organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o105-o106

3,4,5-Trihydr­­oxy-N′-(1H-indol-2-ylmethyl­­idene)benzohydrazide–1H-indole-2-carbaldehyde azine–methanol (2/1/2)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@perdana.um.edu.my

(Received 23 November 2009; accepted 6 December 2009; online 12 December 2009)

The title compound, 2C16H13N3O4·C18H14N4·2CH4O, was crystallized from the reaction between 3,4,5-trihydroxy­benzoyl­hydrazine and indole-2-carbaldehyde in a mixture of ethanol and methanol. The compound is a stoichiometric 2:1 cocrystal of the methanol-solvated reaction product, 3,4,5-trihydr­oxy-N′-(1H-indol-2-ylmethyl­idene)benzohydrazide and 1H-indole-2-carbaldehyde azine that arose unexpectedly during the synthesis. The former mol­ecules are linked by O—H⋯O hydrogen bonds and also by ππ stacking inter­actions between benzoyl­hydrazide rings into a two-dimensional network. The methanol solvent mol­ecules are hydrogen bonded to this network. The centrosymmetric azine mol­ecules are not engaged in hydrogen bonding.

Related literature

For the crystal structures of some compounds similar to 3,4,5-trihydr­oxy-N′-[(1H-indol-2-yl)methyl­idene]benzoyl­hydrazide, see: Khaledi et al. (2008a[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008a). Acta Cryst. E64, o2108.],b[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008b). Acta Cryst. E64, o2481.], 2009a[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o169.],b[Khaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009b). Acta Cryst. E65, o1920.]). For the structure of 1H-indole-2-carbaldehyde azine, see: Rizal et al. (2008[Rizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.]). For the biological activity of gallic acid (3,4,5-trihydroxybenzoic acid) derivatives see: Arunkumar et al. (2006[Arunkumar, S., Ramalakshmi, N., Saraswathy, T. & Aruloly, L. (2006). Indian J. Heterocycl. Chem. 16, 29-32.]); Saxena et al. (2008[Saxena, H. O., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Chanotiya, C. S., Krishna, V., Negi, A. S. & Khanuja, S. P. S. (2008). Bioorg. Med. Chem. Lett. 18, 3914-3918.]).

[Scheme 1]

Experimental

Crystal data
  • 2C16H13N3O4·C18H14N4·2CH4O

  • Mr = 973.00

  • Triclinic, [P \overline 1]

  • a = 7.4642 (15) Å

  • b = 12.791 (2) Å

  • c = 25.079 (5) Å

  • α = 95.918 (3)°

  • β = 95.166 (4)°

  • γ = 101.451 (4)°

  • V = 2319.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.50 × 0.12 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.997

  • 10985 measured reflections

  • 7939 independent reflections

  • 4029 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.153

  • S = 0.98

  • 7939 reflections

  • 693 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13O⋯O14 0.84 (1) 2.21 (4) 2.674 (4) 115 (4)
O14—H14O⋯O31i 0.84 (1) 1.98 (2) 2.778 (4) 158 (4)
O14—H14O⋯O15 0.84 (1) 2.33 (4) 2.763 (4) 112 (3)
O15—H15O⋯O26ii 0.85 (1) 1.77 (1) 2.617 (4) 179 (4)
N1—H1N⋯O51iii 0.88 (1) 2.11 (1) 2.976 (4) 167 (3)
N3—H3N⋯O52iv 0.88 (1) 2.13 (2) 2.983 (4) 165 (4)
O29—H29O⋯O30v 0.85 (1) 2.11 (2) 2.858 (4) 148 (4)
O30—H30O⋯O15i 0.84 (1) 1.91 (2) 2.732 (4) 165 (4)
O31—H31O⋯O10 0.84 (1) 1.80 (1) 2.626 (4) 172 (4)
N4—H4N⋯O52iii 0.88 (1) 2.12 (1) 2.992 (4) 175 (3)
N6—H6N⋯O51iii 0.88 (1) 2.24 (2) 3.011 (4) 146 (3)
O51—H51O⋯O10iii 0.84 (1) 2.21 (3) 2.934 (4) 145 (4)
O51—H51O⋯N2iii 0.84 (1) 2.26 (3) 2.975 (4) 143 (4)
O52—H52O⋯N5iii 0.84 (1) 2.29 (3) 2.963 (4) 138 (4)
O52—H52O⋯O26iii 0.84 (1) 2.29 (2) 3.046 (4) 150 (4)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x+3, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Gallic acid (3,4,5-trihydroxybenzoic acid) derivatives have been studied for various biological activities including anticancer (Saxena et al., 2008), antioxidant and antimicrobial activity (Arunkumar et al., 2006). In order to prepare a new derivative of gallic acid, the reaction between 3,4,5-trihydroxybenzoylhydrazine and indole-2-carboxaldehyde was carried out to synthesize the related gallichydrazone; 3,4,5-trihydroxy-N'-[(1H-indol-2-yl)methylidene]benzoylhydrazide. However, a crystal suitable for X-ray diffraction was unexpectedly obtained during the synthesis.

A view of the title structure is illustrated in Fig. 1. The asymmetric unit contains two molecules of the gallic hydrazone with different conformation. In one of them, (I), the aromatic rings are nearly coplanar [dihedral angle = 11.00 (0.16) °], similar to the related previously reported structures (Khaledi et al., 2008a, 2008b, 2009a, 2009b), whereas in the other one, (II), they are highly twisted with respect to each other, the dihedral angle between the two ring planes being 52.43 (0.11) °. The crystal structure is an infinite two-dimensional, hydrogen bonded, network of gallic hydrazone molecules (Fig. 2) with methanol solvate molecules. In addition, ππ interactions between aromatic rings occur. The benzoylhydrazide rings of molecule (I) and the symmetry-related planes at (-x+2, -y, -z+1 and -x+1, -y, -z + 1) are arranged in an antiparallel manner above each other in an infinite one dimensional chain with centroid separations of 3.783 (2) Å and 3.973 (2) Å alternatively. The benzoylhydrazide ring of molecule (II) and the symmetry-related plane at (-x + 2, -y + 1, -z + 1) also interact with one another through ππ stacking, with a centroid-centroid distances of 3.703 (2) Å, leading to a dimer. The framework is interdigitated with solvate azine molecules (Fig. 4) in the ratio of one for every two hydrazone molecules. The azine constituent, which is an unexpected decomposition product of the reaction, is almost planar [maximum deviation 0.21 (1) A°] with a trans configuration about N—N single bond, similar to its indole-3-carbaldehyde analogue (Rizal et al., 2008).

Related literature top

For the crystal structures of some compounds similar to 3,4,5-trihydroxy-N'-[(1H-indol-2-yl)methylidene]benzoylhydrazide, see: Khaledi et al. (2008a,b, 2009a,b). For the structure of 1H-indole-2-carbaldehyde azine, see: Rizal et al. (2008).

For related literature, see: Arunkumar et al. (2006); Saxena et al. (2008).

Experimental top

A solution of indole-2-carboxaldehyde (0.725 g, 5 mmol) in methanol (20 ml) was added to a solution of 3,4,5-trihydroxybenzoylhydrazine (0.92 g, 5 mmol) in ethanol (60 ml). Furthermore, 1 ml of acetic acid was added and the mixture was refluxed for 4 h. The solution was then cooled and filtered to remove the unreacted hydrazide.The filtrate was set aside at room temperature overnight and crystals of the title compound were collected.

Refinement top

C-bound hydrogen atoms were placed at calculated positions (C–H 0.95 Å), and were treated as riding on their parent carbon atoms, with U(H) set to 1.2Ueq(C). The nitrogen- and oxygen-bound H atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 and O–H 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of one crystal chemical unit of the title compound defining the atom labelling scheme and showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing view looking down the crystallographic α unit cell edge and showing all the links, between electronegative O and N atoms, which are within the range for normal hydrogen bonds.
[Figure 3] Fig. 3. A view of the intermolecular ππ interactions between gallic hydrazone molecules. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) -x + 1, -y, -z + 1; (iii) -x + 2, -y + 1, -z + 1.]
[Figure 4] Fig. 4. Packing view looking down the crystallographic b unit cell edge thus emphasizing the two-dimensional extension of the polymeric network and the interdigitation with hydrazine molecules.
3,4,5-Trihydroxy-N'-(1H-indol-2-ylmethylidene)benzohydrazide– 1H-indole-2-carbaldehyde azine–methanol (2/1/2) top
Crystal data top
2C16H13N3O4·C18H14N4·2CH4OZ = 2
Mr = 973.00F(000) = 1020
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4642 (15) ÅCell parameters from 754 reflections
b = 12.791 (2) Åθ = 2.5–20.7°
c = 25.079 (5) ŵ = 0.10 mm1
α = 95.918 (3)°T = 100 K
β = 95.166 (4)°Lath, yellow
γ = 101.451 (4)°0.50 × 0.12 × 0.03 mm
V = 2319.3 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7939 independent reflections
Radiation source: fine-focus sealed tube4029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.952, Tmax = 0.997k = 1513
10985 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
7939 reflections(Δ/σ)max = 0.021
693 parametersΔρmax = 0.30 e Å3
14 restraintsΔρmin = 0.32 e Å3
Crystal data top
2C16H13N3O4·C18H14N4·2CH4Oγ = 101.451 (4)°
Mr = 973.00V = 2319.3 (8) Å3
Triclinic, P1Z = 2
a = 7.4642 (15) ÅMo Kα radiation
b = 12.791 (2) ŵ = 0.10 mm1
c = 25.079 (5) ÅT = 100 K
α = 95.918 (3)°0.50 × 0.12 × 0.03 mm
β = 95.166 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
7939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4029 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.997Rint = 0.054
10985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06414 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.30 e Å3
7939 reflectionsΔρmin = 0.32 e Å3
693 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O100.7343 (4)0.2306 (2)0.60742 (10)0.0276 (7)
O130.7280 (4)0.0510 (2)0.41802 (11)0.0333 (8)
H13O0.749 (6)0.003 (3)0.3953 (14)0.050*
O140.7874 (4)0.1457 (2)0.42855 (11)0.0280 (7)
H14O0.823 (6)0.201 (2)0.4370 (17)0.042*
O150.8285 (4)0.2137 (2)0.52914 (10)0.0259 (7)
H15O0.846 (6)0.225 (3)0.5616 (6)0.039*
N10.5730 (5)0.2917 (3)0.78752 (12)0.0211 (8)
H1N0.571 (5)0.321 (3)0.7570 (8)0.025*
N20.6671 (5)0.1652 (2)0.70038 (13)0.0242 (8)
N30.6927 (5)0.0943 (3)0.65781 (13)0.0260 (8)
H3N0.668 (5)0.0250 (10)0.6599 (15)0.031*
C10.6341 (5)0.1973 (3)0.79275 (15)0.0203 (9)
C20.6431 (5)0.1802 (3)0.84590 (15)0.0263 (10)
H20.68150.12150.86040.032*
C30.5848 (5)0.2656 (3)0.87524 (15)0.0232 (10)
C40.5625 (6)0.2922 (3)0.92965 (16)0.0290 (11)
H40.59370.24860.95600.035*
C50.4951 (6)0.3823 (3)0.94423 (16)0.0317 (11)
H50.47910.40070.98090.038*
C60.4495 (6)0.4473 (3)0.90547 (17)0.0325 (11)
H60.40250.50880.91670.039*
C70.4705 (5)0.4250 (3)0.85215 (16)0.0263 (10)
H70.43860.46960.82630.032*
C80.5402 (5)0.3347 (3)0.83727 (15)0.0222 (10)
C90.6730 (5)0.1316 (3)0.74681 (16)0.0258 (10)
H90.70280.06390.75090.031*
C100.7225 (6)0.1329 (3)0.61037 (16)0.0235 (10)
C110.7412 (5)0.0573 (3)0.56412 (15)0.0199 (9)
C120.7246 (5)0.0893 (3)0.51285 (15)0.0219 (10)
H120.70200.15850.50830.026*
C130.7412 (5)0.0194 (3)0.46881 (15)0.0207 (9)
C140.7731 (5)0.0820 (3)0.47460 (15)0.0203 (9)
C150.7928 (5)0.1131 (3)0.52580 (15)0.0191 (9)
C160.7771 (5)0.0445 (3)0.57041 (15)0.0223 (10)
H160.79070.06610.60540.027*
O260.8842 (4)0.7516 (2)0.62971 (10)0.0246 (7)
O291.3673 (4)0.6412 (2)0.51863 (11)0.0276 (7)
H29O1.430 (5)0.601 (3)0.5035 (15)0.041*
O301.3089 (4)0.4224 (2)0.51396 (10)0.0225 (7)
H30O1.254 (5)0.3578 (13)0.5053 (15)0.034*
O311.0303 (4)0.3140 (2)0.56466 (11)0.0279 (7)
H31O0.938 (4)0.293 (3)0.5802 (15)0.042*
N40.5999 (5)0.7939 (3)0.79555 (12)0.0230 (8)
H4N0.609 (5)0.820 (3)0.7648 (8)0.028*
N50.7553 (5)0.6765 (2)0.71588 (12)0.0243 (8)
N60.8261 (5)0.6142 (3)0.67896 (13)0.0240 (8)
H6N0.818 (5)0.5464 (12)0.6837 (15)0.029*
C170.6739 (5)0.7044 (3)0.80452 (15)0.0233 (10)
C180.6735 (5)0.6888 (3)0.85733 (15)0.0241 (10)
H180.71630.63310.87360.029*
C190.5975 (5)0.7705 (3)0.88380 (15)0.0232 (10)
C200.5626 (6)0.7976 (3)0.93695 (16)0.0284 (11)
H200.59550.75760.96480.034*
C210.4798 (6)0.8830 (3)0.94795 (16)0.0312 (11)
H210.45620.90240.98380.037*
C220.4298 (6)0.9418 (3)0.90718 (17)0.0315 (11)
H220.37100.99960.91600.038*
C230.4630 (5)0.9184 (3)0.85492 (16)0.0250 (10)
H230.42640.95830.82740.030*
C240.5516 (5)0.8349 (3)0.84352 (15)0.0209 (9)
C250.7390 (5)0.6424 (3)0.76214 (15)0.0233 (10)
H250.77010.57580.76830.028*
C260.8945 (5)0.6580 (3)0.63666 (15)0.0209 (9)
C270.9906 (5)0.5921 (3)0.60161 (14)0.0201 (9)
C281.1271 (5)0.6445 (3)0.57419 (14)0.0198 (9)
H281.14940.72060.57560.024*
C291.2315 (5)0.5871 (3)0.54470 (15)0.0209 (9)
C301.1997 (5)0.4760 (3)0.54255 (14)0.0183 (9)
C311.0592 (5)0.4240 (3)0.56948 (14)0.0185 (9)
C320.9561 (5)0.4800 (3)0.59929 (14)0.0188 (9)
H320.86270.44340.61810.023*
N70.1199 (5)0.3424 (3)1.11800 (14)0.0329 (9)
H7N0.160 (5)0.2730 (11)1.1082 (15)0.039*
N80.0309 (5)0.2620 (3)1.01631 (15)0.0412 (10)
N90.0213 (5)0.2391 (3)0.96486 (15)0.0413 (10)
N100.0984 (5)0.1700 (3)0.86232 (16)0.0390 (10)
H10N0.140 (6)0.2386 (12)0.8734 (17)0.047*
C330.0304 (6)0.4065 (4)1.08362 (17)0.0338 (11)
C340.0234 (6)0.5092 (4)1.10970 (17)0.0338 (11)
H340.08830.56941.09520.041*
C350.0343 (6)0.5100 (4)1.16199 (17)0.0318 (11)
C360.0175 (6)0.5877 (4)1.20641 (18)0.0365 (12)
H360.04270.65981.20470.044*
C370.0892 (6)0.5589 (4)1.25316 (18)0.0364 (12)
H370.07830.61161.28350.044*
C380.1782 (6)0.4520 (4)1.25592 (18)0.0355 (12)
H380.22670.43371.28830.043*
C390.1965 (6)0.3734 (4)1.21283 (17)0.0342 (11)
H390.25650.30141.21510.041*
C400.1247 (6)0.4023 (3)1.16585 (17)0.0299 (11)
C410.0086 (6)0.3637 (4)1.03193 (17)0.0351 (12)
H410.06480.41131.00870.042*
C420.0074 (6)0.1373 (4)0.94922 (19)0.0404 (12)
H420.05280.08740.97290.048*
C430.0283 (6)0.0996 (4)0.8971 (2)0.0404 (12)
C440.0064 (6)0.0023 (4)0.8699 (2)0.0450 (13)
H440.05470.06670.88420.054*
C450.0423 (6)0.0051 (4)0.8166 (2)0.0388 (12)
C460.0367 (6)0.0702 (4)0.7703 (2)0.0505 (15)
H460.00380.14500.77160.061*
C470.0905 (7)0.0332 (5)0.7238 (2)0.0575 (16)
H470.08740.08310.69270.069*
C480.1500 (6)0.0768 (4)0.7210 (2)0.0519 (15)
H480.18420.10020.68790.062*
C490.1598 (6)0.1511 (4)0.76502 (19)0.0454 (13)
H490.20180.22560.76310.055*
C500.1067 (6)0.1146 (4)0.81268 (19)0.0379 (12)
O510.3727 (4)0.6124 (2)0.31454 (11)0.0291 (7)
H51O0.348 (6)0.6718 (18)0.3249 (16)0.044*
C510.5272 (6)0.6038 (4)0.35040 (18)0.0448 (13)
H51A0.63260.66070.34640.067*
H51B0.55800.53350.34180.067*
H51C0.49710.61140.38760.067*
O520.3718 (4)0.1291 (2)0.31264 (11)0.0270 (7)
H52O0.303 (5)0.173 (3)0.3177 (17)0.040*
C520.5328 (6)0.1969 (3)0.34338 (17)0.0348 (11)
H52A0.55200.26850.33150.052*
H52B0.64040.16560.33780.052*
H52C0.51570.20280.38180.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0363 (18)0.0170 (17)0.0324 (17)0.0056 (13)0.0150 (14)0.0060 (13)
O130.052 (2)0.034 (2)0.0181 (17)0.0156 (16)0.0047 (15)0.0088 (13)
O140.0370 (19)0.0241 (18)0.0239 (16)0.0105 (14)0.0041 (14)0.0008 (13)
O150.0401 (19)0.0190 (16)0.0207 (16)0.0095 (14)0.0071 (15)0.0033 (13)
N10.025 (2)0.023 (2)0.0172 (19)0.0072 (16)0.0037 (16)0.0043 (15)
N20.034 (2)0.0181 (19)0.021 (2)0.0060 (16)0.0088 (16)0.0013 (15)
N30.036 (2)0.0176 (19)0.024 (2)0.0029 (17)0.0120 (17)0.0006 (16)
C10.019 (2)0.019 (2)0.025 (2)0.0060 (18)0.0048 (18)0.0023 (18)
C20.029 (3)0.024 (3)0.024 (2)0.003 (2)0.001 (2)0.0049 (19)
C30.028 (3)0.019 (2)0.021 (2)0.0014 (19)0.0034 (19)0.0030 (18)
C40.036 (3)0.031 (3)0.018 (2)0.004 (2)0.003 (2)0.0018 (19)
C50.041 (3)0.033 (3)0.019 (2)0.004 (2)0.005 (2)0.003 (2)
C60.032 (3)0.033 (3)0.031 (3)0.004 (2)0.008 (2)0.005 (2)
C70.025 (3)0.025 (3)0.029 (3)0.007 (2)0.003 (2)0.0004 (19)
C80.022 (2)0.024 (2)0.019 (2)0.0013 (19)0.0024 (18)0.0006 (18)
C90.026 (3)0.024 (3)0.026 (2)0.0009 (19)0.004 (2)0.0033 (19)
C100.025 (2)0.017 (2)0.027 (2)0.0002 (19)0.0068 (19)0.0010 (18)
C110.019 (2)0.018 (2)0.023 (2)0.0029 (18)0.0064 (18)0.0027 (18)
C120.026 (2)0.015 (2)0.025 (2)0.0039 (18)0.0035 (19)0.0062 (18)
C130.021 (2)0.025 (2)0.017 (2)0.0053 (19)0.0022 (18)0.0061 (18)
C140.020 (2)0.022 (2)0.016 (2)0.0013 (18)0.0054 (18)0.0020 (18)
C150.021 (2)0.012 (2)0.025 (2)0.0049 (17)0.0039 (18)0.0047 (17)
C160.026 (2)0.019 (2)0.022 (2)0.0021 (19)0.0061 (19)0.0043 (18)
O260.0384 (18)0.0154 (16)0.0228 (15)0.0097 (13)0.0091 (13)0.0030 (12)
O290.0279 (18)0.0197 (17)0.0383 (18)0.0050 (13)0.0181 (14)0.0051 (13)
O300.0223 (17)0.0174 (16)0.0282 (16)0.0030 (13)0.0085 (13)0.0017 (13)
O310.0291 (18)0.0205 (17)0.0366 (18)0.0061 (14)0.0190 (14)0.0000 (13)
N40.026 (2)0.025 (2)0.019 (2)0.0074 (16)0.0045 (17)0.0001 (16)
N50.032 (2)0.025 (2)0.0176 (19)0.0059 (16)0.0091 (16)0.0011 (15)
N60.035 (2)0.019 (2)0.0201 (19)0.0070 (17)0.0120 (16)0.0019 (16)
C170.021 (2)0.026 (3)0.024 (2)0.0051 (19)0.0069 (19)0.0025 (19)
C180.028 (3)0.027 (2)0.021 (2)0.011 (2)0.0047 (19)0.0057 (18)
C190.026 (2)0.022 (2)0.022 (2)0.0047 (19)0.0036 (19)0.0035 (18)
C200.034 (3)0.029 (3)0.021 (2)0.004 (2)0.004 (2)0.0020 (19)
C210.041 (3)0.031 (3)0.020 (2)0.005 (2)0.010 (2)0.004 (2)
C220.032 (3)0.027 (3)0.038 (3)0.011 (2)0.010 (2)0.001 (2)
C230.030 (3)0.020 (2)0.028 (2)0.010 (2)0.008 (2)0.0051 (19)
C240.021 (2)0.022 (2)0.017 (2)0.0028 (19)0.0016 (18)0.0025 (18)
C250.024 (2)0.023 (2)0.025 (2)0.0063 (19)0.0065 (19)0.0055 (19)
C260.022 (2)0.018 (2)0.021 (2)0.0015 (18)0.0012 (18)0.0011 (18)
C270.020 (2)0.025 (2)0.014 (2)0.0049 (19)0.0011 (17)0.0009 (17)
C280.030 (2)0.010 (2)0.020 (2)0.0056 (18)0.0037 (19)0.0026 (17)
C290.019 (2)0.019 (2)0.024 (2)0.0018 (18)0.0028 (19)0.0010 (18)
C300.014 (2)0.022 (2)0.018 (2)0.0046 (18)0.0054 (17)0.0017 (17)
C310.021 (2)0.012 (2)0.021 (2)0.0011 (18)0.0031 (18)0.0022 (17)
C320.022 (2)0.018 (2)0.017 (2)0.0022 (18)0.0083 (18)0.0044 (17)
N70.030 (2)0.029 (2)0.037 (2)0.0003 (19)0.0046 (18)0.0002 (19)
N80.036 (2)0.050 (3)0.035 (2)0.005 (2)0.0053 (19)0.001 (2)
N90.033 (2)0.052 (3)0.039 (2)0.009 (2)0.0062 (19)0.003 (2)
N100.029 (2)0.037 (3)0.047 (3)0.003 (2)0.0061 (19)0.011 (2)
C330.023 (3)0.046 (3)0.032 (3)0.005 (2)0.003 (2)0.006 (2)
C340.026 (3)0.035 (3)0.042 (3)0.006 (2)0.001 (2)0.011 (2)
C350.021 (3)0.038 (3)0.037 (3)0.008 (2)0.002 (2)0.010 (2)
C360.030 (3)0.028 (3)0.048 (3)0.000 (2)0.004 (2)0.004 (2)
C370.033 (3)0.039 (3)0.035 (3)0.008 (2)0.003 (2)0.001 (2)
C380.023 (3)0.044 (3)0.037 (3)0.002 (2)0.000 (2)0.009 (2)
C390.024 (3)0.032 (3)0.042 (3)0.001 (2)0.003 (2)0.005 (2)
C400.019 (2)0.034 (3)0.034 (3)0.003 (2)0.002 (2)0.001 (2)
C410.019 (3)0.054 (3)0.034 (3)0.010 (2)0.003 (2)0.009 (2)
C420.030 (3)0.047 (3)0.045 (3)0.009 (2)0.001 (2)0.010 (3)
C430.031 (3)0.038 (3)0.052 (3)0.008 (2)0.004 (3)0.003 (3)
C440.029 (3)0.031 (3)0.072 (4)0.006 (2)0.000 (3)0.003 (3)
C450.022 (3)0.035 (3)0.056 (3)0.007 (2)0.002 (2)0.006 (2)
C460.030 (3)0.039 (3)0.075 (4)0.008 (2)0.008 (3)0.019 (3)
C470.037 (3)0.063 (4)0.064 (4)0.009 (3)0.007 (3)0.032 (3)
C480.038 (3)0.053 (4)0.057 (4)0.002 (3)0.018 (3)0.020 (3)
C490.033 (3)0.047 (3)0.050 (3)0.001 (2)0.009 (3)0.012 (3)
C500.022 (3)0.035 (3)0.051 (3)0.005 (2)0.003 (2)0.016 (2)
O510.0360 (19)0.0255 (18)0.0272 (17)0.0103 (15)0.0070 (14)0.0004 (13)
C510.040 (3)0.053 (3)0.042 (3)0.013 (3)0.004 (2)0.005 (2)
O520.0322 (19)0.0208 (18)0.0285 (17)0.0073 (13)0.0044 (14)0.0019 (13)
C520.027 (3)0.040 (3)0.034 (3)0.002 (2)0.003 (2)0.007 (2)
Geometric parameters (Å, º) top
O10—C101.246 (4)C22—H220.9500
O13—C131.376 (4)C23—C241.383 (5)
O13—H13O0.844 (10)C23—H230.9500
O14—C141.368 (4)C25—H250.9500
O14—H14O0.843 (10)C26—C271.482 (5)
O15—C151.374 (4)C27—C281.382 (5)
O15—H15O0.845 (10)C27—C321.400 (5)
N1—C81.373 (5)C28—C291.383 (5)
N1—C11.387 (5)C28—H280.9500
N1—H1N0.884 (10)C29—C301.388 (5)
N2—C91.282 (5)C30—C311.393 (5)
N2—N31.380 (4)C31—C321.370 (5)
N3—C101.354 (5)C32—H320.9500
N3—H3N0.877 (10)N7—C401.363 (5)
C1—C21.371 (5)N7—C331.376 (5)
C1—C91.440 (5)N7—H7N0.879 (10)
C2—C31.415 (5)N8—C411.286 (5)
C2—H20.9500N8—N91.400 (5)
C3—C41.405 (5)N9—C421.290 (5)
C3—C81.426 (5)N10—C431.378 (6)
C4—C51.375 (5)N10—C501.380 (5)
C4—H40.9500N10—H10N0.877 (10)
C5—C61.404 (6)C33—C341.371 (6)
C5—H50.9500C33—C411.432 (6)
C6—C71.368 (5)C34—C351.416 (6)
C6—H60.9500C34—H340.9500
C7—C81.389 (5)C35—C361.394 (6)
C7—H70.9500C35—C401.425 (6)
C9—H90.9500C36—C371.386 (6)
C10—C111.467 (5)C36—H360.9500
C11—C121.392 (5)C37—C381.409 (6)
C11—C161.401 (5)C37—H370.9500
C12—C131.378 (5)C38—C391.375 (6)
C12—H120.9500C38—H380.9500
C13—C141.384 (5)C39—C401.392 (6)
C14—C151.387 (5)C39—H390.9500
C15—C161.377 (5)C41—H410.9500
C16—H160.9500C42—C431.414 (6)
O26—C261.243 (4)C42—H420.9500
O29—C291.367 (4)C43—C441.371 (6)
O29—H29O0.845 (10)C44—C451.425 (6)
O30—C301.369 (4)C44—H440.9500
O30—H30O0.841 (10)C45—C501.405 (6)
O31—C311.372 (4)C45—C461.423 (6)
O31—H31O0.836 (10)C46—C471.367 (7)
N4—C241.370 (5)C46—H460.9500
N4—C171.396 (5)C47—C481.399 (7)
N4—H4N0.876 (10)C47—H470.9500
N5—C251.289 (5)C48—C491.367 (6)
N5—N61.369 (4)C48—H480.9500
N6—C261.344 (5)C49—C501.389 (6)
N6—H6N0.877 (10)C49—H490.9500
C17—C181.360 (5)O51—C511.427 (5)
C17—C251.438 (5)O51—H51O0.839 (10)
C18—C191.419 (5)C51—H51A0.9800
C18—H180.9500C51—H51B0.9800
C19—C201.403 (5)C51—H51C0.9800
C19—C241.428 (5)O52—C521.440 (5)
C20—C211.374 (5)O52—H52O0.837 (10)
C20—H200.9500C52—H52A0.9800
C21—C221.397 (6)C52—H52B0.9800
C21—H210.9500C52—H52C0.9800
C22—C231.369 (5)
C13—O13—H13O110 (3)O26—C26—C27122.7 (4)
C14—O14—H14O109 (3)N6—C26—C27116.9 (4)
C15—O15—H15O111 (3)C28—C27—C32120.0 (3)
C8—N1—C1109.0 (3)C28—C27—C26118.3 (4)
C8—N1—H1N128 (2)C32—C27—C26121.5 (3)
C1—N1—H1N123 (2)C27—C28—C29120.5 (4)
C9—N2—N3116.0 (3)C27—C28—H28119.7
C10—N3—N2117.8 (3)C29—C28—H28119.7
C10—N3—H3N121 (3)O29—C29—C28119.2 (3)
N2—N3—H3N120 (3)O29—C29—C30120.8 (3)
C2—C1—N1109.0 (3)C28—C29—C30120.0 (4)
C2—C1—C9129.2 (4)O30—C30—C29118.2 (3)
N1—C1—C9121.8 (4)O30—C30—C31122.9 (3)
C1—C2—C3107.8 (4)C29—C30—C31118.9 (3)
C1—C2—H2126.1C32—C31—O31121.9 (3)
C3—C2—H2126.1C32—C31—C30121.7 (4)
C4—C3—C2134.7 (4)O31—C31—C30116.4 (3)
C4—C3—C8118.5 (4)C31—C32—C27118.9 (3)
C2—C3—C8106.8 (3)C31—C32—H32120.5
C5—C4—C3119.1 (4)C27—C32—H32120.5
C5—C4—H4120.4C40—N7—C33109.8 (4)
C3—C4—H4120.4C40—N7—H7N130 (3)
C4—C5—C6120.7 (4)C33—N7—H7N120 (3)
C4—C5—H5119.6C41—N8—N9111.2 (4)
C6—C5—H5119.6C42—N9—N8112.7 (4)
C7—C6—C5122.2 (4)C43—N10—C50110.2 (4)
C7—C6—H6118.9C43—N10—H10N121 (3)
C5—C6—H6118.9C50—N10—H10N128 (3)
C6—C7—C8117.3 (4)C34—C33—N7108.4 (4)
C6—C7—H7121.3C34—C33—C41129.2 (4)
C8—C7—H7121.3N7—C33—C41122.2 (4)
N1—C8—C7130.5 (4)C33—C34—C35108.3 (4)
N1—C8—C3107.4 (3)C33—C34—H34125.9
C7—C8—C3122.1 (4)C35—C34—H34125.9
N2—C9—C1119.6 (4)C36—C35—C34135.0 (4)
N2—C9—H9120.2C36—C35—C40119.0 (4)
C1—C9—H9120.2C34—C35—C40106.0 (4)
O10—C10—N3119.5 (3)C37—C36—C35119.5 (4)
O10—C10—C11122.3 (4)C37—C36—H36120.3
N3—C10—C11118.2 (4)C35—C36—H36120.3
C12—C11—C16119.8 (3)C36—C37—C38120.4 (4)
C12—C11—C10118.2 (4)C36—C37—H37119.8
C16—C11—C10121.9 (4)C38—C37—H37119.8
C13—C12—C11119.2 (4)C39—C38—C37121.5 (4)
C13—C12—H12120.4C39—C38—H38119.3
C11—C12—H12120.4C37—C38—H38119.3
O13—C13—C12119.7 (3)C38—C39—C40118.1 (4)
O13—C13—C14119.0 (3)C38—C39—H39120.9
C12—C13—C14121.3 (4)C40—C39—H39120.9
O14—C14—C13117.1 (3)N7—C40—C39131.0 (4)
O14—C14—C15123.5 (4)N7—C40—C35107.5 (4)
C13—C14—C15119.4 (3)C39—C40—C35121.5 (4)
O15—C15—C16122.9 (4)N8—C41—C33121.3 (4)
O15—C15—C14116.8 (3)N8—C41—H41119.3
C16—C15—C14120.3 (4)C33—C41—H41119.3
C15—C16—C11119.9 (4)N9—C42—C43120.3 (5)
C15—C16—H16120.0N9—C42—H42119.8
C11—C16—H16120.0C43—C42—H42119.8
C29—O29—H29O113 (3)C44—C43—N10107.8 (4)
C30—O30—H30O109 (3)C44—C43—C42130.9 (5)
C31—O31—H31O107 (3)N10—C43—C42121.2 (4)
C24—N4—C17108.0 (3)C43—C44—C45108.2 (4)
C24—N4—H4N131 (3)C43—C44—H44125.9
C17—N4—H4N120 (3)C45—C44—H44125.9
C25—N5—N6116.1 (3)C50—C45—C46118.1 (5)
C26—N6—N5118.8 (3)C50—C45—C44107.0 (4)
C26—N6—H6N124 (3)C46—C45—C44134.9 (5)
N5—N6—H6N117 (3)C47—C46—C45119.0 (5)
C18—C17—N4109.7 (3)C47—C46—H46120.5
C18—C17—C25128.0 (4)C45—C46—H46120.5
N4—C17—C25122.2 (4)C46—C47—C48121.2 (5)
C17—C18—C19107.8 (4)C46—C47—H47119.4
C17—C18—H18126.1C48—C47—H47119.4
C19—C18—H18126.1C49—C48—C47121.3 (5)
C20—C19—C18134.9 (4)C49—C48—H48119.4
C20—C19—C24118.8 (4)C47—C48—H48119.4
C18—C19—C24106.3 (3)C48—C49—C50118.1 (5)
C21—C20—C19118.8 (4)C48—C49—H49121.0
C21—C20—H20120.6C50—C49—H49121.0
C19—C20—H20120.6N10—C50—C49130.9 (4)
C20—C21—C22121.0 (4)N10—C50—C45106.9 (4)
C20—C21—H21119.5C49—C50—C45122.2 (4)
C22—C21—H21119.5C51—O51—H51O106 (3)
C23—C22—C21122.0 (4)O51—C51—H51A109.5
C23—C22—H22119.0O51—C51—H51B109.5
C21—C22—H22119.0H51A—C51—H51B109.5
C22—C23—C24117.7 (4)O51—C51—H51C109.5
C22—C23—H23121.2H51A—C51—H51C109.5
C24—C23—H23121.2H51B—C51—H51C109.5
N4—C24—C23130.2 (4)C52—O52—H52O95 (3)
N4—C24—C19108.1 (3)O52—C52—H52A109.5
C23—C24—C19121.6 (4)O52—C52—H52B109.5
N5—C25—C17120.5 (4)H52A—C52—H52B109.5
N5—C25—H25119.8O52—C52—H52C109.5
C17—C25—H25119.8H52A—C52—H52C109.5
O26—C26—N6120.4 (3)H52B—C52—H52C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13O···O140.84 (1)2.21 (4)2.674 (4)115 (4)
O14—H14O···O31i0.84 (1)1.98 (2)2.778 (4)158 (4)
O14—H14O···O150.84 (1)2.33 (4)2.763 (4)112 (3)
O15—H15O···O26ii0.85 (1)1.77 (1)2.617 (4)179 (4)
N1—H1N···O51iii0.88 (1)2.11 (1)2.976 (4)167 (3)
N3—H3N···O52iv0.88 (1)2.13 (2)2.983 (4)165 (4)
O29—H29O···O30v0.85 (1)2.11 (2)2.858 (4)148 (4)
O30—H30O···O15i0.84 (1)1.91 (2)2.732 (4)165 (4)
O31—H31O···O100.84 (1)1.80 (1)2.626 (4)172 (4)
N4—H4N···O52iii0.88 (1)2.12 (1)2.992 (4)175 (3)
N6—H6N···O51iii0.88 (1)2.24 (2)3.011 (4)146 (3)
O51—H51O···O10iii0.84 (1)2.21 (3)2.934 (4)145 (4)
O51—H51O···N2iii0.84 (1)2.26 (3)2.975 (4)143 (4)
O52—H52O···N5iii0.84 (1)2.29 (3)2.963 (4)138 (4)
O52—H52O···O26iii0.84 (1)2.29 (2)3.046 (4)150 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+3, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C16H13N3O4·C18H14N4·2CH4O
Mr973.00
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4642 (15), 12.791 (2), 25.079 (5)
α, β, γ (°)95.918 (3), 95.166 (4), 101.451 (4)
V3)2319.3 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.12 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
10985, 7939, 4029
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.153, 0.98
No. of reflections7939
No. of parameters693
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13O···O140.844 (10)2.21 (4)2.674 (4)115 (4)
O14—H14O···O31i0.843 (10)1.979 (19)2.778 (4)158 (4)
O14—H14O···O150.843 (10)2.33 (4)2.763 (4)112 (3)
O15—H15O···O26ii0.845 (10)1.773 (11)2.617 (4)179 (4)
N1—H1N···O51iii0.884 (10)2.107 (14)2.976 (4)167 (3)
N3—H3N···O52iv0.877 (10)2.129 (15)2.983 (4)165 (4)
O29—H29O···O30v0.845 (10)2.11 (2)2.858 (4)148 (4)
O30—H30O···O15i0.841 (10)1.911 (15)2.732 (4)165 (4)
O31—H31O···O100.836 (10)1.795 (12)2.626 (4)172 (4)
N4—H4N···O52iii0.876 (10)2.118 (12)2.992 (4)175 (3)
N6—H6N···O51iii0.877 (10)2.24 (2)3.011 (4)146 (3)
O51—H51O···O10iii0.839 (10)2.21 (3)2.934 (4)145 (4)
O51—H51O···N2iii0.839 (10)2.26 (3)2.975 (4)143 (4)
O52—H52O···N5iii0.837 (10)2.29 (3)2.963 (4)138 (4)
O52—H52O···O26iii0.837 (10)2.29 (2)3.046 (4)150 (4)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+3, y+1, z+1.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant FP009/2008 C).

References

First citationArunkumar, S., Ramalakshmi, N., Saraswathy, T. & Aruloly, L. (2006). Indian J. Heterocycl. Chem. 16, 29–32.  CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008a). Acta Cryst. E64, o2108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008b). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009b). Acta Cryst. E65, o1920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRizal, M. R., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaxena, H. O., Faridi, U., Srivastava, S., Kumar, J. K., Darokar, M. P., Luqman, S., Chanotiya, C. S., Krishna, V., Negi, A. S. & Khanuja, S. P. S. (2008). Bioorg. Med. Chem. Lett. 18, 3914–3918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o105-o106
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds