organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(4-tert-butyl­phen­yl)phosphine oxide

aKey Laboratory of Polymer Science and Nanotechnology, Henan University of Science and Technology, Luoyang 471003, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: zhangyq8@126.com

(Received 21 November 2009; accepted 4 December 2009; online 19 December 2009)

In the title compound, C30H39OP, the P=O bond length is 1.4866 (12) Å and the P—C bond lengths range from 1.804 (2) to 1.808 (13) Å. The molecle is located on a crystallographic mirror plane. The methyl groups of one tert-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio.

Related literature

For applications of phosphine ligands in palladium-catalysed syntheses, see: Buchwald et al. (2006[Buchwald, S. L., Mauger, C., Mignani, G. & Scholz, U. (2006). Adv. Synth. Catal. 348, 23-39.]); Surry & Buchwald (2008[Surry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338-6361.]); Xu et al. (2009[Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909-1916.]). For related structures, see: Baures & Silverton (1990[Baures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715-717.]); Shawkataly et al. (2009[Shawkataly, O. bin, Pankhi, M. A. A., Mohamed-Ibrahim, M. I., Hamdan, M. R. & Fun, H.-K. (2009). Acta Cryst. E65, o1080.]). For the synthesis, see: Issleib & Brack (1954[Issleib, V. K. & Brack, A. (1954). Z. Anorg. Allg. Chem. 277, 258-270.]).

[Scheme 1]

Experimental

Crystal data
  • C30H39OP

  • Mr = 446.58

  • Orthorhombic, P n m a

  • a = 11.7986 (10) Å

  • b = 20.9246 (18) Å

  • c = 10.5204 (9) Å

  • V = 2597.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 294 K

  • 0.45 × 0.43 × 0.42 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.946, Tmax = 0.949

  • 17327 measured reflections

  • 2485 independent reflections

  • 2143 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.117

  • S = 1.03

  • 2485 reflections

  • 161 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Arylphosphines are the most frequently used as ligands in transition metal catalysis (Buchwald et al., 2006; Surry & Buchwald 2008; Xu et al., 2009). While preparing tris(4-tert-butylphenyl) phosphines, we have obtained the title compound as a side product.

The title compound, C30H39OP, has a P=O bond length of 1.4866 (12) Å. The P—C bond lengths range from 1.804 (2) to 1.808 (13) Å. It is located on a crystallographic mirror plane. All the bond distances and angles in the structure are within normal ranges, similar to those found in the related compounds (Baures & Silverton 1990; Shawkataly et al., 2009). The methyl groups of one tert-butyl group are disordered over two sites in a 0.776 (4):0.224 (4) ratio.

Related literature top

For applications of phosphine ligands in palladium-catalysed syntheses, see: Buchwald et al. (2006); Surry & Buchwald (2008); Xu et al. (2009). For related structures, see: Baures & Silverton (1990); Shawkataly et al. (2009). For the synthesis, see: Issleib & Brack (1954).

Experimental top

The title compound was obtained as a side product from the reaction of PCl3 and 4-C(CH3)3-C6H4—MgBr as described in the literature (Issleib & Brack 1954) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement top

The methyl groups of one tert-butyl group are disordered over two sites, occupancies were refined and converged to 0.776 (4):0.224 (4). The rigid-group mode was used in refinement for the disordered components, and atomic displacement parameters were constrained for disordered components. H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 30% probability level (Symmetry code A: x, -y + 1/2, z).
Tris(4-tert-butylphenyl)phosphine oxide top
Crystal data top
C30H39OPDx = 1.142 Mg m3
Mr = 446.58Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 5668 reflections
a = 11.7986 (10) Åθ = 2.6–28.1°
b = 20.9246 (18) ŵ = 0.13 mm1
c = 10.5204 (9) ÅT = 294 K
V = 2597.3 (4) Å3Block, colourless
Z = 40.45 × 0.43 × 0.42 mm
F(000) = 968
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2485 independent reflections
Radiation source: fine-focus sealed tube2143 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.946, Tmax = 0.949k = 2525
17327 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0575P)2 + 1.3437P]
where P = (Fo2 + 2Fc2)/3
2485 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.38 e Å3
18 restraintsΔρmin = 0.30 e Å3
Crystal data top
C30H39OPV = 2597.3 (4) Å3
Mr = 446.58Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.7986 (10) ŵ = 0.13 mm1
b = 20.9246 (18) ÅT = 294 K
c = 10.5204 (9) Å0.45 × 0.43 × 0.42 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2485 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2143 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.949Rint = 0.027
17327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04218 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
2485 reflectionsΔρmin = 0.30 e Å3
161 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.77025 (14)0.31883 (8)0.30317 (15)0.0298 (4)
C20.66436 (14)0.33374 (8)0.35431 (16)0.0340 (4)
H20.60140.30930.33280.041*
C30.65284 (15)0.38473 (8)0.43698 (17)0.0370 (4)
H30.58140.39440.46890.044*
C40.74507 (15)0.42213 (8)0.47393 (16)0.0342 (4)
C50.84902 (15)0.40734 (9)0.42064 (17)0.0400 (4)
H50.91190.43190.44190.048*
C60.86199 (14)0.35678 (9)0.33627 (17)0.0381 (4)
H60.93290.34830.30160.046*
C70.72901 (17)0.47686 (9)0.56942 (18)0.0422 (4)
C80.8417 (2)0.50323 (12)0.6179 (2)0.0656 (7)
H8A0.88390.46960.65790.098*
H8B0.82760.53660.67840.098*
H8C0.88440.52010.54780.098*
C90.6599 (2)0.45282 (11)0.6836 (2)0.0654 (7)
H9A0.58660.43900.65530.098*
H9B0.65130.48680.74430.098*
H9C0.69880.41760.72280.098*
C100.6641 (2)0.53167 (10)0.5049 (2)0.0592 (6)
H10A0.71000.54980.43870.089*
H10B0.64670.56400.56670.089*
H10C0.59500.51550.46910.089*
C110.6881 (2)0.25000.0829 (2)0.0299 (5)
C120.64869 (17)0.30649 (9)0.03060 (18)0.0432 (5)
H120.67430.34530.06270.052*
C130.57171 (17)0.30618 (9)0.06884 (18)0.0453 (5)
H130.54720.34500.10210.054*
C140.5301 (2)0.25000.1204 (2)0.0342 (5)
C150.4417 (2)0.25000.2271 (2)0.0433 (6)
C160.3243 (4)0.25000.1637 (5)0.0934 (17)0.776 (4)
H16A0.31120.29060.12400.140*0.776 (4)
H16B0.26710.25000.22690.140*0.776 (4)
C170.4487 (4)0.3089 (2)0.3094 (4)0.1069 (16)0.776 (4)
H17A0.39560.30540.37820.160*0.776 (4)
H17B0.52400.31290.34290.160*0.776 (4)
H17C0.43090.34600.25940.160*0.776 (4)
C180.5182 (14)0.25000.3521 (17)0.0934 (17)0.224 (4)
H18A0.46980.25000.42290.140*0.224 (4)
H18B0.55160.20860.35430.140*0.224 (4)
C190.3708 (5)0.3102 (7)0.2313 (5)0.1069 (16)0.224 (4)
H19A0.31780.30740.30030.160*0.224 (4)
H19B0.41930.34650.24360.160*0.224 (4)
H19C0.33030.31480.15260.160*0.224 (4)
O10.91419 (9)0.2500 (7)0.15255 (12)0.0397 (4)
P10.79669 (5)0.2500 (7)0.20357 (5)0.02885 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (8)0.0304 (8)0.0281 (8)0.0013 (7)0.0028 (6)0.0019 (7)
C20.0283 (8)0.0345 (9)0.0393 (9)0.0042 (7)0.0036 (7)0.0025 (7)
C30.0323 (9)0.0385 (9)0.0401 (9)0.0005 (7)0.0026 (7)0.0037 (8)
C40.0393 (9)0.0304 (9)0.0327 (9)0.0023 (7)0.0031 (7)0.0006 (7)
C50.0341 (9)0.0405 (10)0.0455 (10)0.0099 (8)0.0034 (8)0.0057 (8)
C60.0299 (9)0.0429 (10)0.0414 (9)0.0036 (7)0.0022 (7)0.0047 (8)
C70.0487 (11)0.0362 (9)0.0418 (10)0.0038 (8)0.0006 (8)0.0080 (8)
C80.0646 (15)0.0595 (14)0.0728 (15)0.0078 (12)0.0120 (12)0.0304 (12)
C90.0945 (19)0.0592 (14)0.0425 (11)0.0148 (13)0.0137 (12)0.0147 (10)
C100.0685 (14)0.0424 (12)0.0665 (14)0.0090 (10)0.0018 (12)0.0086 (11)
C110.0328 (12)0.0310 (12)0.0260 (11)0.0000.0004 (9)0.000
C120.0580 (12)0.0298 (9)0.0418 (10)0.0022 (8)0.0149 (9)0.0015 (7)
C130.0597 (12)0.0328 (10)0.0434 (10)0.0061 (9)0.0153 (9)0.0027 (8)
C140.0334 (13)0.0424 (13)0.0270 (11)0.0000.0005 (10)0.000
C150.0486 (16)0.0461 (15)0.0352 (14)0.0000.0122 (12)0.000
C160.055 (3)0.157 (5)0.068 (3)0.0000.026 (2)0.000
C170.121 (3)0.117 (3)0.083 (3)0.045 (3)0.065 (2)0.053 (2)
C180.055 (3)0.157 (5)0.068 (3)0.0000.026 (2)0.000
C190.121 (3)0.117 (3)0.083 (3)0.045 (3)0.065 (2)0.053 (2)
O10.0300 (9)0.0473 (10)0.0419 (10)0.0000.0059 (7)0.000
P10.0270 (3)0.0314 (3)0.0282 (3)0.0000.0000 (2)0.000
Geometric parameters (Å, º) top
C1—C61.387 (2)C11—P11.804 (2)
C1—C21.396 (2)C12—C131.385 (3)
C1—P11.808 (13)C12—H120.9300
C2—C31.383 (2)C13—C141.384 (2)
C2—H20.9300C13—H130.9300
C3—C41.396 (2)C14—C13i1.384 (2)
C3—H30.9300C14—C151.533 (3)
C4—C51.384 (3)C15—C17i1.509 (4)
C4—C71.535 (2)C15—C171.509 (4)
C5—C61.389 (2)C15—C19i1.512 (13)
C5—H50.9300C15—C191.512 (13)
C6—H60.9300C15—C161.537 (6)
C7—C81.527 (3)C15—C181.596 (19)
C7—C91.537 (3)C16—H16A0.9600
C7—C101.537 (3)C16—H16B0.9471
C8—H8A0.9600C17—H17A0.9600
C8—H8B0.9600C17—H17B0.9600
C8—H8C0.9600C17—H17C0.9600
C9—H9A0.9600C18—H18A0.9378
C9—H9B0.9600C18—H18B0.9517
C9—H9C0.9600C19—H19A0.9600
C10—H10A0.9600C19—H19B0.9600
C10—H10B0.9600C19—H19C0.9600
C10—H10C0.9600O1—P11.4866 (12)
C11—C12i1.384 (2)P1—C1i1.808 (13)
C11—C121.384 (2)
C6—C1—C2118.28 (15)C14—C13—H13118.9
C6—C1—P1117.83 (17)C12—C13—H13118.9
C2—C1—P1123.78 (18)C13—C14—C13i116.2 (2)
C3—C2—C1120.19 (15)C13—C14—C15121.88 (11)
C3—C2—H2119.9C13i—C14—C15121.88 (11)
C1—C2—H2119.9C17i—C15—C17109.6 (4)
C2—C3—C4122.08 (16)C17i—C15—C19i48.2 (3)
C2—C3—H3119.0C17—C15—C19i133.9 (3)
C4—C3—H3119.0C17i—C15—C19133.9 (3)
C5—C4—C3116.92 (16)C17—C15—C1948.2 (3)
C5—C4—C7122.78 (16)C19i—C15—C19112.7 (7)
C3—C4—C7120.30 (16)C17i—C15—C14112.50 (18)
C4—C5—C6121.79 (16)C17—C15—C14112.50 (18)
C4—C5—H5119.1C19i—C15—C14113.5 (2)
C6—C5—H5119.1C19—C15—C14113.5 (2)
C1—C6—C5120.69 (16)C17i—C15—C16107.4 (3)
C1—C6—H6119.7C17—C15—C16107.4 (3)
C5—C6—H6119.7C19i—C15—C1660.9 (4)
C8—C7—C4112.37 (16)C19—C15—C1660.9 (4)
C8—C7—C9108.61 (18)C14—C15—C16107.2 (2)
C4—C7—C9109.45 (15)C17i—C15—C1859.7 (3)
C8—C7—C10108.16 (17)C17—C15—C1859.7 (3)
C4—C7—C10109.22 (15)C19i—C15—C18106.8 (4)
C9—C7—C10108.98 (19)C19—C15—C18106.8 (4)
C7—C8—H8A109.5C14—C15—C18102.6 (6)
C7—C8—H8B109.5C16—C15—C18150.1 (6)
H8A—C8—H8B109.5C15—C16—H16A109.5
C7—C8—H8C109.5C15—C16—H16B109.7
H8A—C8—H8C109.5H16A—C16—H16B101.0
H8B—C8—H8C109.5C15—C17—H17A109.5
C7—C9—H9A109.5C15—C17—H17B109.5
C7—C9—H9B109.5C15—C17—H17C109.5
H9A—C9—H9B109.5C15—C18—H18A108.1
C7—C9—H9C109.5C15—C18—H18B104.7
H9A—C9—H9C109.5H18A—C18—H18B103.5
H9B—C9—H9C109.5C15—C19—H16A90.7
C7—C10—H10A109.5C15—C19—H19A109.5
C7—C10—H10B109.5C15—C19—H19B109.5
H10A—C10—H10B109.5H19A—C19—H19B109.5
C7—C10—H10C109.5C15—C19—H19C109.5
H10A—C10—H10C109.5H19A—C19—H19C109.5
H10B—C10—H10C109.5H19B—C19—H19C109.5
C12i—C11—C12117.3 (2)O1—P1—C1111.72 (19)
C12i—C11—P1121.2 (5)O1—P1—C11114.10 (9)
C12—C11—P1121.2 (5)C1—P1—C11106.6 (5)
C11—C12—C13121.07 (17)O1—P1—C1i111.72 (16)
C11—C12—H12119.5C1—P1—C1i105.59 (10)
C13—C12—H12119.5C11—P1—C1i106.6 (5)
C14—C13—C12122.14 (17)
C6—C1—C2—C30.8 (2)C13—C14—C15—C1728.3 (4)
P1—C1—C2—C3175.4 (4)C13i—C14—C15—C17152.7 (3)
C1—C2—C3—C41.1 (3)C13—C14—C15—C19i154.7 (4)
C2—C3—C4—C52.1 (3)C13i—C14—C15—C19i24.3 (5)
C2—C3—C4—C7177.92 (16)C13—C14—C15—C1924.3 (5)
C3—C4—C5—C61.4 (3)C13i—C14—C15—C19154.7 (4)
C7—C4—C5—C6178.71 (16)C13—C14—C15—C1689.5 (2)
C2—C1—C6—C51.5 (3)C13i—C14—C15—C1689.5 (2)
P1—C1—C6—C5174.9 (3)C13—C14—C15—C1890.5 (2)
C4—C5—C6—C10.5 (3)C13i—C14—C15—C1890.5 (2)
C5—C4—C7—C811.6 (3)C6—C1—P1—O19.6 (3)
C3—C4—C7—C8168.51 (18)C2—C1—P1—O1174.21 (16)
C5—C4—C7—C9132.3 (2)C6—C1—P1—C11134.9 (3)
C3—C4—C7—C947.8 (2)C2—C1—P1—C1148.9 (6)
C5—C4—C7—C10108.5 (2)C6—C1—P1—C1i112.0 (2)
C3—C4—C7—C1071.5 (2)C2—C1—P1—C1i64.1 (2)
C12i—C11—C12—C130.9 (4)C12i—C11—P1—O186.9 (3)
P1—C11—C12—C13174.97 (17)C12—C11—P1—O186.9 (3)
C11—C12—C13—C140.3 (3)C12i—C11—P1—C1149.3 (4)
C12—C13—C14—C13i1.4 (4)C12—C11—P1—C136.9 (4)
C12—C13—C14—C15177.7 (2)C12i—C11—P1—C1i36.9 (4)
C13—C14—C15—C17i152.7 (3)C12—C11—P1—C1i149.3 (4)
C13i—C14—C15—C17i28.3 (4)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC30H39OP
Mr446.58
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)294
a, b, c (Å)11.7986 (10), 20.9246 (18), 10.5204 (9)
V3)2597.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.45 × 0.43 × 0.42
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.946, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
17327, 2485, 2143
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.03
No. of reflections2485
No. of parameters161
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We are grateful to the Fund for Distinguished Talents of Henan Province (No. 074200510019) for financial support of this work.

References

First citationBaures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715–717.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchwald, S. L., Mauger, C., Mignani, G. & Scholz, U. (2006). Adv. Synth. Catal. 348, 23–39.  Web of Science CrossRef CAS Google Scholar
First citationIssleib, V. K. & Brack, A. (1954). Z. Anorg. Allg. Chem. 277, 258–270.  CrossRef CAS Web of Science Google Scholar
First citationShawkataly, O. bin, Pankhi, M. A. A., Mohamed-Ibrahim, M. I., Hamdan, M. R. & Fun, H.-K. (2009). Acta Cryst. E65, o1080.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurry, D. S. & Buchwald, S. L. (2008). Angew. Chem. Int. Ed. 47, 6338–6361.  Web of Science CrossRef CAS Google Scholar
First citationXu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009). Organometallics, 28, 1909–1916.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds