-M., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, o811–o813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPerpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112–o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, o462–o463.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o239-o240
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds