organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Bromo-5-methyl-2-pyrid­yl)-4-methyl­benzene­sulfonamide

aState Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: luo_youfu@scu.edu.cn

(Received 8 November 2009; accepted 15 December 2009; online 19 December 2009)

In the mol­ecule of the title compound, C13H13BrN2O2S, the dihedral angle formed by the pyridine and benzene rings is 66.87 (3)°. An intra­molecular N—H⋯Br hydrogen bond is observed. In the crystal structure, N—H⋯O hydrogen bonds, C—H⋯π inter­actions and aromatic ππ stacking inter­actions [centroid–centroid distance = 3.757 (14) Å] link the mol­ecules into a three-dimensional network.

Related literature

The title compound is a key inter­mediate in the synthesis of new anti­tumor drugs including TGX221 [systematic name 7-methyl-2-(4-morpholinyl)-9-[1-(phenylamino)ethyl]-4H-pyrido[1,2-a]pyrimidin-4-one]. For the biological activity of TGX221, see: Jackson et al. (2005[Jackson, S. P., Schoenwaelder, S. M., Goncalves, I., Nesbitt, W. S., Yap, C. L., Wright, C. E., Kenche, V., Anderson, K. E., Dopheide, S. M., Yuan, Y., Sturgeon, S. A., Prabaharan, H., Thompson P. E., Smith, G. D., Shepherd, P. R., Daniele, N., Kulkarni, S., Abbott, B., Saylik, D., Jones, C., Lu, L., Giuliano, S., Hughan, S. C., Angus, J. A., Robertson, A. D. & Salem, H. H. (2005). Nat. Med. 11, 507-514.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13BrN2O2S

  • Mr = 341.22

  • Monoclinic, P 21 /c

  • a = 11.832 (2) Å

  • b = 13.305 (3) Å

  • c = 8.6263 (17) Å

  • β = 105.52 (3)°

  • V = 1308.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.30 mm−1

  • T = 113 K

  • 0.22 × 0.21 × 0.18 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.531, Tmax = 0.588

  • 10637 measured reflections

  • 3102 independent reflections

  • 2455 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.071

  • S = 1.03

  • 3102 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is is the centroid of the N2, C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.72 (3) 2.78 (2) 3.134 (2) 114 (2)
N1—H1⋯O1i 0.72 (3) 2.53 (3) 3.225 (2) 164 (3)
C3—H3⋯Cg1ii 0.95 2.76 3.648 (2) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

TGX221, a selective inhibitor of PI3K p110β, and its derivatives are of great importance owing to their wide biological properties (Jackson et al., 2005). We report herein the crystal structure of the title compound, which is one of the key intermediates in our synthetic investigations of new antitumor drugs.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the benzene and pyridine is 66.87 (3)°. The molecular conformation is stabilized by an intramolecular N—H···Br hydrogen bond (Table 1). In the crystal, molecules are linked into a three-dimensional network by intermolecular N—H···O hydrogen bonds and aromatic ππ stacking interactions involving centrosymmetrically related pyridine and benzene rings, with a centroid-to-centroid distance of 3.757 (14) Å. In addition, C—H···π interactions are also present (Table 1; Cg1 is the centroid of the C7–C12 benzene ring).

Related literature top

The title compound is a key intermediate in the synthesis of new antitumor drugs including TGX221, a selective inhibitor of PI3K p110β. For the biological activity of TGX221, see: Jackson et al. (2005).

Experimental top

A mixture of 3-bromo-5-methylpyridin-2-amine (18.6 g, 0.1 mol), 4-methylbenzene-1-sulfonyl chloride (38.2 g, 0.2 mol), and pyridine (7.9 g, 0.10 mol), as a catalyst were charged into a three-necked round-bottomed flask fitted with a mechanical stirrer, a thermometer and a nitrogen inlet. The mixture was stirred vigorously at 100°C for 3 h. After the reactor was cooled to room temperature, the reaction solution was poured into water. The resulting solid was filtered, washed with water, dried and recrystallized from the mixture of hexane:ethyl acetate (3:1 v(v) to get colourless crystals suitable for X-ray analysis.

Refinement top

The amine H atom was located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N-(3-Bromo-5-methyl-2-pyridyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H13BrN2O2SF(000) = 688
Mr = 341.22Dx = 1.732 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4245 reflections
a = 11.832 (2) Åθ = 2.3–27.9°
b = 13.305 (3) ŵ = 3.30 mm1
c = 8.6263 (17) ÅT = 113 K
β = 105.52 (3)°Block, colourless
V = 1308.5 (5) Å30.22 × 0.21 × 0.18 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3102 independent reflections
Radiation source: rotating anode2455 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.037
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.4°
ϕ and ω scansh = 915
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1717
Tmin = 0.531, Tmax = 0.588l = 1011
10637 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0398P)2]
where P = (Fo2 + 2Fc2)/3
3102 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C13H13BrN2O2SV = 1308.5 (5) Å3
Mr = 341.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.832 (2) ŵ = 3.30 mm1
b = 13.305 (3) ÅT = 113 K
c = 8.6263 (17) Å0.22 × 0.21 × 0.18 mm
β = 105.52 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3102 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2455 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.588Rint = 0.037
10637 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
3102 reflectionsΔρmin = 0.66 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.542001 (19)0.267131 (17)1.09928 (3)0.01935 (8)
S10.23555 (5)0.35572 (4)0.64144 (6)0.01313 (13)
O10.27402 (13)0.33591 (11)0.50006 (17)0.0180 (3)
O20.14905 (13)0.29181 (11)0.67992 (18)0.0174 (3)
N10.34782 (16)0.34723 (14)0.8024 (2)0.0142 (4)
H10.339 (2)0.312 (2)0.861 (3)0.026 (8)*
N20.46548 (15)0.46217 (13)0.7147 (2)0.0143 (4)
C10.45737 (17)0.39383 (15)0.8237 (2)0.0118 (4)
C20.55266 (18)0.36978 (14)0.9520 (2)0.0119 (4)
C30.65784 (18)0.42026 (15)0.9708 (2)0.0146 (4)
H30.72290.40561.05980.018*
C40.66762 (18)0.49303 (15)0.8579 (2)0.0137 (4)
C50.56853 (19)0.50966 (15)0.7326 (2)0.0146 (4)
H50.57360.55800.65370.018*
C60.77966 (19)0.55118 (16)0.8732 (3)0.0194 (5)
H6A0.77560.58620.77190.029*
H6B0.84630.50470.89710.029*
H6C0.78980.60040.96040.029*
C70.18506 (18)0.48129 (15)0.6312 (2)0.0131 (4)
C80.09300 (18)0.50427 (16)0.6980 (2)0.0135 (4)
H80.05810.45340.74710.016*
C90.05321 (18)0.60313 (16)0.6914 (2)0.0158 (4)
H90.00990.61930.73560.019*
C100.10400 (19)0.67832 (15)0.6215 (2)0.0150 (4)
C110.19340 (19)0.65226 (16)0.5508 (3)0.0166 (5)
H110.22690.70270.49900.020*
C120.23404 (18)0.55464 (16)0.5549 (2)0.0154 (4)
H120.29470.53800.50610.018*
C130.0635 (2)0.78579 (17)0.6201 (3)0.0216 (5)
H13A0.12960.82830.67550.032*
H13B0.00120.79030.67530.032*
H13C0.03320.80860.50870.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01556 (13)0.02025 (13)0.02032 (14)0.00270 (9)0.00147 (9)0.00962 (9)
S10.0115 (3)0.0124 (2)0.0134 (3)0.0010 (2)0.0002 (2)0.00113 (19)
O10.0207 (8)0.0192 (8)0.0133 (8)0.0031 (7)0.0029 (7)0.0030 (6)
O20.0123 (8)0.0144 (7)0.0235 (9)0.0028 (6)0.0011 (7)0.0003 (6)
N10.0114 (9)0.0164 (9)0.0135 (10)0.0018 (8)0.0009 (8)0.0047 (8)
N20.0138 (9)0.0157 (9)0.0130 (8)0.0020 (7)0.0026 (7)0.0018 (7)
C10.0119 (10)0.0119 (10)0.0124 (10)0.0006 (8)0.0047 (8)0.0027 (8)
C20.0144 (10)0.0104 (9)0.0119 (10)0.0005 (8)0.0051 (8)0.0003 (8)
C30.0130 (10)0.0157 (10)0.0128 (11)0.0001 (9)0.0005 (9)0.0014 (8)
C40.0156 (11)0.0120 (10)0.0139 (10)0.0011 (9)0.0049 (9)0.0005 (8)
C50.0187 (11)0.0115 (10)0.0148 (10)0.0006 (9)0.0063 (9)0.0027 (8)
C60.0170 (12)0.0192 (11)0.0218 (12)0.0034 (10)0.0051 (9)0.0039 (9)
C70.0121 (10)0.0133 (10)0.0115 (10)0.0018 (8)0.0008 (8)0.0001 (8)
C80.0108 (10)0.0167 (10)0.0123 (10)0.0011 (9)0.0019 (8)0.0001 (8)
C90.0117 (10)0.0215 (11)0.0140 (11)0.0019 (9)0.0031 (9)0.0023 (9)
C100.0141 (11)0.0141 (11)0.0138 (11)0.0017 (9)0.0015 (9)0.0011 (8)
C110.0138 (11)0.0173 (11)0.0177 (11)0.0007 (9)0.0026 (9)0.0025 (9)
C120.0120 (10)0.0201 (11)0.0141 (11)0.0013 (9)0.0036 (9)0.0008 (8)
C130.0206 (12)0.0172 (12)0.0242 (13)0.0015 (9)0.0009 (10)0.0009 (9)
Geometric parameters (Å, º) top
Br1—C21.8925 (19)C6—H6B0.9800
S1—O11.4357 (15)C6—H6C0.9800
S1—O21.4361 (15)C7—C121.388 (3)
S1—N11.649 (2)C7—C81.396 (3)
S1—C71.768 (2)C8—C91.393 (3)
N1—C11.404 (3)C8—H80.9500
N1—H10.72 (2)C9—C101.385 (3)
N2—C11.330 (2)C9—H90.9500
N2—C51.345 (3)C10—C111.399 (3)
C1—C21.389 (3)C10—C131.507 (3)
C2—C31.385 (3)C11—C121.382 (3)
C3—C41.400 (3)C11—H110.9500
C3—H30.9500C12—H120.9500
C4—C51.384 (3)C13—H13A0.9800
C4—C61.510 (3)C13—H13B0.9800
C5—H50.9500C13—H13C0.9800
C6—H6A0.9800
O1—S1—O2119.68 (9)C4—C6—H6C109.5
O1—S1—N1109.63 (9)H6A—C6—H6C109.5
O2—S1—N1103.19 (9)H6B—C6—H6C109.5
O1—S1—C7108.09 (9)C12—C7—C8120.86 (19)
O2—S1—C7108.59 (10)C12—C7—S1120.64 (16)
N1—S1—C7106.98 (9)C8—C7—S1118.48 (15)
C1—N1—S1125.99 (15)C9—C8—C7118.85 (19)
C1—N1—H1120 (2)C9—C8—H8120.6
S1—N1—H1113 (2)C7—C8—H8120.6
C1—N2—C5118.33 (18)C10—C9—C8121.23 (19)
N2—C1—C2121.59 (19)C10—C9—H9119.4
N2—C1—N1116.62 (18)C8—C9—H9119.4
C2—C1—N1121.79 (18)C9—C10—C11118.52 (19)
C3—C2—C1119.62 (18)C9—C10—C13120.96 (19)
C3—C2—Br1119.36 (15)C11—C10—C13120.53 (19)
C1—C2—Br1121.01 (15)C12—C11—C10121.4 (2)
C2—C3—C4119.51 (19)C12—C11—H11119.3
C2—C3—H3120.2C10—C11—H11119.3
C4—C3—H3120.2C11—C12—C7119.1 (2)
C5—C4—C3116.35 (19)C11—C12—H12120.5
C5—C4—C6121.78 (18)C7—C12—H12120.5
C3—C4—C6121.87 (19)C10—C13—H13A109.5
N2—C5—C4124.57 (19)C10—C13—H13B109.5
N2—C5—H5117.7H13A—C13—H13B109.5
C4—C5—H5117.7C10—C13—H13C109.5
C4—C6—H6A109.5H13A—C13—H13C109.5
C4—C6—H6B109.5H13B—C13—H13C109.5
H6A—C6—H6B109.5
O1—S1—N1—C149.3 (2)C6—C4—C5—N2178.28 (18)
O2—S1—N1—C1177.92 (17)O1—S1—C7—C1231.16 (19)
C7—S1—N1—C167.63 (19)O2—S1—C7—C12162.43 (16)
C5—N2—C1—C21.2 (3)N1—S1—C7—C1286.82 (18)
C5—N2—C1—N1178.89 (17)O1—S1—C7—C8147.25 (15)
S1—N1—C1—N210.4 (3)O2—S1—C7—C815.98 (18)
S1—N1—C1—C2169.47 (15)N1—S1—C7—C894.77 (17)
N2—C1—C2—C32.3 (3)C12—C7—C8—C92.0 (3)
N1—C1—C2—C3177.83 (18)S1—C7—C8—C9179.57 (15)
N2—C1—C2—Br1176.47 (15)C7—C8—C9—C100.6 (3)
N1—C1—C2—Br13.4 (3)C8—C9—C10—C112.8 (3)
C1—C2—C3—C41.7 (3)C8—C9—C10—C13177.77 (19)
Br1—C2—C3—C4177.10 (14)C9—C10—C11—C122.4 (3)
C2—C3—C4—C50.1 (3)C13—C10—C11—C12178.16 (19)
C2—C3—C4—C6179.38 (19)C10—C11—C12—C70.2 (3)
C1—N2—C5—C40.4 (3)C8—C7—C12—C112.4 (3)
C3—C4—C5—N21.0 (3)S1—C7—C12—C11179.22 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is is the centroid of the N2, C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.72 (3)2.78 (2)3.134 (2)114 (2)
N1—H1···O1i0.72 (3)2.53 (3)3.225 (2)164 (3)
C3—H3···Cg1ii0.952.763.648 (2)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC13H13BrN2O2S
Mr341.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.832 (2), 13.305 (3), 8.6263 (17)
β (°) 105.52 (3)
V3)1308.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.22 × 0.21 × 0.18
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.531, 0.588
No. of measured, independent and
observed [I > 2σ(I)] reflections
10637, 3102, 2455
Rint0.037
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.071, 1.03
No. of reflections3102
No. of parameters178
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.66

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
Cg2 is is the centroid of the N2, C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.72 (3)2.78 (2)3.134 (2)114 (2)
N1—H1···O1i0.72 (3)2.53 (3)3.225 (2)164 (3)
C3—H3···Cg1ii0.952.763.648 (2)155
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank Mr·Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationJackson, S. P., Schoenwaelder, S. M., Goncalves, I., Nesbitt, W. S., Yap, C. L., Wright, C. E., Kenche, V., Anderson, K. E., Dopheide, S. M., Yuan, Y., Sturgeon, S. A., Prabaharan, H., Thompson P. E., Smith, G. D., Shepherd, P. R., Daniele, N., Kulkarni, S., Abbott, B., Saylik, D., Jones, C., Lu, L., Giuliano, S., Hughan, S. C., Angus, J. A., Robertson, A. D. & Salem, H. H. (2005). Nat. Med. 11, 507–514.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds