organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-[4-(Methyl­sulfon­yl)benzyl­­idene]aniline

aSchool of Life Sciences, Shandong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 21 November 2009; accepted 26 November 2009; online 4 December 2009)

The mol­ecule of the title compound, C14H13NO2S, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two aromatic ring planes is 62.07 (18)°.

Related literature

For a related structure, see: Qian & Cui (2009[Qian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3072.]). For comparitive bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2S

  • Mr = 259.31

  • Monoclinic, P 21 /c

  • a = 8.2070 (16) Å

  • b = 5.7750 (12) Å

  • c = 26.945 (5) Å

  • β = 94.72 (3)°

  • V = 1272.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.930, Tmax = 0.976

  • 2462 measured reflections

  • 2292 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.053

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.138

  • S = 1.03

  • 2292 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been of great of interest for many years. and act as important precursors for coordination chemistry related to catalysis and enzymatic reactions, magnetism and molecular archtectures. As an extension of work on the structural characterization of Schiff base compounds, the crystal structure of the title compound is reported here.

In the title compound (Fig. 1), all bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in a closely related compound (Qian et al., 2009). The molecule displays a trans-configuration with respect to the C=N double bond. The dihedral angle between two aromatic ring planes is 62.07 (18)°. The crystal packing is stabilized only by van der Waals interactions.

Related literature top

For a related structure, see: Qian & Cui (2009). For comparitive bond lengths, see: Allen et al. (1987).

Experimental top

4-(Methylsulfonyl)benzaldehyde (0.184 g) and aniline (0.093 g) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. After keeping the solution in air for 7 d, yellow block-shaped crystals suitable for X-ray analysis were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
(E)-N-[4-(Methylsulfonyl)benzylidene]aniline top
Crystal data top
C14H13NO2SF(000) = 544
Mr = 259.31Dx = 1.353 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.2070 (16) Åθ = 9–13°
b = 5.7750 (12) ŵ = 0.25 mm1
c = 26.945 (5) ÅT = 293 K
β = 94.72 (3)°Block, yellow
V = 1272.7 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 09
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 06
Tmin = 0.930, Tmax = 0.976l = 3232
2462 measured reflections3 standard reflections every 200 reflections
2292 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0501P)2 + 1.018P]
where P = (Fo2 + 2Fc2)/3
2292 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C14H13NO2SV = 1272.7 (4) Å3
Mr = 259.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2070 (16) ŵ = 0.25 mm1
b = 5.7750 (12) ÅT = 293 K
c = 26.945 (5) Å0.30 × 0.20 × 0.10 mm
β = 94.72 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1542 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.053
Tmin = 0.930, Tmax = 0.9763 standard reflections every 200 reflections
2462 measured reflections intensity decay: 1%
2292 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
2292 reflectionsΔρmin = 0.34 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.80688 (10)0.31400 (15)0.45864 (3)0.0473 (3)
N0.1198 (3)0.1536 (5)0.34256 (10)0.0474 (7)
O10.9360 (3)0.2295 (5)0.43114 (9)0.0609 (7)
C10.3341 (4)0.2970 (7)0.26535 (15)0.0635 (11)
H1B0.43310.33260.24770.076*
O20.8001 (3)0.5582 (4)0.46914 (11)0.0680 (8)
C20.2463 (5)0.1064 (7)0.25292 (15)0.0592 (10)
H2B0.28660.01250.22670.071*
C30.0992 (4)0.0518 (6)0.27874 (13)0.0488 (9)
H3A0.04200.07930.27010.059*
C40.0363 (4)0.1919 (6)0.31746 (12)0.0426 (8)
C50.1259 (4)0.3852 (6)0.32996 (14)0.0537 (9)
H5A0.08570.48130.35580.064*
C60.2737 (5)0.4344 (7)0.30415 (16)0.0632 (11)
H6A0.33340.56240.31310.076*
C70.1609 (4)0.0524 (6)0.35336 (12)0.0467 (8)
H7A0.08550.16990.34580.056*
C80.3215 (4)0.1149 (6)0.37721 (12)0.0433 (8)
C90.3412 (4)0.3236 (6)0.40197 (15)0.0586 (10)
H9A0.25340.42550.40170.070*
C100.4877 (4)0.3840 (6)0.42707 (14)0.0564 (10)
H10A0.49820.52410.44410.068*
C110.6192 (4)0.2351 (6)0.42680 (12)0.0435 (8)
C120.6034 (4)0.0265 (6)0.40118 (14)0.0549 (10)
H12A0.69250.07260.40040.066*
C130.4555 (4)0.0325 (6)0.37695 (14)0.0537 (9)
H13A0.44470.17290.36010.064*
C140.8121 (4)0.1617 (7)0.51489 (13)0.0603 (10)
H14A0.91190.19630.53460.090*
H14B0.80650.00150.50820.090*
H14C0.72060.20670.53270.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0448 (5)0.0432 (5)0.0537 (6)0.0085 (4)0.0032 (4)0.0064 (4)
N0.0488 (16)0.0410 (17)0.0523 (17)0.0068 (14)0.0040 (13)0.0032 (14)
O10.0459 (13)0.0773 (19)0.0610 (16)0.0114 (13)0.0130 (11)0.0111 (14)
C10.053 (2)0.066 (3)0.071 (3)0.004 (2)0.0011 (19)0.007 (2)
O20.0654 (16)0.0407 (14)0.094 (2)0.0054 (13)0.0148 (15)0.0008 (14)
C20.058 (2)0.060 (3)0.059 (2)0.010 (2)0.0002 (19)0.007 (2)
C30.053 (2)0.0402 (19)0.054 (2)0.0019 (17)0.0059 (17)0.0059 (17)
C40.0486 (19)0.0355 (18)0.0449 (19)0.0070 (16)0.0099 (15)0.0033 (16)
C50.062 (2)0.040 (2)0.060 (2)0.0055 (18)0.0112 (19)0.0028 (17)
C60.064 (2)0.047 (2)0.081 (3)0.008 (2)0.015 (2)0.001 (2)
C70.050 (2)0.043 (2)0.047 (2)0.0093 (16)0.0067 (16)0.0008 (17)
C80.0459 (19)0.0406 (19)0.0437 (19)0.0078 (15)0.0044 (15)0.0014 (15)
C90.050 (2)0.045 (2)0.079 (3)0.0195 (18)0.0019 (19)0.008 (2)
C100.052 (2)0.042 (2)0.074 (3)0.0153 (17)0.0066 (19)0.0130 (19)
C110.0469 (18)0.0373 (19)0.047 (2)0.0096 (15)0.0088 (15)0.0063 (15)
C120.048 (2)0.044 (2)0.073 (3)0.0183 (17)0.0069 (19)0.0034 (19)
C130.054 (2)0.039 (2)0.068 (2)0.0087 (17)0.0065 (18)0.0107 (18)
C140.061 (2)0.066 (3)0.054 (2)0.018 (2)0.0050 (18)0.008 (2)
Geometric parameters (Å, º) top
S—O11.428 (2)C6—H6A0.9300
S—O21.440 (3)C7—C81.463 (5)
S—C141.750 (4)C7—H7A0.9300
S—C111.760 (4)C8—C91.381 (5)
N—C71.264 (4)C8—C131.391 (4)
N—C41.416 (4)C9—C101.375 (5)
C1—C21.372 (5)C9—H9A0.9300
C1—C61.372 (5)C10—C111.380 (4)
C1—H1B0.9300C10—H10A0.9300
C2—C31.379 (5)C11—C121.389 (5)
C2—H2B0.9300C12—C131.373 (5)
C3—C41.386 (4)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.393 (5)C14—H14A0.9600
C5—C61.377 (5)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
O1—S—O2118.61 (17)N—C7—H7A118.4
O1—S—C14108.15 (16)C8—C7—H7A118.4
O2—S—C14108.70 (19)C9—C8—C13118.4 (3)
O1—S—C11108.39 (15)C9—C8—C7119.6 (3)
O2—S—C11107.63 (15)C13—C8—C7122.1 (3)
C14—S—C11104.47 (17)C10—C9—C8121.5 (3)
C7—N—C4118.1 (3)C10—C9—H9A119.3
C2—C1—C6119.1 (4)C8—C9—H9A119.3
C2—C1—H1B120.5C9—C10—C11119.4 (3)
C6—C1—H1B120.5C9—C10—H10A120.3
C1—C2—C3121.0 (4)C11—C10—H10A120.3
C1—C2—H2B119.5C10—C11—C12120.1 (3)
C3—C2—H2B119.5C10—C11—S119.3 (3)
C2—C3—C4120.1 (3)C12—C11—S120.6 (2)
C2—C3—H3A119.9C13—C12—C11119.6 (3)
C4—C3—H3A119.9C13—C12—H12A120.2
C3—C4—C5118.6 (3)C11—C12—H12A120.2
C3—C4—N122.3 (3)C12—C13—C8121.0 (3)
C5—C4—N119.0 (3)C12—C13—H13A119.5
C6—C5—C4120.2 (4)C8—C13—H13A119.5
C6—C5—H5A119.9S—C14—H14A109.5
C4—C5—H5A119.9S—C14—H14B109.5
C1—C6—C5120.9 (4)H14A—C14—H14B109.5
C1—C6—H6A119.6S—C14—H14C109.5
C5—C6—H6A119.6H14A—C14—H14C109.5
N—C7—C8123.2 (3)H14B—C14—H14C109.5
C6—C1—C2—C30.1 (6)C8—C9—C10—C111.2 (6)
C1—C2—C3—C41.0 (6)C9—C10—C11—C120.3 (6)
C2—C3—C4—C51.0 (5)C9—C10—C11—S179.6 (3)
C2—C3—C4—N175.0 (3)O1—S—C11—C10144.6 (3)
C7—N—C4—C342.2 (5)O2—S—C11—C1015.2 (3)
C7—N—C4—C5141.8 (3)C14—S—C11—C10100.2 (3)
C3—C4—C5—C60.0 (5)O1—S—C11—C1234.7 (3)
N—C4—C5—C6176.1 (3)O2—S—C11—C12164.1 (3)
C2—C1—C6—C51.0 (6)C14—S—C11—C1280.5 (3)
C4—C5—C6—C11.0 (6)C10—C11—C12—C131.3 (5)
C4—N—C7—C8177.2 (3)S—C11—C12—C13179.5 (3)
N—C7—C8—C9159.4 (4)C11—C12—C13—C80.7 (6)
N—C7—C8—C1318.9 (5)C9—C8—C13—C120.7 (6)
C13—C8—C9—C101.7 (6)C7—C8—C13—C12177.6 (3)
C7—C8—C9—C10176.6 (4)

Experimental details

Crystal data
Chemical formulaC14H13NO2S
Mr259.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.2070 (16), 5.7750 (12), 26.945 (5)
β (°) 94.72 (3)
V3)1272.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.930, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
2462, 2292, 1542
Rint0.053
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.138, 1.03
No. of reflections2292
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was sponsored by the Shandong Province Science & Technology Innovation Foundation (People's Republic of China).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationQian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds