organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethane-1,2-diyl bis­­(pyridine-3-car­box­ylate)

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile, bInstituto de Bio-Orgánica `Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain, and cDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 24 November 2009; accepted 3 December 2009; online 12 December 2009)

The title compound, C14H12N2O4, has twofold imposed crystallographic symmetry in the solid state. The asymmetric unit contains one half-mol­ecule. An intra­molecular C—H⋯O hydrogen bond is formed between the carboxyl­ate O group and one H atom of the aromatic ring such that a five-membered ring is formed. The angle between the planes of symmetry-related aromatic rings is 44.71 (19)°.

Related literature

For the synthesis of ditopic flexible linkers, see: Chatterjee et al. (2004[Chatterjee, B., Noveron, J. C., Resendiz, M. J. E., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C. V., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 10645-10656.]). For the potential of coordination polymers based on this multitopic bridging ligand and metal centers as functional materials, see: Huang et al. (2007[Huang, K., Xu, Z., Li, Y. & Zheng, H. (2007). Cryst. Growth Des. 7, 2002-2004.]). For applications, see: Matsuda et al. (2005[Matsuda, R., Kitaura, R., Kitagawa, S., Kubota, Y., Belosludov, R. V., Kobayashi, T. C., Sakamoto, H., Chiba, T., Takata, M., Kawazoe, Y. & Mita, Y. (2005). Nature (London), 436, 238-241.]); Wu et al. (2005[Wu, C. D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940-8941.]); Xiang et al. (2005[Xiang, S., Wu, X., Zhang, J., Fu, R., Hu, S. & Zhang, X. (2005). J. Am. Chem. Soc. 127, 16352-16353.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O4

  • Mr = 272.26

  • Orthorhombic, P 21 21 2

  • a = 4.0740 (14) Å

  • b = 21.3404 (7) Å

  • c = 7.395 (6) Å

  • V = 642.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.19 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 2298 measured reflections

  • 874 independent reflections

  • 694 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.131

  • S = 1.27

  • 874 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.93 2.40 2.735 (5) 101

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the past decade, crystalline nanoporous coordination polymers have been extensively studied for their potential applications in magnetism (Xiang, et al., 2005), catalysis (Wu, et al., 2005), and gas adsorption or separation (Matsuda, et al., 2005). Ethanediyl pyridinecarboxylate ligands have beeen used as flexible linkers to generate metallocyclic ensembles, which showed hysteretic adsorption properties (Chatterjee et al., 2004). We report here the crystal structure of the title compound which has twofold imposed crystallographic symmetry in the solid state. The asymmetric unit contains one-half of the molecule (Fig. 1). This compound crystallizes in a chiral space group, P21212 despite the absence of a chiral center. This chirality arises from the crystal packing. A twofold rotation axis passes through the midpoint of C7 and C7(i). An intramolecular C—H···O hydrogen bond is formed between the carboxylate O group and one H-atom of the aromatic ring such that a five-membered ring is formed. The angle between the planes of symmetry-related aromatic rings is 44.71 (19). A search in the Cambridge Structural Database (version 5.30; Allen, 2002) for the title compound yielded two structures namely catena-(bis(µ2-1,2-ethanediyl bis(3-pyridinecarboxylate)-N,N')- bis(isothiocyanato)-cobalt(ii) trihydrate) and catena-(bis(µ2-1,2-ethanediyl bis(3-pyridinecarboxylate)-N,N')- bis(isothiocyanato)-cobalt(ii) tetrahydrofuran clathrate) (refcodes HEXKEB and HEXKIF, respectively) (Huang et al., 2007). The most obvious differences between these coordination polymers and the uncoordinated ligand reported here are the the angles between the planes of symmetry-related aromatic rings (66.80 (12)° and 44.71 (19)°, respectively) which is a consequence of the flexible organic components of the title compound.

Related literature top

For the synthesis of ditopic flexible linkers, see: Chatterjee et al. (2004). For the potential of coordination polymers based on this multitopic bridging ligand and metal centers as functional materials, see: Huang et al. (2007). For applications, see: Matsuda et al. (2005); Wu et al. (2005); Xiang et al. (2005). For bond-length data, see: Allen (2002).

Experimental top

Nicotinic acid (15 g, 0.122 mol) was stirred in SOCl2 (40 ml) in the presence of DMF (0.6 ml) at 60 °C for 12 h. Excess thionyl chloride was removed in vacuo. Dried ethylene glycol (3.4 ml, 0.061 mol) was added. After the evolution of hydrogen chloride ended, the mixture was heated at 150 °C for 2 h. The mixture was dissolved in water, and NH4OH solution was added. After filtration, recrystallization in ethyl acetate gave colorless crystals. Yield 11.53 g (75%). Analysis calculated for C14H12N2O4: C: 61.76, H 4.44, N: 10.29; found: C: 61.25, H: 4.58, N: 10.15. IR (KBr, cm-1): (CO) 1723 s, (CC) 1589 m, (Ar C—C, CN) 1424 s, (C—O) 1287 m.

Refinement top

In the absence of anomalous scatterers, 488 Friedel pairs were merged.

H atoms were positioned geometrically at distances of 0.93 (CH) and 0.97 Å (CH2) from the parent C atoms and refined as riding with Uiso(H) = 1.2Ueq(C).

50 reflections were not included in the data set as they were either partially obscured by the beam stop or were eliminated during data reduction. The material was difficult to obtain in a suitable crystalline form.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure with the atom-numbering scheme. Displacemenent ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Intramolecular hydrogen bonds are indicated by dotted lines. Unlabeled atoms are related to labeled atoms by the symmetry code (-x, 1 - y, z).
Ethane-1,2-diyl bis(pyridine-3-carboxylate) top
Crystal data top
C14H12N2O4F(000) = 284
Mr = 272.26Dx = 1.406 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 1704 reflections
a = 4.0740 (14) Åθ = 1.9–27.5°
b = 21.3404 (7) ŵ = 0.11 mm1
c = 7.395 (6) ÅT = 293 K
V = 642.9 (6) Å3Prismatic, colourless
Z = 20.19 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.6°, θmin = 1.9°
ϕ scans, and ω scans with κ offsetsh = 50
2298 measured reflectionsk = 2727
874 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.2469P]
where P = (Fo2 + 2Fc2)/3
874 reflections(Δ/σ)max = 0.002
91 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H12N2O4V = 642.9 (6) Å3
Mr = 272.26Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 4.0740 (14) ŵ = 0.11 mm1
b = 21.3404 (7) ÅT = 293 K
c = 7.395 (6) Å0.19 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
694 reflections with I > 2σ(I)
2298 measured reflectionsRint = 0.030
874 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.27Δρmax = 0.16 e Å3
874 reflectionsΔρmin = 0.18 e Å3
91 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1685 (7)0.44509 (9)0.0673 (3)0.0399 (6)
O20.1110 (9)0.34487 (11)0.1477 (3)0.0619 (9)
N10.5385 (10)0.40255 (14)0.4274 (4)0.0574 (10)
C10.3638 (9)0.36912 (14)0.1334 (4)0.0330 (8)
C20.3991 (10)0.41380 (16)0.2682 (5)0.0458 (10)
H20.32070.4540.24580.055*
C30.6491 (10)0.34439 (17)0.4541 (5)0.0497 (10)
H30.74970.33550.5640.06*
C40.6241 (11)0.29697 (17)0.3305 (4)0.0462 (10)
H40.70580.25730.35620.055*
C50.4756 (10)0.30923 (15)0.1671 (4)0.0416 (9)
H50.4510.27780.08120.05*
C60.2039 (9)0.38335 (15)0.0413 (4)0.0365 (8)
C70.0000 (10)0.46502 (15)0.2299 (4)0.0408 (9)
H7A0.11240.44920.33620.049*
H7B0.22330.44930.23060.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0527 (15)0.0300 (12)0.0371 (11)0.0025 (11)0.0110 (13)0.0014 (10)
O20.102 (2)0.0365 (13)0.0474 (13)0.0018 (16)0.0250 (17)0.0097 (12)
N10.077 (2)0.051 (2)0.0441 (16)0.0096 (19)0.015 (2)0.0089 (15)
C10.038 (2)0.0291 (15)0.0321 (15)0.0021 (15)0.0016 (16)0.0008 (12)
C20.058 (3)0.0334 (18)0.0457 (19)0.0051 (19)0.008 (2)0.0066 (15)
C30.057 (3)0.054 (2)0.0380 (18)0.009 (2)0.008 (2)0.0021 (17)
C40.055 (3)0.0358 (18)0.0478 (19)0.0023 (18)0.003 (2)0.0044 (15)
C50.049 (2)0.0331 (17)0.0423 (17)0.0009 (18)0.0011 (19)0.0043 (15)
C60.042 (2)0.0318 (17)0.0360 (16)0.0001 (16)0.0020 (17)0.0014 (14)
C70.047 (2)0.0460 (18)0.0294 (15)0.0102 (19)0.0023 (18)0.0013 (14)
Geometric parameters (Å, º) top
O1—C61.339 (4)C3—C41.368 (5)
O1—C71.449 (4)C3—H30.93
O2—C61.198 (4)C4—C51.376 (5)
N1—C21.330 (5)C4—H40.93
N1—C31.335 (5)C5—H50.93
C1—C51.380 (4)C7—C7i1.493 (7)
C1—C21.387 (4)C7—H7A0.97
C1—C61.478 (4)C7—H7B0.97
C2—H20.93
C6—O1—C7117.3 (2)C5—C4—H4120.7
C2—N1—C3116.3 (3)C4—C5—C1118.7 (3)
C5—C1—C2118.2 (3)C4—C5—H5120.6
C5—C1—C6119.6 (3)C1—C5—H5120.6
C2—C1—C6122.2 (3)O2—C6—O1123.1 (3)
N1—C2—C1123.8 (3)O2—C6—C1124.9 (3)
N1—C2—H2118.1O1—C6—C1112.0 (3)
C1—C2—H2118.1O1—C7—C7i107.1 (3)
N1—C3—C4124.3 (3)O1—C7—H7A110.3
N1—C3—H3117.8C7i—C7—H7A110.3
C4—C3—H3117.8O1—C7—H7B110.3
C3—C4—C5118.6 (3)C7i—C7—H7B110.3
C3—C4—H4120.7H7A—C7—H7B108.6
C3—N1—C2—C10.2 (6)C7—O1—C6—O22.0 (5)
C5—C1—C2—N10.9 (6)C7—O1—C6—C1177.0 (3)
C6—C1—C2—N1179.3 (4)C5—C1—C6—O213.3 (6)
C2—N1—C3—C40.7 (6)C2—C1—C6—O2165.1 (4)
N1—C3—C4—C50.1 (7)C5—C1—C6—O1167.8 (3)
C3—C4—C5—C11.3 (6)C2—C1—C6—O113.9 (5)
C2—C1—C5—C41.7 (6)C6—O1—C7—C7i178.5 (4)
C6—C1—C5—C4179.9 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.402.735 (5)101

Experimental details

Crystal data
Chemical formulaC14H12N2O4
Mr272.26
Crystal system, space groupOrthorhombic, P21212
Temperature (K)293
a, b, c (Å)4.0740 (14), 21.3404 (7), 7.395 (6)
V3)642.9 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.19 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2298, 874, 694
Rint0.030
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.131, 1.27
No. of reflections874
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O10.932.402.735 (5)101
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge license for the CSD system. JV thanks the Universidad de Antofagasta for PhD fellowships.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChatterjee, B., Noveron, J. C., Resendiz, M. J. E., Liu, J., Yamamoto, T., Parker, D., Cinke, M., Nguyen, C. V., Arif, A. M. & Stang, P. J. (2004). J. Am. Chem. Soc. 126, 10645–10656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHuang, K., Xu, Z., Li, Y. & Zheng, H. (2007). Cryst. Growth Des. 7, 2002–2004.  Google Scholar
First citationMatsuda, R., Kitaura, R., Kitagawa, S., Kubota, Y., Belosludov, R. V., Kobayashi, T. C., Sakamoto, H., Chiba, T., Takata, M., Kawazoe, Y. & Mita, Y. (2005). Nature (London), 436, 238–241.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Hu, A., Zhang, L. & Lin, W. (2005). J. Am. Chem. Soc. 127, 8940–8941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXiang, S., Wu, X., Zhang, J., Fu, R., Hu, S. & Zhang, X. (2005). J. Am. Chem. Soc. 127, 16352–16353.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds