metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[dianilinedi­chloridocopper(II)]-μ2-2,5-bis­­(4-pyrid­yl)-1,3,4-oxa­diazole]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, People's Republic of China, and bResearch Center for Advanced Molecular Materials, School of Chemistry and Chemical Engineering, Scientific Research Academy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, People's Republic of China
*Correspondence e-mail: chizhang@ujs.edu.cn

(Received 2 December 2009; accepted 16 December 2009; online 24 December 2009)

In the title compound, [CuCl2(C6H7N)2(C12H8N4O)]n, the Cu atom, located on an inversion center, is coordinated by four N atoms from two aniline ligands and two 2,5-bis­(4-pyrid­yl)-1,3,4-oxadiazole ligands. Two Cl atoms lying above and below the plane formed by these four N atoms inter­act weakly with the Cu atom [Cu—Cl = 2.7870 (7) Å]. The trans 2,5-bis­(4-pyrid­yl)-1,3,4-oxadiazole ligands act as bridging ligands, linking adjacent Cu atoms and forming a one-dimensional coordination polymer. Two anilines coordinate with each Cu atom as terminal groups. The structure contains two classical N—H⋯Cl and two non-classical C—H⋯Cl hydrogen bonds.

Related literature

Unsymmetric organic bridging ligands can play different roles in the construction of metal-organic frameworks, see: Du et al. (2004[Du, M., Lam, C. K., Bu, X. H. & Mak, T. C. K. (2004). Inorg. Chem. Commun. 8, 315-318.]); Dong et al. (2005[Dong, Y. B., Ma, J. P., Mark, D. S., Huang, R. Q., Tang, B., Chen, D. Z. & Loye, H. C. (2005). Solid State Sci. 4, 1313-1320.]). For Cu—Cl distances, see: Handley et al. (2001[Handley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 316, 59-64.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C6H7N)2(C12H8N4O)]

  • Mr = 544.93

  • Monoclinic, C 2/c

  • a = 27.028 (5) Å

  • b = 12.618 (3) Å

  • c = 6.7904 (14) Å

  • β = 94.96 (3)°

  • V = 2307.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku CCD area-detector diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.329, Tmax = 0.463

  • 5331 measured reflections

  • 2233 independent reflections

  • 2106 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.04

  • 2233 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.53 3.406 (2) 165
N1—H1B⋯Cl1ii 0.90 2.56 3.393 (2) 154
C9—H9A⋯Cl1iii 0.93 2.70 3.285 (2) 121
C2—H2C⋯Cl1 0.93 2.66 3.328 (2) 129
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-1]; (iii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The unsymmetric organic bridging ligands can play different roles in constructing metal-organic frameworks (Du et al., 2004; Dong et al., 2005). Recently, we have synthesized a new one-dimensional polymer with unsymmetric organic 2,5-bis(4-pyridyl)-1,3,4-oxadiazole as bridging ligand. In this paper, the crystal structure of the title compound, (I), is presented.

As illustrated in Fig. 1, each Cu coordinates with four N atoms from two anilines and two 2,5-bis(4-pyridyl)-1,3,4-oxadiazole ligands, and two Cl atoms lying above and below the plane formed by the N atoms around Cu interact with Cu atom to form an octahedral geometry. The Cu—Cl bonds (2.7870 (7) Å) are longer than normal value (Handley et al., 2001). 2,5-Bis(4-pyridyl)-1,3,4-oxadiazoles act as bridging ligands to connect adjacent two Cu atoms to construct a unique one-dimensional chain. The crystal structure shows a range of classical N—H···Cl and non-classical C—H···Cl hydrogen bonds (Table 1).

Related literature top

Unsymmetric organic bridging ligands can play different roles in the construction of metal-organic frameworks, see: Du et al. (2004); Dong et al. (2005). For normal Cu—Cl distances, see: Handley et al. (2001).

Experimental top

2,5-Bis(4-pyridyl)-1,3,4-oxadiazole (1 mmol) and copper chloride (1 mmol) were added into N,N'-dimethylformamide (5 ml) with thorough stirring for 5 minutes. The solution underwent an additional stir for one minute after aniline (2 ml) was added. After filtration, 10 ml i-PrOH was successively laid on the surface of above filtrate. Black block crystals were obtained after ten days.

Refinement top

H atoms were positioned geometrically and refined with riding model, with C—H = 0.93 Å and N—H = 0.90 Å and Uiso = 1.2Ueq(parent atom) for all H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids; H atoms have been omitted for clarity. Symmetry code: (i) -x - 1/2, -y + 1/2, -z.
catena-Poly[[dianilinedichloridocopper(II)]-µ2-2,5- bis(4-pyridyl)-1,3,4-oxadiazole] top
Crystal data top
[CuCl2(C6H7N)2(C12H8N4O)]F(000) = 1116
Mr = 544.93Dx = 1.569 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4915 reflections
a = 27.028 (5) Åθ = 3.0–28.9°
b = 12.618 (3) ŵ = 1.21 mm1
c = 6.7904 (14) ÅT = 293 K
β = 94.96 (3)°Prism, black
V = 2307.1 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku CCD area-detector
diffractometer
2233 independent reflections
Radiation source: fine-focus sealed tube2106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 3.0°
phi and ω scansh = 2833
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1513
Tmin = 0.329, Tmax = 0.463l = 88
5331 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0436P)2 + 2.9828P]
where P = (Fo2 + 2Fc2)/3
2233 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[CuCl2(C6H7N)2(C12H8N4O)]V = 2307.1 (8) Å3
Mr = 544.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.028 (5) ŵ = 1.21 mm1
b = 12.618 (3) ÅT = 293 K
c = 6.7904 (14) Å0.20 × 0.20 × 0.20 mm
β = 94.96 (3)°
Data collection top
Rigaku CCD area-detector
diffractometer
2233 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2106 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.463Rint = 0.018
5331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2233 reflectionsΔρmin = 0.31 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25000.25000.00000.03226 (14)
Cl10.25356 (2)0.38364 (4)0.32770 (8)0.03830 (16)
O10.50000.13053 (16)0.25000.0314 (4)
N10.21455 (6)0.14463 (14)0.1808 (3)0.0307 (4)
H1A0.22600.07930.15750.037*
H1B0.22480.16060.30690.037*
N20.47412 (6)0.03453 (15)0.2314 (3)0.0439 (5)
N30.31537 (6)0.18313 (14)0.1116 (2)0.0302 (4)
C10.16136 (8)0.13839 (16)0.1674 (3)0.0297 (4)
C20.35055 (8)0.24122 (16)0.2121 (3)0.0318 (5)
H2C0.34210.30770.25780.038*
C30.13423 (9)0.21652 (19)0.2524 (3)0.0384 (5)
H3A0.15040.26980.32770.046*
C40.37354 (7)0.04244 (17)0.0989 (3)0.0327 (5)
H4A0.38010.02730.06500.039*
C50.41057 (7)0.10551 (16)0.1900 (3)0.0294 (4)
C60.13728 (9)0.05767 (19)0.0619 (3)0.0393 (5)
H6A0.15540.00390.00810.047*
C70.46097 (7)0.06337 (17)0.2226 (3)0.0316 (4)
C80.08592 (10)0.0568 (2)0.0361 (4)0.0526 (7)
H8A0.06960.00230.03550.063*
C90.32679 (7)0.08464 (17)0.0592 (3)0.0315 (4)
H9A0.30220.04300.00650.038*
C100.39873 (8)0.20621 (17)0.2503 (3)0.0324 (4)
H10A0.42270.24950.31530.039*
C110.05886 (9)0.1359 (2)0.1157 (4)0.0546 (7)
H11A0.02440.13570.09580.066*
C120.08290 (9)0.2150 (2)0.2247 (4)0.0489 (6)
H12A0.06460.26780.28040.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0197 (2)0.0341 (2)0.0427 (2)0.00195 (14)0.00072 (15)0.00980 (15)
Cl10.0389 (3)0.0335 (3)0.0414 (3)0.0028 (2)0.0027 (2)0.0045 (2)
O10.0211 (9)0.0319 (10)0.0406 (11)0.0000.0006 (8)0.000
N10.0295 (9)0.0312 (9)0.0313 (9)0.0004 (7)0.0024 (7)0.0004 (7)
N20.0222 (9)0.0345 (10)0.0735 (14)0.0003 (8)0.0040 (9)0.0004 (9)
N30.0229 (8)0.0341 (9)0.0336 (9)0.0001 (7)0.0016 (7)0.0058 (7)
C10.0298 (10)0.0310 (10)0.0287 (10)0.0015 (8)0.0055 (8)0.0039 (8)
C20.0296 (11)0.0328 (11)0.0331 (11)0.0014 (8)0.0034 (9)0.0006 (8)
C30.0409 (13)0.0385 (12)0.0368 (12)0.0018 (10)0.0094 (10)0.0013 (9)
C40.0268 (10)0.0313 (10)0.0395 (11)0.0012 (9)0.0004 (8)0.0019 (9)
C50.0225 (10)0.0345 (11)0.0310 (10)0.0015 (8)0.0010 (8)0.0046 (8)
C60.0396 (12)0.0385 (12)0.0405 (12)0.0028 (10)0.0072 (10)0.0022 (10)
C70.0230 (9)0.0337 (11)0.0375 (11)0.0034 (9)0.0005 (8)0.0008 (9)
C80.0423 (14)0.0611 (17)0.0538 (15)0.0199 (13)0.0007 (11)0.0028 (13)
C90.0245 (10)0.0323 (10)0.0371 (11)0.0027 (9)0.0009 (8)0.0031 (9)
C100.0261 (10)0.0364 (11)0.0341 (11)0.0035 (9)0.0018 (8)0.0016 (9)
C110.0289 (12)0.0780 (19)0.0577 (16)0.0022 (13)0.0085 (11)0.0111 (14)
C120.0421 (13)0.0549 (15)0.0522 (15)0.0115 (12)0.0191 (12)0.0065 (12)
Geometric parameters (Å, º) top
Cu1—N3i2.0436 (17)C2—H2C0.9300
Cu1—N32.0436 (17)C3—C121.384 (3)
Cu1—N1i2.0966 (17)C3—H3A0.9300
Cu1—N12.0966 (17)C4—C91.376 (3)
Cu1—Cl12.7870 (7)C4—C51.383 (3)
Cu1—Cl1i2.7870 (7)C4—H4A0.9300
O1—C71.353 (2)C5—C101.381 (3)
O1—C7ii1.353 (2)C5—C71.461 (3)
N1—C11.435 (3)C6—C81.384 (3)
N1—H1A0.9000C6—H6A0.9300
N1—H1B0.9000C8—C111.375 (4)
N2—C71.285 (3)C8—H8A0.9300
N2—N2ii1.400 (3)C9—H9A0.9300
N3—C91.336 (3)C10—H10A0.9300
N3—C21.340 (3)C11—C121.372 (4)
C1—C61.376 (3)C11—H11A0.9300
C1—C31.384 (3)C12—H12A0.9300
C2—C101.378 (3)
N3i—Cu1—N3180.00C10—C2—H2C118.7
N3i—Cu1—N1i86.87 (7)C12—C3—C1119.6 (2)
N3—Cu1—N1i93.13 (7)C12—C3—H3A120.2
N3i—Cu1—N193.13 (7)C1—C3—H3A120.2
N3—Cu1—N186.87 (7)C9—C4—C5118.8 (2)
N1i—Cu1—N1180.00C9—C4—H4A120.6
N3i—Cu1—Cl190.87 (6)C5—C4—H4A120.6
N3—Cu1—Cl189.13 (6)C10—C5—C4119.00 (19)
N1i—Cu1—Cl195.61 (5)C10—C5—C7121.81 (19)
N1—Cu1—Cl184.39 (5)C4—C5—C7119.19 (19)
N3i—Cu1—Cl1i89.13 (6)C1—C6—C8119.7 (2)
N3—Cu1—Cl1i90.87 (6)C1—C6—H6A120.1
N1i—Cu1—Cl1i84.39 (5)C8—C6—H6A120.1
N1—Cu1—Cl1i95.61 (5)N2—C7—O1112.73 (18)
Cl1—Cu1—Cl1i180.00N2—C7—C5127.37 (19)
C7—O1—C7ii102.5 (2)O1—C7—C5119.89 (18)
C1—N1—Cu1120.26 (13)C11—C8—C6120.4 (2)
C1—N1—H1A107.3C11—C8—H8A119.8
Cu1—N1—H1A107.3C6—C8—H8A119.8
C1—N1—H1B107.3N3—C9—C4122.48 (19)
Cu1—N1—H1B107.3N3—C9—H9A118.8
H1A—N1—H1B106.9C4—C9—H9A118.8
C7—N2—N2ii106.03 (12)C2—C10—C5118.60 (19)
C9—N3—C2118.33 (18)C2—C10—H10A120.7
C9—N3—Cu1119.83 (14)C5—C10—H10A120.7
C2—N3—Cu1121.05 (14)C12—C11—C8119.8 (2)
C6—C1—C3120.0 (2)C12—C11—H11A120.1
C6—C1—N1119.99 (19)C8—C11—H11A120.1
C3—C1—N1119.90 (19)C11—C12—C3120.4 (2)
N3—C2—C10122.5 (2)C11—C12—H12A119.8
N3—C2—H2C118.7C3—C12—H12A119.8
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1iii0.902.533.406 (2)165
N1—H1B···Cl1iv0.902.563.393 (2)154
C9—H9A···Cl1i0.932.703.285 (2)121
C2—H2C···Cl10.932.663.328 (2)129
Symmetry codes: (i) x1/2, y+1/2, z; (iii) x1/2, y1/2, z1/2; (iv) x1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formula[CuCl2(C6H7N)2(C12H8N4O)]
Mr544.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.028 (5), 12.618 (3), 6.7904 (14)
β (°) 94.96 (3)
V3)2307.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku CCD area-detector
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.329, 0.463
No. of measured, independent and
observed [I > 2σ(I)] reflections
5331, 2233, 2106
Rint0.018
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.04
No. of reflections2233
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.533.406 (2)165
N1—H1B···Cl1ii0.902.563.393 (2)154
C9—H9A···Cl1iii0.932.703.285 (2)121
C2—H2C···Cl10.932.663.328 (2)129
Symmetry codes: (i) x1/2, y1/2, z1/2; (ii) x1/2, y+1/2, z1; (iii) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 50472048).

References

First citationDong, Y. B., Ma, J. P., Mark, D. S., Huang, R. Q., Tang, B., Chen, D. Z. & Loye, H. C. (2005). Solid State Sci. 4, 1313–1320.  Web of Science CSD CrossRef Google Scholar
First citationDu, M., Lam, C. K., Bu, X. H. & Mak, T. C. K. (2004). Inorg. Chem. Commun. 8, 315–318.  Web of Science CSD CrossRef Google Scholar
First citationHandley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). Inorg. Chim. Acta, 316, 59–64.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds