organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-{[2-(2-Pyridylcarbon­yl)hydrazono]meth­yl}phen­­oxy)acetic acid

aCollege of Chemical and Biological Engineering (Guilin University of Technology), Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 3 November 2009; accepted 25 November 2009; online 4 December 2009)

In the title compound, C15H13N3O4, the pyridine and benzene rings are nearly coplanar [dihedral angle = 4.92 (12)°]. The maximum deviation from the best least-squares plane calculated for the main mol­ecular skeleton is 0.1722 (1) Å for the carbonyl O atom. In the crystal, inter­molecular O—H⋯O hydrogen bonds connect the mol­ecules into a chain, while ππ stacking inter­actions between the pyridine and benzene rings [centroid–centroid distance = 3.9162 (8) Å and offset angle = 27.20°] complete a two-dimensional network.

Related literature

For Schiff bases complexes containing (O-oxyacetic acid)benzaldehyde, see: Wu et al. (2003[Wu, W. S., Liu, S. X. & Huang, Z. X. (2003). J. Mol. Sci. 19, 40-46.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Monoclinic, P 21 /c

  • a = 8.871 (2) Å

  • b = 9.042 (2) Å

  • c = 17.389 (4) Å

  • β = 94.765 (3)°

  • V = 1390.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.16 × 0.15 × 0.04 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.983, Tmax = 0.996

  • 11832 measured reflections

  • 3194 independent reflections

  • 1512 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.125

  • S = 0.99

  • 3194 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.82 1.83 2.642 (2) 171
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of (I) (Fig.1) reveals the nearly planar system; the dihedral angle between the pyridine and benzene rings is 4.923°. An intermolecular O–H···O hydrogen bond connects molecules into a chain (Table 1, Fig.2). The pyridine ring (1-x,-1/2+y,1/2-z) is parallel to the benzene ring (-x,-1/2+y,1/2-z) with a perpendicular distance of 3.3239 Å: a centroid–centroid = 3.9162 (8) Å and an offset angle = 27.197° (calculated as the angle between the line through the two centroids of the pyridine ring and the benzene ring and a normal to the pyridine plane. Thus pi–pi stacking interactions complete a two dimensional network (Fig.2).

Related literature top

For Schiff bases complexes containing (O-oxyacetic acid)benzaldehyde, see: Wu et al. (2003).

Experimental top

A methanol solution (10 ml) was added to an acetone solution (10 ml) of the 2-(2-methoxyacetic acid)benzaldehyde picoloylhydrazone (0.5 mmol). After stirring at 35\ % for 2 h, crystals of the title compound were obtained by slow evaporation of the mixture at room temperature.

Refinement top

H atoms were placed at calculated positions (C–H = 0.93 Å and O—H = 0.82 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N) and [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. H atoms bound to C and N have been omitted.
[Figure 2] Fig. 2. Partial packing diagram showing a hydrogen-bonded chain running along the a axis.
2-(2-{[2-(2-Pyridylcarbonyl)hydrazono]methyl}phenoxy)acetic acid top
Crystal data top
C15H13N3O4F(000) = 624
Mr = 299.28Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1231 reflections
a = 8.871 (2) Åθ = 2.3–20.3°
b = 9.042 (2) ŵ = 0.11 mm1
c = 17.389 (4) ÅT = 296 K
β = 94.765 (3)°Block, colourless
V = 1390.0 (5) Å30.16 × 0.15 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3194 independent reflections
Radiation source: fine-focus sealed tube1512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.983, Tmax = 0.996k = 1110
11832 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.0303P]
where P = (Fo2 + 2Fc2)/3
3194 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H13N3O4V = 1390.0 (5) Å3
Mr = 299.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.871 (2) ŵ = 0.11 mm1
b = 9.042 (2) ÅT = 296 K
c = 17.389 (4) Å0.16 × 0.15 × 0.04 mm
β = 94.765 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3194 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1512 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.996Rint = 0.074
11832 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 0.99Δρmax = 0.20 e Å3
3194 reflectionsΔρmin = 0.20 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5796 (2)0.6090 (2)0.33901 (11)0.0446 (5)
C20.6090 (3)0.5119 (2)0.39612 (13)0.0353 (6)
C30.7443 (3)0.5054 (3)0.44083 (14)0.0436 (6)
H30.75960.43640.48030.052*
C40.8563 (3)0.6037 (3)0.42557 (15)0.0513 (7)
H40.94880.60270.45490.062*
C50.8296 (3)0.7032 (3)0.36644 (16)0.0538 (7)
H50.90440.76920.35430.065*
C60.4850 (2)0.4041 (3)0.40971 (13)0.0371 (6)
C70.1114 (3)0.3732 (2)0.33134 (13)0.0409 (6)
H70.11030.45550.29930.049*
C80.0249 (3)0.2837 (3)0.33563 (14)0.0400 (6)
C90.0354 (3)0.1807 (3)0.39414 (15)0.0514 (7)
H90.04650.16690.43040.062*
C100.1651 (3)0.0984 (3)0.39943 (16)0.0598 (8)
H100.17090.03020.43910.072*
C110.2859 (3)0.1183 (3)0.34527 (17)0.0600 (8)
H110.37330.06250.34840.072*
C120.2790 (3)0.2190 (3)0.28689 (15)0.0497 (7)
H120.36110.23090.25060.060*
C130.1494 (3)0.3035 (3)0.28189 (14)0.0412 (6)
C140.2598 (3)0.4491 (3)0.17649 (14)0.0487 (7)
H14A0.24420.54710.15590.058*
H14B0.34840.45310.20560.058*
C150.2888 (3)0.3425 (3)0.11069 (14)0.0426 (6)
C10.6908 (3)0.7033 (3)0.32572 (15)0.0541 (7)
H10.67270.77290.28660.065*
N20.3553 (2)0.4263 (2)0.36523 (10)0.0414 (5)
H20.34950.49710.33210.050*
N30.2323 (2)0.3368 (2)0.37230 (11)0.0401 (5)
O10.50069 (18)0.30437 (19)0.45682 (10)0.0563 (5)
O20.13215 (17)0.40989 (18)0.22698 (9)0.0486 (5)
O30.21338 (19)0.2346 (2)0.10071 (10)0.0603 (5)
O40.4074 (2)0.38551 (19)0.06633 (10)0.0612 (6)
H4A0.42610.32450.03200.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0383 (12)0.0473 (13)0.0471 (13)0.0034 (10)0.0024 (10)0.0064 (11)
C20.0341 (13)0.0374 (14)0.0346 (14)0.0014 (11)0.0031 (11)0.0057 (11)
C30.0408 (15)0.0490 (16)0.0399 (14)0.0042 (12)0.0036 (12)0.0018 (12)
C40.0336 (14)0.0615 (18)0.0570 (18)0.0024 (13)0.0074 (12)0.0081 (15)
C50.0400 (16)0.0540 (18)0.067 (2)0.0075 (13)0.0040 (14)0.0046 (15)
C60.0332 (13)0.0431 (15)0.0343 (14)0.0066 (12)0.0012 (10)0.0025 (12)
C70.0373 (14)0.0406 (15)0.0437 (15)0.0033 (12)0.0022 (11)0.0015 (12)
C80.0373 (14)0.0376 (14)0.0450 (15)0.0018 (11)0.0024 (12)0.0069 (12)
C90.0504 (17)0.0522 (17)0.0516 (17)0.0016 (14)0.0030 (13)0.0037 (14)
C100.0646 (19)0.0526 (18)0.064 (2)0.0104 (15)0.0133 (16)0.0011 (15)
C110.0496 (18)0.0554 (19)0.077 (2)0.0225 (14)0.0168 (16)0.0168 (16)
C120.0350 (15)0.0559 (17)0.0579 (18)0.0085 (13)0.0024 (13)0.0154 (15)
C130.0377 (14)0.0415 (15)0.0444 (15)0.0029 (12)0.0034 (12)0.0129 (13)
C140.0409 (15)0.0457 (16)0.0571 (17)0.0030 (12)0.0092 (13)0.0047 (13)
C150.0388 (14)0.0437 (15)0.0441 (15)0.0020 (13)0.0033 (12)0.0009 (13)
C10.0487 (17)0.0505 (17)0.0626 (19)0.0043 (14)0.0027 (14)0.0102 (15)
N20.0340 (11)0.0422 (12)0.0460 (12)0.0027 (10)0.0082 (9)0.0068 (10)
N30.0322 (11)0.0396 (12)0.0473 (13)0.0035 (9)0.0027 (10)0.0030 (9)
O10.0467 (11)0.0625 (12)0.0580 (12)0.0017 (9)0.0051 (9)0.0223 (10)
O20.0398 (10)0.0541 (11)0.0496 (11)0.0060 (8)0.0093 (8)0.0013 (9)
O30.0521 (11)0.0617 (13)0.0654 (13)0.0137 (10)0.0050 (9)0.0172 (10)
O40.0642 (12)0.0577 (13)0.0569 (13)0.0116 (10)0.0242 (10)0.0138 (9)
Geometric parameters (Å, º) top
N1—C21.335 (3)C9—H90.9300
N1—C11.338 (3)C10—C111.378 (4)
C2—C31.376 (3)C10—H100.9300
C2—C61.502 (3)C11—C121.369 (3)
C3—C41.375 (3)C11—H110.9300
C3—H30.9300C12—C131.389 (3)
C4—C51.372 (3)C12—H120.9300
C4—H40.9300C13—O21.373 (3)
C5—C11.369 (3)C14—O21.419 (2)
C5—H50.9300C14—C151.502 (3)
C6—O11.219 (3)C14—H14A0.9700
C6—N21.347 (2)C14—H14B0.9700
C7—N31.280 (3)C15—O31.204 (3)
C7—C81.462 (3)C15—O41.311 (3)
C7—H70.9300C1—H10.9300
C8—C91.388 (3)N2—N31.372 (2)
C8—C131.398 (3)N2—H20.8600
C9—C101.380 (3)O4—H4A0.8200
C2—N1—C1116.5 (2)C12—C11—C10120.9 (2)
N1—C2—C3123.7 (2)C12—C11—H11119.6
N1—C2—C6116.3 (2)C10—C11—H11119.6
C3—C2—C6119.9 (2)C11—C12—C13120.1 (2)
C4—C3—C2118.3 (2)C11—C12—H12120.0
C4—C3—H3120.9C13—C12—H12120.0
C2—C3—H3120.9O2—C13—C12124.7 (2)
C5—C4—C3119.1 (2)O2—C13—C8115.3 (2)
C5—C4—H4120.5C12—C13—C8120.0 (2)
C3—C4—H4120.5O2—C14—C15112.85 (19)
C1—C5—C4118.7 (3)O2—C14—H14A109.0
C1—C5—H5120.7C15—C14—H14A109.0
C4—C5—H5120.7O2—C14—H14B109.0
O1—C6—N2122.7 (2)C15—C14—H14B109.0
O1—C6—C2122.8 (2)H14A—C14—H14B107.8
N2—C6—C2114.5 (2)O3—C15—O4125.7 (2)
N3—C7—C8119.2 (2)O3—C15—C14124.6 (2)
N3—C7—H7120.4O4—C15—C14109.7 (2)
C8—C7—H7120.4N1—C1—C5123.7 (3)
C9—C8—C13118.6 (2)N1—C1—H1118.2
C9—C8—C7121.0 (2)C5—C1—H1118.2
C13—C8—C7120.4 (2)C6—N2—N3120.6 (2)
C10—C9—C8121.2 (2)C6—N2—H2119.7
C10—C9—H9119.4N3—N2—H2119.7
C8—C9—H9119.4C7—N3—N2115.7 (2)
C9—C10—C11119.3 (3)C13—O2—C14118.43 (18)
C9—C10—H10120.4C15—O4—H4A109.5
C11—C10—H10120.4
C1—N1—C2—C30.4 (3)C11—C12—C13—O2178.3 (2)
C1—N1—C2—C6178.7 (2)C11—C12—C13—C81.2 (4)
N1—C2—C3—C40.5 (4)C9—C8—C13—O2178.4 (2)
C6—C2—C3—C4178.5 (2)C7—C8—C13—O20.2 (3)
C2—C3—C4—C50.4 (4)C9—C8—C13—C121.2 (3)
C3—C4—C5—C11.5 (4)C7—C8—C13—C12179.4 (2)
N1—C2—C6—O1175.4 (2)O2—C14—C15—O30.0 (4)
C3—C2—C6—O13.7 (3)O2—C14—C15—O4179.8 (2)
N1—C2—C6—N24.2 (3)C2—N1—C1—C50.8 (4)
C3—C2—C6—N2176.6 (2)C4—C5—C1—N11.7 (4)
N3—C7—C8—C913.7 (3)O1—C6—N2—N31.0 (3)
N3—C7—C8—C13168.2 (2)C2—C6—N2—N3179.28 (19)
C13—C8—C9—C100.4 (4)C8—C7—N3—N2179.88 (19)
C7—C8—C9—C10178.5 (2)C6—N2—N3—C7175.3 (2)
C8—C9—C10—C110.4 (4)C12—C13—O2—C147.3 (3)
C9—C10—C11—C120.4 (4)C8—C13—O2—C14172.3 (2)
C10—C11—C12—C130.4 (4)C15—C14—O2—C1381.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.821.832.642 (2)171
Symmetry code: (i) x1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.871 (2), 9.042 (2), 17.389 (4)
β (°) 94.765 (3)
V3)1390.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.15 × 0.04
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.983, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
11832, 3194, 1512
Rint0.074
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 0.99
No. of reflections3194
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O1i0.821.832.642 (2)170.9
Symmetry code: (i) x1, y+1/2, z1/2.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-ferrous Metals and Materials Processing Technology, Ministry of Education, P. R. China.

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W. S., Liu, S. X. & Huang, Z. X. (2003). J. Mol. Sci. 19, 40–46.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds