organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6′-amino-5′-cyano-2′-methyl-2-oxo­spiro­[indoline-3,4′-pyran]-3′-carboxyl­ate

aDepartment of Chemistry, Xuzhou Medical College, Xuzhou 221004, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 9 December 2009; accepted 15 December 2009; online 19 December 2009)

In the title compound, C17H15N3O4, the atoms of the spiro pyran ring are nearly planar with a maximum deviation of 0.0188 (14) Å. The benzene and pyrrole rings make a dihedral angle of 5.71 (6)°. The indole system and the pyran ring are oriented at a dihedral angle of 82.94 (3)°. The crystal structure is stabilized by inter­molecular classical and non-classical N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For the indole nucleus, see: da Silva et al. (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). For the anti­bacterial and fungicidal activities of indoles, see: Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]). Spiro­oxindole ring systems are found in a number of alkaloids, e.g. horsifiline, spiro­tryprostatin and elacomine, see: Abdel-Rahman et al. (2004[Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483-2488.]). For our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007[Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365-9372.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O4

  • Mr = 325.32

  • Monoclinic, P 21 /c

  • a = 7.7812 (16) Å

  • b = 19.998 (4) Å

  • c = 10.044 (2) Å

  • β = 103.435 (4)°

  • V = 1520.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.60 × 0.30 × 0.24 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (ABSCOR; Jacobson, 1998[Jacobson, R. (1998). ABSCOR. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.764, Tmax = 0.975

  • 14692 measured reflections

  • 2779 independent reflections

  • 2550 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.14

  • 2779 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.56 3.321 (2) 146
N1—H1⋯O3ii 0.88 2.64 3.337 (2) 137
N3—H3A⋯N2iii 0.88 (2) 2.64 (2) 3.223 (2) 124 (2)
N3—H3B⋯O4iv 0.91 (2) 1.93 (2) 2.841 (2) 177 (2)
C13—H13⋯O2v 0.95 2.50 3.293 (2) 141
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1; (v) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The indole nucleus is a well known heterocycle (da Silva et al., 2001). Compounds containing the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids, e.g., horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our programme devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of isatins together with malononitrile and ethyl 3-oxobutanoate in water. We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the new formed spiro pyran ring (O1/C1-C5) adopts nearly planar confirmation. Rings (N1/C3/C10/C11/C16) and (C11-C16) of the indole system, are of course planar; the dihedral angle between the mean-planes of the two rings is 5.707 (5)°. The indole system and pyran ring are oriented at a dihedral angle of 82.926 (3)°.

In the crystal structure, intermolecular N—H···O, N—H···N, and C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), thus stabilizing the crystal structure.

Related literature top

For the indole nucleus, see: da Silva et al. (2001). For the antibacterial and fungicidal activities of indoles, see: Joshi & Chand (1982). Spirooxindole ring systems are found in a number of alkaloids, e.g. horsifiline, spirotryprostatin and elacomine, see: Abdel-Rahman et al. (2004). For our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007).

Experimental top

Compound (I) was prepared by the reaction of isatin (1 mmol), malononitrile (1 mmol) and ethyl 3-oxobutanoate (1 mmol) in water (5 ml). The reaction was catalyzed by TEBAC (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 5 h, the reaction mixture was cooled and washed with a small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield; 85%, m.p. 510-511 K).

Refinement top

H atoms (for NH2) were located in a difference syntheses and refined. The remaining H atoms were positioned geometrically, with N–H = 0.88 Å and C–H = 0.95 and 0.98 Å for aromatic and methyl H and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 45% probability level.
[Figure 2] Fig. 2. A packing diagram of (I) showing hydrogen bonds as dashed lines.
Ethyl 6'-amino-5'-cyano-2'-methyl-2-oxospiro[indoline-3,4'-pyran]-3'-carboxylate top
Crystal data top
C17H15N3O4F(000) = 680
Mr = 325.32Dx = 1.421 Mg m3
Monoclinic, P21/cMelting point = 511–512 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71070 Å
a = 7.7812 (16) ÅCell parameters from 5549 reflections
b = 19.998 (4) Åθ = 3.1–25.3°
c = 10.044 (2) ŵ = 0.10 mm1
β = 103.435 (4)°T = 153 K
V = 1520.2 (6) Å3Prism, colorless
Z = 40.60 × 0.30 × 0.24 mm
Data collection top
Rigaku Mercury
diffractometer
2779 independent reflections
Radiation source: fine-focus sealed tube2550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 25.3°, θmin = 3.2°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Jacobson, 1998)
k = 2424
Tmin = 0.764, Tmax = 0.975l = 1211
14692 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.642P]
where P = (Fo2 + 2Fc2)/3
2779 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H15N3O4V = 1520.2 (6) Å3
Mr = 325.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7812 (16) ŵ = 0.10 mm1
b = 19.998 (4) ÅT = 153 K
c = 10.044 (2) Å0.60 × 0.30 × 0.24 mm
β = 103.435 (4)°
Data collection top
Rigaku Mercury
diffractometer
2779 independent reflections
Absorption correction: multi-scan
(ABSCOR; Jacobson, 1998)
2550 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.975Rint = 0.026
14692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.23 e Å3
2779 reflectionsΔρmin = 0.31 e Å3
228 parameters
Special details top

Experimental. Spectroscopic analysis: IR (KBr, n, cm-1): 3480, 3372, 3287, 2191, 1721, 1620, 1474, 1381, 1288, 1211, 1072, 756, 679, 625. 1H NMR (400 MHz, DMSO-d6): 10.39 (s, 1H, NH), 7.13-7.18 (m, 3H, NH2 + ArH), 7.03 (d, J = 10.0 Hz, 1H, ArH), 6.90 (t, J = 10.0 Hz, 1H, ArH), 6.77 (d, J = 10.4 Hz, 1H, ArH), 3.71-3.76 (m, 2H, CH2), 0.75 (t, J = 9.6 Hz, 3H, CH3).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02630 (14)0.40611 (6)0.47320 (10)0.0250 (3)
O20.29838 (16)0.31533 (6)0.74767 (13)0.0361 (3)
O30.15237 (13)0.38754 (5)0.90531 (10)0.0210 (3)
O40.02295 (14)0.52209 (5)0.82365 (11)0.0220 (3)
N10.21452 (16)0.45913 (6)0.98355 (12)0.0198 (3)
H10.24700.48981.04720.024*
N20.52683 (18)0.47764 (7)0.73427 (15)0.0310 (3)
N30.2201 (2)0.44309 (8)0.42427 (14)0.0266 (3)
H3A0.322 (3)0.4642 (10)0.446 (2)0.039 (6)*
H3B0.144 (3)0.4529 (10)0.343 (2)0.039 (5)*
C10.1291 (2)0.38438 (8)0.56013 (15)0.0213 (3)
C20.07153 (19)0.38461 (7)0.69607 (15)0.0186 (3)
C30.11176 (19)0.40821 (7)0.76868 (15)0.0172 (3)
C40.21368 (19)0.42787 (7)0.66251 (15)0.0178 (3)
C50.1420 (2)0.42671 (7)0.52598 (15)0.0198 (3)
C60.3046 (2)0.36409 (10)0.47479 (18)0.0324 (4)
H6A0.29580.31930.43740.049*
H6B0.34170.39600.39950.049*
H6C0.39160.36370.53130.049*
C70.18809 (19)0.35822 (8)0.78223 (16)0.0212 (3)
C80.2410 (2)0.35970 (8)1.00633 (16)0.0252 (4)
H8A0.34780.33470.95930.030*
H8B0.27820.39631.05980.030*
C90.1167 (3)0.31383 (10)1.1002 (2)0.0395 (5)
H9A0.08010.27781.04670.059*
H9B0.17620.29471.16730.059*
H9C0.01250.33901.14790.059*
C100.10541 (19)0.47069 (7)0.86000 (15)0.0167 (3)
C110.26981 (19)0.39209 (8)0.99810 (15)0.0200 (3)
C120.3617 (2)0.35940 (9)1.11389 (17)0.0267 (4)
H120.40290.38251.19790.032*
C130.3917 (2)0.29121 (9)1.10268 (18)0.0312 (4)
H130.45640.26751.18020.037*
C140.3292 (2)0.25720 (9)0.98083 (19)0.0311 (4)
H140.34890.21050.97650.037*
C150.2374 (2)0.29119 (8)0.86432 (17)0.0249 (4)
H150.19480.26810.78050.030*
C160.21024 (19)0.35887 (7)0.87391 (15)0.0185 (3)
C170.3870 (2)0.45422 (8)0.70497 (15)0.0203 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (6)0.0353 (6)0.0174 (5)0.0048 (5)0.0020 (4)0.0002 (5)
O20.0352 (7)0.0357 (7)0.0425 (7)0.0195 (6)0.0193 (6)0.0165 (6)
O30.0192 (6)0.0251 (6)0.0203 (5)0.0058 (4)0.0075 (4)0.0010 (4)
O40.0238 (6)0.0198 (6)0.0225 (6)0.0026 (4)0.0055 (5)0.0002 (4)
N10.0194 (7)0.0230 (7)0.0161 (6)0.0020 (5)0.0021 (5)0.0028 (5)
N20.0216 (8)0.0377 (8)0.0339 (8)0.0051 (6)0.0069 (6)0.0020 (6)
N30.0248 (8)0.0378 (8)0.0178 (7)0.0024 (7)0.0058 (6)0.0023 (6)
C10.0175 (8)0.0226 (8)0.0238 (8)0.0010 (6)0.0049 (6)0.0013 (6)
C20.0166 (7)0.0177 (7)0.0214 (8)0.0002 (6)0.0041 (6)0.0027 (6)
C30.0150 (7)0.0187 (7)0.0183 (7)0.0005 (6)0.0050 (6)0.0001 (6)
C40.0163 (7)0.0191 (7)0.0185 (7)0.0008 (6)0.0050 (6)0.0002 (6)
C50.0185 (8)0.0207 (8)0.0202 (8)0.0017 (6)0.0043 (6)0.0003 (6)
C60.0252 (9)0.0403 (10)0.0281 (9)0.0073 (8)0.0010 (7)0.0021 (8)
C70.0167 (7)0.0200 (8)0.0277 (8)0.0009 (6)0.0069 (6)0.0032 (6)
C80.0247 (8)0.0288 (9)0.0264 (8)0.0073 (7)0.0144 (7)0.0009 (7)
C90.0426 (11)0.0362 (10)0.0437 (11)0.0027 (8)0.0185 (9)0.0142 (8)
C100.0147 (7)0.0199 (8)0.0166 (7)0.0027 (6)0.0061 (6)0.0003 (6)
C110.0143 (7)0.0267 (8)0.0203 (8)0.0002 (6)0.0070 (6)0.0033 (6)
C120.0173 (8)0.0415 (10)0.0215 (8)0.0019 (7)0.0052 (6)0.0086 (7)
C130.0195 (8)0.0427 (10)0.0339 (10)0.0086 (7)0.0111 (7)0.0188 (8)
C140.0245 (9)0.0264 (9)0.0465 (11)0.0098 (7)0.0163 (8)0.0131 (8)
C150.0212 (8)0.0245 (8)0.0319 (9)0.0021 (6)0.0121 (7)0.0011 (7)
C160.0138 (7)0.0227 (8)0.0204 (8)0.0002 (6)0.0072 (6)0.0024 (6)
C170.0209 (8)0.0242 (8)0.0167 (7)0.0022 (6)0.0059 (6)0.0024 (6)
Geometric parameters (Å, º) top
O1—C51.3577 (19)C4—C171.418 (2)
O1—C11.3840 (19)C6—H6A0.9800
O2—C71.2058 (19)C6—H6B0.9800
O3—C71.3378 (19)C6—H6C0.9800
O3—C81.4631 (18)C8—C91.497 (3)
O4—C101.2218 (18)C8—H8A0.9900
N1—C101.3508 (19)C8—H8B0.9900
N1—C111.405 (2)C9—H9A0.9800
N1—H10.8800C9—H9B0.9800
N2—C171.158 (2)C9—H9C0.9800
N3—C51.345 (2)C11—C121.380 (2)
N3—H3A0.88 (2)C11—C161.394 (2)
N3—H3B0.91 (2)C12—C131.392 (3)
C1—C21.334 (2)C12—H120.9500
C1—C61.490 (2)C13—C141.386 (3)
C2—C71.488 (2)C13—H130.9500
C2—C31.518 (2)C14—C151.397 (2)
C3—C161.517 (2)C14—H140.9500
C3—C41.521 (2)C15—C161.377 (2)
C3—C101.558 (2)C15—H150.9500
C4—C51.355 (2)
C5—O1—C1119.69 (11)O3—C8—C9109.26 (13)
C7—O3—C8116.35 (12)O3—C8—H8A109.8
C10—N1—C11111.76 (12)C9—C8—H8A109.8
C10—N1—H1124.1O3—C8—H8B109.8
C11—N1—H1124.1C9—C8—H8B109.8
C5—N3—H3A118.2 (13)H8A—C8—H8B108.3
C5—N3—H3B114.7 (13)C8—C9—H9A109.5
H3A—N3—H3B118.5 (19)C8—C9—H9B109.5
C2—C1—O1122.60 (13)H9A—C9—H9B109.5
C2—C1—C6129.37 (14)C8—C9—H9C109.5
O1—C1—C6108.01 (13)H9A—C9—H9C109.5
C1—C2—C7119.26 (14)H9B—C9—H9C109.5
C1—C2—C3123.16 (13)O4—C10—N1126.37 (14)
C7—C2—C3117.53 (13)O4—C10—C3125.82 (13)
C16—C3—C2113.49 (12)N1—C10—C3107.73 (12)
C16—C3—C4113.29 (12)C12—C11—C16121.85 (15)
C2—C3—C4109.16 (12)C12—C11—N1128.74 (15)
C16—C3—C10101.03 (12)C16—C11—N1109.36 (13)
C2—C3—C10112.18 (12)C11—C12—C13117.36 (16)
C4—C3—C10107.37 (11)C11—C12—H12121.3
C5—C4—C17116.72 (13)C13—C12—H12121.3
C5—C4—C3123.09 (13)C14—C13—C12121.40 (15)
C17—C4—C3119.97 (13)C14—C13—H13119.3
N3—C5—C4127.76 (14)C12—C13—H13119.3
N3—C5—O1110.01 (13)C13—C14—C15120.47 (16)
C4—C5—O1122.21 (13)C13—C14—H14119.8
C1—C6—H6A109.5C15—C14—H14119.8
C1—C6—H6B109.5C16—C15—C14118.46 (16)
H6A—C6—H6B109.5C16—C15—H15120.8
C1—C6—H6C109.5C14—C15—H15120.8
H6A—C6—H6C109.5C15—C16—C11120.43 (14)
H6B—C6—H6C109.5C15—C16—C3130.66 (14)
O2—C7—O3123.98 (14)C11—C16—C3108.82 (13)
O2—C7—C2125.02 (14)N2—C17—C4176.79 (16)
O3—C7—C2110.98 (12)
C5—O1—C1—C22.1 (2)C3—C2—C7—O330.15 (18)
C5—O1—C1—C6179.13 (13)C7—O3—C8—C998.97 (16)
O1—C1—C2—C7177.92 (13)C11—N1—C10—O4172.10 (14)
C6—C1—C2—C73.6 (3)C11—N1—C10—C311.17 (16)
O1—C1—C2—C30.4 (2)C16—C3—C10—O4172.22 (14)
C6—C1—C2—C3178.80 (15)C2—C3—C10—O451.02 (19)
C1—C2—C3—C16129.44 (15)C4—C3—C10—O468.90 (18)
C7—C2—C3—C1648.16 (17)C16—C3—C10—N111.03 (14)
C1—C2—C3—C42.1 (2)C2—C3—C10—N1132.23 (13)
C7—C2—C3—C4175.55 (12)C4—C3—C10—N1107.85 (13)
C1—C2—C3—C10116.82 (16)C10—N1—C11—C12170.85 (15)
C7—C2—C3—C1065.58 (16)C10—N1—C11—C166.45 (17)
C16—C3—C4—C5130.57 (15)C16—C11—C12—C130.6 (2)
C2—C3—C4—C53.1 (2)N1—C11—C12—C13176.36 (14)
C10—C3—C4—C5118.77 (15)C11—C12—C13—C141.1 (2)
C16—C3—C4—C1754.99 (18)C12—C13—C14—C151.6 (2)
C2—C3—C4—C17177.50 (13)C13—C14—C15—C160.3 (2)
C10—C3—C4—C1755.67 (17)C14—C15—C16—C111.4 (2)
C17—C4—C5—N35.3 (2)C14—C15—C16—C3177.64 (14)
C3—C4—C5—N3179.89 (15)C12—C11—C16—C151.9 (2)
C17—C4—C5—O1176.31 (13)N1—C11—C16—C15175.60 (13)
C3—C4—C5—O11.7 (2)C12—C11—C16—C3178.90 (13)
C1—O1—C5—N3177.58 (13)N1—C11—C16—C31.38 (16)
C1—O1—C5—C41.1 (2)C2—C3—C16—C1549.0 (2)
C8—O3—C7—O26.8 (2)C4—C3—C16—C1576.2 (2)
C8—O3—C7—C2172.00 (12)C10—C3—C16—C15169.28 (15)
C1—C2—C7—O229.0 (2)C2—C3—C16—C11127.57 (13)
C3—C2—C7—O2148.67 (16)C4—C3—C16—C11107.22 (14)
C1—C2—C7—O3152.16 (14)C10—C3—C16—C117.30 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.563.321 (2)146
N1—H1···O3ii0.882.643.337 (2)137
N3—H3A···N2iii0.88 (2)2.64 (2)3.223 (2)124 (2)
N3—H3B···O4iv0.91 (2)1.93 (2)2.841 (2)177 (2)
C13—H13···O2v0.952.503.293 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15N3O4
Mr325.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)7.7812 (16), 19.998 (4), 10.044 (2)
β (°) 103.435 (4)
V3)1520.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.30 × 0.24
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Jacobson, 1998)
Tmin, Tmax0.764, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
14692, 2779, 2550
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.14
No. of reflections2779
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.563.321 (2)146
N1—H1···O3ii0.882.643.337 (2)137
N3—H3A···N2iii0.88 (2)2.64 (2)3.223 (2)124 (2)
N3—H3B···O4iv0.91 (2)1.93 (2)2.841 (2)177 (2)
C13—H13···O2v0.952.503.293 (2)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was partially supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012), the Special Presidential Foundation of Xuzhou Medical College (grant No. 09KJZ19) and the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901).

References

First citationAbdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483–2488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). ABSCOR. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds