organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl-1,3-dioxolan-2-yl)-1,1-di­phenyl­ethanol

aChemistry, Queensland University of Technology, 2 George St, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: j.mcmurtrie@qut.edu.au

(Received 9 December 2009; accepted 10 December 2009; online 24 December 2009)

The mol­ecules of the title compound, C18H20O3, display an intra­molecular O—H⋯O hydrogen bond between the hydr­oxy donor and a ketal O-atom acceptor. In the crystal, inter­molecular C—H⋯π inter­actions connect adjacent mol­ecules into chains parallel to the b axis.

Related literature

For the preparation of the title compound, see: Paulson et al. (1973[Paulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Ed. 50, 216-217.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O3

  • Mr = 284.34

  • Monoclinic, P 21 /c

  • a = 5.7961 (4) Å

  • b = 8.8271 (7) Å

  • c = 29.754 (2) Å

  • β = 92.150 (7)°

  • V = 1521.26 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.68 × 0.35 × 0.09 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.974, Tmax = 1.000

  • 5871 measured reflections

  • 3407 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.03

  • 3407 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O⋯O2 0.94 (1) 1.81 (1) 2.6820 (12) 153 (1)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The molecular stucture of the title compound, (I), is illustrated in Fig. 1. There is an intramolecular hydrogen bond between the hydroxy moiety and one of the ketal oxygen atoms (O3—H1O···O2, oxygen-oxygen distance 2.6820 (12) Å, O—H···O angle 153 (1)°). The presence of the hydrogen bond results in a loss of the average mirror symmetry and as a result the molecular conformer is chiral at C2. Both hands of the conformer are present in the structure as implied by the centrosymmetric space symmetry. The 1H NMR spectrum (room temperature) is indicative of the average conformation indicating that rearrangement in the solution state is rapid on the NMR timescale.

The molecules of (I) are arranged in chains that propagate parallel to the b axis via intermolecular CH···π interactions as illustrated in Fig. 2 (C15—H15edge···C13—C18plane distance 2.96 Å). Interestingly, these are the only significant aryl-aryl interactions. The aliphatic components of the molecule including the methyl, methylene and ketal groups, completely occupy the space between the two phenyl rings (highlighted in Fig. 2) in which π interactions would be expected to occur. Adjacent chains are connected by weakly interacting aliphatic-CH···π interactions in addition to the omnipresent van der Waals forces.

Related literature top

For the preparation of the title compound, see: Paulson et al. (1973).

Experimental top

The title compound was prepared by the procedure reported by Paulson et al. (1973). Large crystalline plates were obtained from methanol/water by vapour diffusion. NMR 1H (300 MHz, CDCl3) 7.53 (m, 4H, ortho-H), 7.30 (m, 4H, meta-H), 7.18 (tt, 2H, para-H), 5.39 (s, 1H, OH), 3.9–3.6 (symmetrical multiplets, AA'BB', 4H, ketal ring H), 2.84 (s, 2H, CH2), 1.07 (s, 3H, CH3).

Refinement top

C-bound H atoms were included in idealized positions and refined using a riding model approximation with methylene, methyl and aromatic bond lengths fixed at 0.99, 0.98 and 0.95 Å, respectively. Uiso(H) values were fixed at 1.2Ueq of the parent C atoms for methylene and aromatic H atoms and 1.5Ueq of the parent C atoms for methyl H atoms. The hydroxy H atom was located in a Fourier difference map and refined with an O—H bond length restraint of 0.98 Å and with Uiso fixed at 1.5Ueq of the parent O atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP depiction of the molecular structure with atom numbering scheme. Ellipsoids are drawn at the 40% probability level. The intramolecular hydrogen bond (O3—H···O2) is indicated by a dashed line.
[Figure 2] Fig. 2. Crystal packing detail viewed parallel to the a axis. CH···π (edge to face) interactions propagate parallel to the b axis (black arrows). The arrangement of the aliphatic components (methyl green, ethylene orange and ketal blue) between four phenyl rings is indicated.
2-(2-Methyl-1,3-dioxolan-2-yl)-1,1-diphenylethanol top
Crystal data top
C18H20O3F(000) = 608
Mr = 284.34Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.7961 (4) ÅCell parameters from 2617 reflections
b = 8.8271 (7) Åθ = 3.4–28.6°
c = 29.754 (2) ŵ = 0.08 mm1
β = 92.150 (7)°T = 173 K
V = 1521.26 (19) Å3Plate, colourless
Z = 40.68 × 0.35 × 0.09 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
3407 independent reflections
Radiation source: Enhance (Mo) X-ray Source2458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.0774 pixels mm-1θmax = 28.7°, θmin = 3.5°
ω scansh = 47
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1110
Tmin = 0.974, Tmax = 1.000l = 3737
5871 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2]
where P = (Fo2 + 2Fc2)/3
3407 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C18H20O3V = 1521.26 (19) Å3
Mr = 284.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7961 (4) ŵ = 0.08 mm1
b = 8.8271 (7) ÅT = 173 K
c = 29.754 (2) Å0.68 × 0.35 × 0.09 mm
β = 92.150 (7)°
Data collection top
Oxford Diffraction Gemini
diffractometer
3407 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2458 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 1.000Rint = 0.017
5871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
3407 reflectionsΔρmin = 0.19 e Å3
194 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) (compiled Nov 6 2009,16:24:50) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9148 (2)0.35245 (18)0.06596 (5)0.0381 (4)
H1A0.91500.26200.04680.057*
H1B1.07400.38620.07200.057*
H1C0.82700.43330.05060.057*
C20.8042 (2)0.31506 (15)0.10991 (4)0.0276 (3)
C30.7536 (3)0.10241 (17)0.15222 (6)0.0450 (4)
H3A0.72420.14540.18220.054*
H3B0.80230.00460.15580.054*
C40.5432 (3)0.11605 (17)0.12092 (6)0.0465 (4)
H4A0.54030.03470.09800.056*
H4B0.39940.11120.13780.056*
C50.8041 (2)0.44391 (13)0.14479 (4)0.0214 (3)
H5A0.96110.48830.14630.026*
H5B0.77800.39760.17450.026*
C60.63093 (18)0.57549 (14)0.13839 (4)0.0193 (3)
C70.6771 (2)0.67148 (14)0.09647 (4)0.0213 (3)
C80.8846 (2)0.74953 (15)0.09357 (4)0.0300 (3)
H80.99820.74060.11730.036*
C90.9288 (2)0.83969 (17)0.05699 (5)0.0387 (4)
H91.07080.89310.05590.046*
C100.7661 (3)0.85235 (18)0.02188 (5)0.0402 (4)
H100.79600.91390.00340.048*
C110.5610 (3)0.77505 (18)0.02399 (5)0.0410 (4)
H110.44950.78290.00010.049*
C120.5150 (2)0.68539 (15)0.06104 (4)0.0306 (3)
H120.37190.63330.06220.037*
C130.6400 (2)0.68055 (13)0.17969 (4)0.0208 (3)
C140.4531 (2)0.77607 (15)0.18647 (5)0.0318 (3)
H140.32540.77520.16550.038*
C150.4502 (3)0.87249 (17)0.22329 (5)0.0413 (4)
H150.32110.93680.22730.050*
C160.6344 (3)0.87537 (17)0.25425 (5)0.0391 (4)
H160.63220.94060.27960.047*
C170.8203 (3)0.78268 (16)0.24777 (5)0.0388 (4)
H170.94780.78460.26880.047*
C180.8250 (2)0.68578 (15)0.21082 (4)0.0289 (3)
H180.95560.62280.20690.035*
O10.92307 (16)0.18920 (10)0.12962 (3)0.0369 (3)
O20.56966 (15)0.26253 (10)0.10043 (3)0.0344 (2)
O30.39885 (13)0.51655 (10)0.13579 (3)0.0244 (2)
H1O0.409 (2)0.4207 (11)0.1220 (4)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0378 (8)0.0446 (9)0.0321 (8)0.0005 (7)0.0053 (6)0.0139 (7)
C20.0236 (6)0.0255 (7)0.0335 (7)0.0007 (6)0.0033 (5)0.0071 (6)
C30.0514 (10)0.0226 (8)0.0614 (10)0.0015 (7)0.0062 (8)0.0012 (7)
C40.0409 (9)0.0264 (8)0.0726 (12)0.0062 (7)0.0069 (8)0.0054 (8)
C50.0208 (6)0.0232 (7)0.0199 (6)0.0019 (5)0.0009 (5)0.0005 (5)
C60.0166 (6)0.0227 (6)0.0188 (6)0.0030 (5)0.0002 (5)0.0006 (5)
C70.0229 (6)0.0222 (6)0.0190 (6)0.0022 (5)0.0023 (5)0.0001 (5)
C80.0259 (7)0.0365 (8)0.0275 (7)0.0024 (6)0.0009 (5)0.0066 (6)
C90.0338 (8)0.0415 (9)0.0414 (8)0.0036 (7)0.0099 (6)0.0131 (7)
C100.0485 (9)0.0439 (9)0.0291 (7)0.0100 (7)0.0122 (7)0.0169 (7)
C110.0451 (9)0.0525 (10)0.0248 (7)0.0059 (8)0.0052 (6)0.0090 (7)
C120.0299 (7)0.0352 (8)0.0265 (7)0.0000 (6)0.0039 (5)0.0030 (6)
C130.0235 (6)0.0196 (6)0.0194 (6)0.0038 (5)0.0036 (5)0.0014 (5)
C140.0269 (7)0.0347 (8)0.0340 (7)0.0012 (6)0.0028 (6)0.0068 (6)
C150.0371 (8)0.0392 (8)0.0487 (9)0.0027 (7)0.0148 (7)0.0157 (8)
C160.0486 (9)0.0384 (8)0.0311 (8)0.0096 (7)0.0112 (7)0.0133 (7)
C170.0465 (9)0.0411 (9)0.0281 (7)0.0070 (7)0.0071 (6)0.0071 (7)
C180.0312 (7)0.0279 (7)0.0273 (7)0.0007 (6)0.0027 (5)0.0023 (6)
O10.0331 (5)0.0252 (5)0.0521 (6)0.0051 (4)0.0017 (5)0.0042 (5)
O20.0286 (5)0.0299 (5)0.0443 (6)0.0050 (4)0.0044 (4)0.0100 (5)
O30.0187 (4)0.0257 (5)0.0288 (5)0.0043 (4)0.0015 (3)0.0015 (4)
Geometric parameters (Å, º) top
C1—C21.5145 (18)C8—C91.3802 (18)
C1—H1A0.9800C8—H80.9500
C1—H1B0.9800C9—C101.385 (2)
C1—H1C0.9800C9—H90.9500
C2—O11.4222 (16)C10—C111.374 (2)
C2—O21.4539 (15)C10—H100.9500
C2—C51.5396 (17)C11—C121.3912 (19)
C3—O11.4330 (17)C11—H110.9500
C3—C41.511 (2)C12—H120.9500
C3—H3A0.9900C13—C181.3914 (18)
C3—H3B0.9900C13—C141.3932 (17)
C4—O21.4402 (17)C14—C151.3879 (19)
C4—H4A0.9900C14—H140.9500
C4—H4B0.9900C15—C161.384 (2)
C5—C61.5422 (17)C15—H150.9500
C5—H5A0.9900C16—C171.372 (2)
C5—H5B0.9900C16—H160.9500
C6—O31.4416 (13)C17—C181.3940 (18)
C6—C131.5387 (16)C17—H170.9500
C6—C71.5398 (16)C18—H180.9500
C7—C121.3908 (18)O3—H1O0.943 (8)
C7—C81.3914 (17)
C2—C1—H1A109.5C8—C7—C6119.97 (11)
C2—C1—H1B109.5C9—C8—C7121.39 (13)
H1A—C1—H1B109.5C9—C8—H8119.3
C2—C1—H1C109.5C7—C8—H8119.3
H1A—C1—H1C109.5C8—C9—C10119.99 (13)
H1B—C1—H1C109.5C8—C9—H9120.0
O1—C2—O2105.42 (10)C10—C9—H9120.0
O1—C2—C1108.18 (10)C11—C10—C9119.42 (13)
O2—C2—C1108.96 (11)C11—C10—H10120.3
O1—C2—C5108.16 (10)C9—C10—H10120.3
O2—C2—C5110.03 (10)C10—C11—C12120.71 (13)
C1—C2—C5115.59 (11)C10—C11—H11119.6
O1—C3—C4102.69 (13)C12—C11—H11119.6
O1—C3—H3A111.2C7—C12—C11120.43 (13)
C4—C3—H3A111.2C7—C12—H12119.8
O1—C3—H3B111.2C11—C12—H12119.8
C4—C3—H3B111.2C18—C13—C14117.86 (12)
H3A—C3—H3B109.1C18—C13—C6123.64 (11)
O2—C4—C3103.66 (11)C14—C13—C6118.50 (11)
O2—C4—H4A111.0C15—C14—C13121.21 (13)
C3—C4—H4A111.0C15—C14—H14119.4
O2—C4—H4B111.0C13—C14—H14119.4
C3—C4—H4B111.0C16—C15—C14120.30 (13)
H4A—C4—H4B109.0C16—C15—H15119.8
C2—C5—C6119.34 (10)C14—C15—H15119.8
C2—C5—H5A107.5C17—C16—C15119.07 (13)
C6—C5—H5A107.5C17—C16—H16120.5
C2—C5—H5B107.5C15—C16—H16120.5
C6—C5—H5B107.5C16—C17—C18121.00 (13)
H5A—C5—H5B107.0C16—C17—H17119.5
O3—C6—C13105.32 (8)C18—C17—H17119.5
O3—C6—C7110.19 (9)C13—C18—C17120.55 (12)
C13—C6—C7108.27 (10)C13—C18—H18119.7
O3—C6—C5109.66 (10)C17—C18—H18119.7
C13—C6—C5110.67 (9)C2—O1—C3106.33 (10)
C7—C6—C5112.48 (9)C4—O2—C2108.53 (10)
C12—C7—C8118.05 (11)C6—O3—H1O105.7 (8)
C12—C7—C6121.97 (11)
O1—C3—C4—O230.56 (14)C7—C6—C13—C18104.24 (13)
O1—C2—C5—C6162.39 (10)C5—C6—C13—C1819.46 (15)
O2—C2—C5—C647.72 (14)O3—C6—C13—C1442.13 (14)
C1—C2—C5—C676.20 (14)C7—C6—C13—C1475.73 (13)
C2—C5—C6—O357.28 (13)C5—C6—C13—C14160.56 (10)
C2—C5—C6—C13173.04 (10)C18—C13—C14—C150.58 (19)
C2—C5—C6—C765.72 (14)C6—C13—C14—C15179.44 (12)
O3—C6—C7—C124.07 (16)C13—C14—C15—C160.1 (2)
C13—C6—C7—C12118.77 (13)C14—C15—C16—C170.6 (2)
C5—C6—C7—C12118.62 (12)C15—C16—C17—C180.4 (2)
O3—C6—C7—C8174.87 (10)C14—C13—C18—C170.75 (19)
C13—C6—C7—C860.17 (14)C6—C13—C18—C17179.28 (11)
C5—C6—C7—C862.43 (15)C16—C17—C18—C130.3 (2)
C12—C7—C8—C90.7 (2)O2—C2—O1—C329.34 (13)
C6—C7—C8—C9178.28 (12)C1—C2—O1—C3145.78 (11)
C7—C8—C9—C100.8 (2)C5—C2—O1—C388.33 (12)
C8—C9—C10—C110.3 (2)C4—C3—O1—C237.24 (14)
C9—C10—C11—C120.4 (2)C3—C4—O2—C213.39 (14)
C8—C7—C12—C110.0 (2)O1—C2—O2—C49.01 (13)
C6—C7—C12—C11178.97 (12)C1—C2—O2—C4124.92 (12)
C10—C11—C12—C70.6 (2)C5—C2—O2—C4107.39 (12)
O3—C6—C13—C18137.90 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O20.94 (1)1.81 (1)2.6820 (12)153 (1)

Experimental details

Crystal data
Chemical formulaC18H20O3
Mr284.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)5.7961 (4), 8.8271 (7), 29.754 (2)
β (°) 92.150 (7)
V3)1521.26 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.68 × 0.35 × 0.09
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.974, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5871, 3407, 2458
Rint0.017
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.03
No. of reflections3407
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O···O20.943 (8)1.808 (10)2.6820 (12)152.8 (12)
 

Acknowledgements

The authors gratefully acknowledge the Applied Chemistry Cluster, Faculty of Science and Technology, Queensland University of Technology, for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPaulson, D. R., Hartwig, A. L. & Moran, G. F. (1973). J. Chem. Ed. 50, 216–217.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds