supplementary materials


Acta Cryst. (2010). E66, o149    [ doi:10.1107/S1600536809053215 ]

2-Phenyl-4,5-di-2-pyridyl-1H-imidazole

M. Felsmann, D. Schindler and E. Weber

Abstract top

In the title compound, C19H14N4, which was crystallized from dimethyl sulfoxide, the arene and heterocyclic rings of the lophine analogue framework differ only slightly from coplanarity (dihedral angles range from 8.8 to 20.2°), and intramolecular N-H...N and C-H...N interactions help to establish the conformation. The crystal packing features a number of weak C-H...N, N-H...N hydrogen-bond type contacts, and C-H...[pi] interactions, leading to the formation of a herringbone structure.

Comment top

In the title compound (Fig.1), the imidazole and the phenyl ring are nearly coplanar with a dihedral angle of 8.87 (9)° while the two pyridine rings are tilted showing dihedral angels of 11.14 (8) and 20.17 (8)° with respect to the imidazole unit. As compared with related imidazoles having phenyl substituents in 4- and 5-position (Kaftory et al., 1998; Benisvy et al., 2003; Martinez et al., 2004; Seethalakshmi et al., 2006 and Thiruvalluvar et al., 2007), the dihedral angels involving pyridine rings and imidazole of the present compound are decreased in value of about 20°. This is presumably attributed to the CH for N exchange being connected with the phenyl for pyridyl substitution, which lowers torsional strain between the two planes defining the dihedral angels.

As a consequence of the almost planar overall molecular conformation, weak intramolecular hydrogen bonding contacts (Desiraju & Steiner, 1999) involving the donator and acceptor atoms N1 and N3 as well as C5 and N4, respectively, are rather probable to exist (Table 1).

Due to steric shielding of the nitrogen atoms, strong hydrogen bonds are also absent in the crystal packing. Thus, the nitrogen atoms N3 and N4 of the pyridine rings are acting as hydrogen acceptors and the imidazole nitrogen N1 as a hydrogen donator only in the formation of weak intermolecular C—H···N and N—H···N type contacts (Desiraju & Steiner, 1999) (Table 1). Furthermore the crystal packing is stabilized by weak C—H···π interactions (Table 1) including the three heterocyclic rings, and two offset-face-to-face arrangements of the phenyl ring Cg2 and the pyridin units Cg3 and Cg4, [Cg2···Cg3v = 3.6866 Å and Cg2···Cg4vi = 3.9773 Å [symmetry operation: (v) 1 + x, y, z; (vi) 2 - x, 1 - y, -z]. They all give rise to the formation of a packing structure being reminiscent of a herring-bone pattern.

Related literature top

For the solid-state structures of 2,4,5-triphenylimidazoles, see: Kaftory et al. (1998); Benisvy et al. (2003); Martinez et al. (2004); Seethalakshmi et al. (2006); Thiruvalluvar et al. (2007). For the synthesis of the title compound, see: Nakashima et al. (1998); Slater et al. (2006). For weak hydrogen-bond type contacts, see: Desiraju & Steiner (1999).

Experimental top

The title compound was synthesized from benzaldehyde, 1,2-dipyridin-2-yl-ethane-1,2-dione and ammonium acetate following the literature procedure (K. Nakashima et al., 1998). Yellow prisms suitable for X-ray diffraction were obtained by evaporation of a the solvent from a solution of the title compound in DMSO.

Refinement top

H atoms, except for H1, were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.95 Å, and Uiso= 1.2–1.5 Ueq (parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, viewed along the a axis. Hydrogen atoms have been omitted for clarity.
2-Phenyl-4,5-di-2-pyridyl-1H-imidazole top
Crystal data top
C19H14N4F(000) = 624
Mr = 298.34Dx = 1.368 Mg m3
Monoclinic, P21/nMelting point: 462 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.7394 (3) ÅCell parameters from 4480 reflections
b = 15.3333 (5) Åθ = 2.3–28.9°
c = 11.2980 (4) ŵ = 0.08 mm1
β = 106.835 (2)°T = 153 K
V = 1449.09 (9) Å3Plate, colourless
Z = 40.32 × 0.20 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2562 independent reflections
Radiation source: fine-focus sealed tube2130 reflections with I > 2σ(I)
graphiteRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.974, Tmax = 0.993k = 1718
14338 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.3271P]
where P = (Fo2 + 2Fc2)/3
2562 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C19H14N4V = 1449.09 (9) Å3
Mr = 298.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7394 (3) ŵ = 0.08 mm1
b = 15.3333 (5) ÅT = 153 K
c = 11.2980 (4) Å0.32 × 0.20 × 0.08 mm
β = 106.835 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2562 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2130 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.993Rint = 0.029
14338 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.18 e Å3
2562 reflectionsAbsolute structure: ?
212 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.91201 (12)0.18912 (7)0.10112 (9)0.0237 (3)
N20.86233 (11)0.09328 (7)0.02858 (9)0.0239 (3)
N31.16211 (13)0.28374 (8)0.11585 (10)0.0331 (3)
N41.24782 (12)0.12084 (7)0.25734 (10)0.0265 (3)
C10.80100 (14)0.13607 (8)0.07612 (11)0.0226 (3)
C21.02004 (14)0.11894 (8)0.07188 (11)0.0225 (3)
C31.05460 (14)0.17873 (8)0.00916 (11)0.0224 (3)
C41.19531 (14)0.22527 (8)0.02296 (11)0.0239 (3)
C51.35107 (14)0.20897 (9)0.04894 (12)0.0292 (3)
H51.37190.16720.11380.035*
C61.47484 (16)0.25437 (9)0.02471 (13)0.0333 (3)
H61.58200.24400.07270.040*
C71.44232 (17)0.31470 (10)0.06921 (13)0.0352 (3)
H71.52560.34700.08710.042*
C81.28509 (18)0.32678 (10)0.13653 (14)0.0386 (4)
H81.26250.36830.20180.046*
C91.11465 (14)0.08007 (8)0.19008 (11)0.0224 (3)
C101.06033 (15)0.00341 (9)0.23010 (11)0.0264 (3)
H100.96550.02380.18100.032*
C111.14491 (15)0.03268 (9)0.34130 (12)0.0292 (3)
H111.10950.08510.36980.035*
C121.28242 (15)0.00858 (9)0.41110 (12)0.0295 (3)
H121.34300.01450.48850.035*
C131.32884 (15)0.08392 (9)0.36510 (12)0.0292 (3)
H131.42420.11160.41250.035*
C140.63692 (14)0.12433 (8)0.15534 (11)0.0233 (3)
C150.56985 (15)0.17767 (9)0.25665 (11)0.0267 (3)
H150.63200.22250.27820.032*
C160.41256 (15)0.16545 (9)0.32612 (12)0.0318 (3)
H160.36720.20200.39530.038*
C170.32096 (15)0.10063 (10)0.29574 (12)0.0329 (3)
H170.21260.09320.34310.040*
C180.38761 (15)0.04655 (9)0.19604 (12)0.0322 (3)
H180.32520.00160.17520.039*
C190.54504 (15)0.05787 (9)0.12681 (12)0.0286 (3)
H190.59080.02000.05930.034*
Cg10.93000.14320.01720.010*0.00
Cg21.31850.26900.04520.010*0.00
Cg30.47880.11210.22610.010*0.00
H10.9009 (17)0.2253 (10)0.1644 (14)0.039 (4)*
Cg41.19650.04400.29920.010*0.00
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0238 (5)0.0238 (6)0.0216 (5)0.0007 (4)0.0034 (4)0.0019 (5)
N20.0211 (5)0.0254 (6)0.0235 (5)0.0007 (4)0.0036 (4)0.0004 (4)
N30.0323 (6)0.0319 (7)0.0354 (6)0.0016 (5)0.0106 (5)0.0060 (5)
N40.0214 (5)0.0279 (7)0.0274 (5)0.0009 (4)0.0026 (4)0.0008 (5)
C10.0225 (6)0.0215 (7)0.0228 (6)0.0003 (5)0.0053 (5)0.0014 (5)
C20.0202 (6)0.0224 (7)0.0240 (6)0.0007 (5)0.0052 (5)0.0020 (5)
C30.0211 (6)0.0218 (7)0.0226 (6)0.0005 (5)0.0039 (5)0.0031 (5)
C40.0255 (6)0.0216 (7)0.0255 (6)0.0005 (5)0.0089 (5)0.0045 (5)
C50.0253 (7)0.0313 (8)0.0315 (7)0.0010 (6)0.0088 (5)0.0011 (6)
C60.0247 (7)0.0388 (9)0.0376 (8)0.0037 (6)0.0110 (6)0.0072 (7)
C70.0343 (8)0.0358 (9)0.0415 (8)0.0103 (6)0.0203 (6)0.0076 (7)
C80.0424 (8)0.0361 (9)0.0408 (8)0.0056 (7)0.0174 (7)0.0076 (7)
C90.0197 (6)0.0234 (7)0.0242 (6)0.0029 (5)0.0064 (5)0.0022 (5)
C100.0235 (6)0.0260 (7)0.0283 (7)0.0010 (5)0.0053 (5)0.0011 (6)
C110.0302 (7)0.0264 (8)0.0317 (7)0.0006 (6)0.0101 (6)0.0045 (6)
C120.0284 (7)0.0310 (8)0.0264 (7)0.0066 (6)0.0035 (5)0.0040 (6)
C130.0229 (6)0.0319 (8)0.0285 (7)0.0018 (5)0.0006 (5)0.0001 (6)
C140.0226 (6)0.0242 (7)0.0226 (6)0.0015 (5)0.0055 (5)0.0041 (5)
C150.0253 (7)0.0270 (8)0.0264 (7)0.0005 (5)0.0053 (5)0.0006 (5)
C160.0279 (7)0.0373 (8)0.0261 (7)0.0040 (6)0.0012 (6)0.0028 (6)
C170.0225 (6)0.0428 (9)0.0294 (7)0.0018 (6)0.0012 (5)0.0031 (6)
C180.0274 (7)0.0359 (8)0.0324 (7)0.0083 (6)0.0072 (6)0.0015 (6)
C190.0275 (7)0.0305 (8)0.0257 (7)0.0014 (6)0.0045 (5)0.0015 (6)
Geometric parameters (Å, °) top
N1—Cg11.1544 (11)C7—H70.9500
N1—C11.3570 (16)C8—H80.9500
N1—C31.3813 (15)C9—C101.3913 (19)
N1—H10.888 (16)C10—C111.3759 (17)
N2—Cg11.1751 (11)C10—H100.9500
N2—C11.3228 (15)C11—C121.3846 (18)
N2—C21.3796 (15)C11—H110.9500
N3—C81.3382 (18)C12—C131.3753 (19)
N3—C41.3465 (16)C12—H120.9500
N4—C131.3435 (16)C13—H130.9500
N4—C91.3456 (15)C14—C151.3907 (17)
C1—Cg11.1364 (11)C14—C191.3919 (18)
C1—C141.4650 (16)C14—Cg31.3942 (12)
C2—Cg11.1454 (11)C15—C161.3841 (17)
C2—C31.3893 (18)C15—H150.9500
C2—C91.4774 (16)C16—C171.381 (2)
C3—Cg11.1972 (12)C16—H160.9500
C3—C41.4686 (17)C17—C181.3841 (19)
C4—Cg21.3514 (13)C17—H170.9500
C4—C51.3909 (17)C18—C191.3825 (17)
C5—C61.3788 (19)C18—H180.9500
C5—H50.9500C19—H190.9500
C6—C71.374 (2)Cg2—Cg3i3.6866
C6—H60.9500Cg3—Cg4ii3.9773
C7—C81.377 (2)
Cg1—N1—C153.07 (7)N4—C9—C10121.99 (11)
Cg1—N1—C355.48 (7)N4—C9—C2119.28 (11)
C1—N1—C3108.54 (10)C10—C9—C2118.70 (11)
Cg1—N1—H1178.2 (10)C11—C10—C9119.53 (11)
C1—N1—H1128.6 (9)C11—C10—H10120.2
C3—N1—H1122.9 (9)C9—C10—H10120.2
Cg1—N2—C153.73 (7)C10—C11—C12118.97 (13)
Cg1—N2—C252.54 (7)C10—C11—H11120.5
C1—N2—C2106.27 (10)C12—C11—H11120.5
C8—N3—C4117.50 (11)C13—C12—C11118.10 (12)
C13—N4—C9117.30 (11)C13—C12—H12121.0
Cg1—C1—N256.48 (7)C11—C12—H12121.0
Cg1—C1—N154.29 (7)N4—C13—C12124.11 (12)
N2—C1—N1110.76 (10)N4—C13—H13117.9
Cg1—C1—C14177.65 (13)C12—C13—H13117.9
N2—C1—C14123.84 (11)C15—C14—C19119.16 (11)
N1—C1—C14125.36 (11)C15—C14—Cg359.71 (7)
Cg1—C2—N254.52 (6)C19—C14—Cg359.46 (7)
Cg1—C2—C355.36 (7)C15—C14—C1122.36 (12)
N2—C2—C3109.88 (10)C19—C14—C1118.47 (11)
Cg1—C2—C9170.96 (12)Cg3—C14—C1177.47 (11)
N2—C2—C9116.46 (11)C16—C15—C14119.99 (13)
C3—C2—C9133.65 (11)C16—C15—H15120.0
Cg1—C3—N152.60 (7)C14—C15—H15120.0
Cg1—C3—C251.93 (7)C17—C16—C15120.57 (12)
N1—C3—C2104.53 (10)C17—C16—H16119.7
Cg1—C3—C4169.78 (11)C15—C16—H16119.7
N1—C3—C4117.70 (11)C16—C17—C18119.74 (12)
C2—C3—C4137.66 (11)C16—C17—H17120.1
N3—C4—Cg261.88 (7)C18—C17—H17120.1
N3—C4—C5121.89 (12)C19—C18—C17120.04 (13)
Cg2—C4—C560.02 (8)C19—C18—H18120.0
N3—C4—C3114.09 (11)C17—C18—H18120.0
Cg2—C4—C3175.49 (11)C18—C19—C14120.48 (12)
C5—C4—C3123.96 (12)C18—C19—H19119.8
C6—C5—C4118.99 (13)C14—C19—H19119.8
C6—C5—H5120.5C1—Cg1—C2142.73 (9)
C4—C5—H5120.5C1—Cg1—N172.65 (8)
C7—C6—C5119.64 (13)C2—Cg1—N1144.62 (8)
C7—C6—H6120.2C1—Cg1—N269.79 (8)
C5—C6—H6120.2C2—Cg1—N272.94 (8)
C6—C7—C8117.86 (13)N1—Cg1—N2142.43 (7)
C6—C7—H7121.1C1—Cg1—C3144.55 (9)
C8—C7—H7121.1C2—Cg1—C372.71 (8)
N3—C8—C7124.11 (14)N1—Cg1—C371.92 (8)
N3—C8—H8117.9N2—Cg1—C3145.65 (7)
C7—C8—H8117.9
C2—N2—C1—Cg10.20 (8)Cg1—C1—C14—C1591 (3)
Cg1—N2—C1—N10.66 (8)N2—C1—C14—C15171.95 (12)
C2—N2—C1—N10.87 (14)N1—C1—C14—C1510.5 (2)
Cg1—N2—C1—C14177.20 (15)Cg1—C1—C14—C1990 (3)
C2—N2—C1—C14176.99 (11)N2—C1—C14—C197.35 (19)
C3—N1—C1—Cg10.83 (8)N1—C1—C14—C19170.20 (12)
Cg1—N1—C1—N20.68 (8)Cg1—C1—C14—Cg3124 (3)
C3—N1—C1—N21.51 (14)N2—C1—C14—Cg327 (3)
Cg1—N1—C1—C14177.14 (15)N1—C1—C14—Cg3155 (3)
C3—N1—C1—C14176.31 (12)C19—C14—C15—C161.3 (2)
C1—N2—C2—Cg10.21 (8)Cg3—C14—C15—C160.35 (11)
Cg1—N2—C2—C30.30 (8)C1—C14—C15—C16177.96 (12)
C1—N2—C2—C30.09 (14)C14—C15—C16—C170.1 (2)
Cg1—N2—C2—C9179.24 (13)C15—C16—C17—C180.9 (2)
C1—N2—C2—C9179.44 (11)C16—C17—C18—C190.4 (2)
C1—N1—C3—Cg10.81 (8)C17—C18—C19—C141.0 (2)
Cg1—N1—C3—C20.66 (7)C15—C14—C19—C181.9 (2)
C1—N1—C3—C21.47 (13)Cg3—C14—C19—C180.90 (11)
Cg1—N1—C3—C4176.16 (13)C1—C14—C19—C18177.43 (12)
C1—N1—C3—C4175.36 (11)N2—C1—Cg1—C20.39 (16)
N2—C2—C3—Cg10.30 (8)N1—C1—Cg1—C2179.63 (13)
C9—C2—C3—Cg1179.13 (17)C14—C1—Cg1—C298 (3)
Cg1—C2—C3—N10.67 (8)N2—C1—Cg1—N1179.24 (9)
N2—C2—C3—N10.97 (14)C14—C1—Cg1—N182 (3)
C9—C2—C3—N1178.46 (13)N1—C1—Cg1—N2179.24 (9)
Cg1—C2—C3—C4175.16 (18)C14—C1—Cg1—N298 (3)
N2—C2—C3—C4174.86 (14)N2—C1—Cg1—C3179.19 (13)
C9—C2—C3—C45.7 (3)N1—C1—Cg1—C31.57 (16)
C8—N3—C4—Cg20.24 (11)C14—C1—Cg1—C381 (3)
C8—N3—C4—C50.53 (19)N2—C2—Cg1—C10.38 (15)
C8—N3—C4—C3177.97 (12)C3—C2—Cg1—C1179.27 (14)
Cg1—C3—C4—N327.1 (7)C9—C2—Cg1—C14.7 (8)
N1—C3—C4—N39.70 (16)N2—C2—Cg1—N1179.00 (13)
C2—C3—C4—N3174.85 (14)C3—C2—Cg1—N11.34 (15)
Cg1—C3—C4—Cg21(2)C9—C2—Cg1—N1174.7 (7)
N1—C3—C4—Cg216.6 (15)C3—C2—Cg1—N2179.65 (9)
C2—C3—C4—Cg2158.8 (13)C9—C2—Cg1—N24.4 (7)
Cg1—C3—C4—C5150.2 (6)N2—C2—Cg1—C3179.65 (9)
N1—C3—C4—C5167.68 (12)C9—C2—Cg1—C3176.0 (8)
C2—C3—C4—C57.8 (2)C3—N1—Cg1—C1179.04 (10)
N3—C4—C5—C60.3 (2)C1—N1—Cg1—C2179.61 (14)
Cg2—C4—C5—C60.05 (11)C3—N1—Cg1—C21.35 (15)
C3—C4—C5—C6177.53 (12)C1—N1—Cg1—N21.17 (14)
C4—C5—C6—C70.2 (2)C3—N1—Cg1—N2179.79 (12)
C5—C6—C7—C80.5 (2)C1—N1—Cg1—C3179.04 (10)
C4—N3—C8—C70.2 (2)C2—N2—Cg1—C1179.75 (10)
C6—C7—C8—N30.3 (2)C1—N2—Cg1—C2179.75 (10)
C13—N4—C9—C100.89 (19)C1—N2—Cg1—N11.19 (14)
C13—N4—C9—C2179.00 (11)C2—N2—Cg1—N1179.05 (12)
Cg1—C2—C9—N4154.6 (7)C1—N2—Cg1—C3179.17 (14)
N2—C2—C9—N4158.53 (11)C2—N2—Cg1—C30.59 (15)
C3—C2—C9—N420.9 (2)N1—C3—Cg1—C11.58 (16)
Cg1—C2—C9—C1023.6 (8)C2—C3—Cg1—C1179.24 (14)
N2—C2—C9—C1019.64 (17)C4—C3—Cg1—C117.9 (7)
C3—C2—C9—C10160.96 (13)N1—C3—Cg1—C2179.18 (9)
N4—C9—C10—C110.4 (2)C4—C3—Cg1—C2161.3 (7)
C2—C9—C10—C11178.53 (11)C2—C3—Cg1—N1179.18 (9)
C9—C10—C11—C120.2 (2)C4—C3—Cg1—N119.5 (6)
C10—C11—C12—C130.5 (2)N1—C3—Cg1—N2179.77 (13)
C9—N4—C13—C121.2 (2)C2—C3—Cg1—N20.59 (15)
C11—C12—C13—N41.0 (2)C4—C3—Cg1—N2160.7 (6)
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y, −z.
Hydrogen-bond geometry (Å, °) top
Cg1, Cg2 and Cg4 are the centroids of the N1/C1,N2,C2,C3, N2/C4–C8 and N4/C9–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N4iii0.952.593.442 (2)149
N1—H1···N4iii0.89 (2)2.73 (2)3.432 (2)137 (1)
C13—H13···N3iv0.952.723.505 (2)141
C16—H16···Cg1iii0.952.883.671 (1)142
C7—H7···Cg4v0.952.793.708 (1)163
C5—H5···N40.952.313.068 (2)137
N1—H1···N30.89 (2)2.37 (2)2.669 (2)100 (1)
C11—H11···Cg2vi0.952.933.772 (1)148
Symmetry codes: (iii) x−1/2, −y+1/2, z−1/2; (iv) x+1/2, −y+1/2, z+1/2; (v) x+1/2, −y+1/2, z−1/2; (vi) −x+5/2, y−1/2, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
Cg1, Cg2 and Cg4 are the centroids of the N1/C1,N2,C2,C3, N2/C4–C8 and N4/C9–C13 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···N4i0.952.593.442 (2)149
N1—H1···N4i0.89 (2)2.73 (2)3.432 (2)137 (1)
C13—H13···N3ii0.952.723.505 (2)141
C16—H16···Cg1i0.952.883.671 (1)142
C7—H7···Cg4iii0.952.793.708 (1)163
C5—H5···N40.952.313.068 (2)137
N1—H1···N30.89 (2)2.37 (2)2.669 (2)100 (1)
C11—H11···Cg2iv0.952.933.772 (1)148
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) −x+5/2, y−1/2, −z+1/2.
references
References top

Benisvy, L., Blake, A. J., Collins, D., Davies, E. S., Garner, C. D., McInnes, E. J. L., McMaster, J., Whittaker, G. & Wilson, C. (2003). Dalton Trans. pp. 1975–1985.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kaftory, M., Taycher, H. & Botoshansky, M. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 407–412.

Martinez, H., Puschmann, H., Howard, J. A. K., Acevedo, J. & Au-Alvarez, O. (2004). Acta Cryst. E60, o1229–o1230.

Nakashima, K., Fukuzaki, Y., Nomura, R., Shimoda, R., Nakamura, Y., Kuroda, N., Akiyama, S. A. & Irgum, K. (1998). Dyes Pigments, 38, 127–136.

Seethalakshmi, T., Puratchikody, A., Lynch, D. E., Kaliannan, P. & Thamotharan, S. (2006). Acta Cryst. E62, o2803–o2804.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Slater, J. W., D'Alessandro, D. M., Keene, F. R. & Steel, P. J. (2006). Dalton Trans. pp. 1954–1962.

Thiruvalluvar, A., Balamurugan, S., Puratchikody, A. & Nallu, M. (2007). Acta Cryst. E63, o1650–o1652.