organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Di­chloro­phen­yl)-2-oxo-1-oxa­spiro­[4.5]dec-3-en-4-yl acetate

aInstitute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: zhugn@zj.com

(Received 30 November 2009; accepted 15 December 2009; online 19 December 2009)

In the title compound, C17H16Cl2O4, the cyclo­hexyl ring displays a chair conformation [the four C atoms are planar with a mean deviation of 0.001 (2) Å and the two C atoms at the flap positions deviate by 0.625 (2) and −0.680 (2) Å from the plane]. The furan ring is planar with a mean deviation of 0.004 (2) Å and forms a dihedral angle of 46.73 (2)° with the benzene ring.

Related literature

For tetronic acid, see: Fischer et al. (1993[Fischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US patent No. 5 262 383.]); Benson et al. (2000[Benson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res. 28, 15-18.]). For the chemistry of tetronic acid pesticides, see: BAYER Aktiengesellschaft (1995[BAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.]). For the synthesis and basic structure of the spiro­diclofen derivative, see: Zhao et al. (2009[Zhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem. 28, 837-840.]); Zhou et al. (2009[Zhou, Y., Cheng, J.-L., Zhu, G.-N. & Zhao, J.-H. (2009). Acta Cryst. E65, o2992.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16Cl2O4

  • Mr = 355.20

  • Monoclinic, P 21 /c

  • a = 14.0705 (5) Å

  • b = 12.9731 (4) Å

  • c = 9.2400 (3) Å

  • β = 90.8920 (10)°

  • V = 1686.45 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.47 × 0.45 × 0.29 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.834, Tmax = 0.893

  • 16146 measured reflections

  • 3835 independent reflections

  • 2866 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.00

  • 3835 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of tetronic acid compounds has being receiving increasing attention in recent years, and references cited therein (Fischer et al.,1993; Benson et al., 2000). Bayer company have developed three tetronic acids pesticides-spirodiclofen, spiromesifen and spirotetramat(BAYER Aktiengesellschaft, 1995). The cyclohexyl chair is linked by the spiro carbon atom to the five membered furan ring and the dichlorophenyl group to form the basic structure of the spirodiclofen derivative (Zhao et al., 2009) resulting in the title compound (I), (Fig. 1) by addition of the acetate group. The furan ring is planar with a mean deviation of 0.004 (2) Å. The dihedral angle between benzene and furan rings is 46.73 (2) °. The cyclohexyl ring displays a chair conformation with the deviations of C9 and C12 being 0.625 (2) and -0.680 (2) Å, respectively. Similar distortions were observed in the structure of a spirodiclofen derivative. (Zhou et al., (2009)). As expected, C7=C15, C8=O1 and C16=O4 are typically double bonds with bond distances of 1.336 (2), 1.201 (2) and 1.183 (2) Å, respectively. In the crystal, the molecules are linked through weak intermolecular contacts of C17—H17B···O1, forming chains running along the c axis.

Related literature top

For tetronic acid, see: Fischer et al. (1993); Benson et al. (2000). For the chemistry of tetronic acid pesticides, see: BAYER Aktiengesellschaft (1995). For the synthesis and basic structure of the spirodiclofen derivative, see: Zhao et al. (2009); Zhou et al. (2009).

Experimental top

4-hydroxyl-3-(2,4-dichlorophenyl)-1-oxaspiro[4,5]dec- 3-en-2-one(10 mmol 3.12 g) was added to acetic anhydride (35 ml) and the mixture was stirred at reflux for 5 h. Then water (70 ml) was added and the solution was extracted with dichloromethane. The organic layer was dried over Na2SO4. After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petroleum(1:30,v/v) to give a white solid, which was then recrystallized from 95% ethanol to give colourless blocks.

Refinement top

H atoms were included in calculated positions and refined using a rinding model, with C—H distances constrained to 0.96 Å for methyl H atoms, 0.93Å for aryl H atoms and 0.97 for the cyclopentane,with O—H distances constrained to 0.820 Å, and with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
3-(2,4-Dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl acetate top
Crystal data top
C17H16Cl2O4F(000) = 736
Mr = 355.20Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11608 reflections
a = 14.0705 (5) Åθ = 3.1–27.4°
b = 12.9731 (4) ŵ = 0.40 mm1
c = 9.2400 (3) ÅT = 296 K
β = 90.892 (1)°Chunk, colorless
V = 1686.45 (10) Å30.47 × 0.45 × 0.29 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3835 independent reflections
Radiation source: rotating anode2866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1718
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.834, Tmax = 0.893l = 1111
16146 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.040P)2 + 0.650P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3835 reflectionsΔρmax = 0.22 e Å3
210 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (10)
Crystal data top
C17H16Cl2O4V = 1686.45 (10) Å3
Mr = 355.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0705 (5) ŵ = 0.40 mm1
b = 12.9731 (4) ÅT = 296 K
c = 9.2400 (3) Å0.47 × 0.45 × 0.29 mm
β = 90.892 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3835 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2866 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.893Rint = 0.025
16146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
3835 reflectionsΔρmin = 0.23 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl20.54892 (4)0.47091 (4)0.18788 (5)0.06065 (17)
Cl10.38311 (4)0.75742 (4)0.51693 (6)0.06588 (18)
O20.84926 (8)0.39184 (10)0.46610 (12)0.0476 (3)
O10.75521 (9)0.45025 (11)0.64035 (13)0.0536 (3)
C40.64126 (12)0.56385 (12)0.41374 (17)0.0392 (3)
O30.76541 (10)0.49671 (10)0.13019 (13)0.0549 (3)
C160.74521 (13)0.59698 (16)0.08843 (19)0.0490 (4)
C70.72584 (12)0.49944 (13)0.39001 (17)0.0401 (4)
C60.56414 (13)0.69385 (14)0.5600 (2)0.0500 (4)
H60.56650.74040.63650.060*
C150.77593 (13)0.47332 (13)0.27392 (18)0.0437 (4)
C30.55724 (12)0.55682 (13)0.33197 (17)0.0417 (4)
C10.48284 (12)0.68374 (13)0.4763 (2)0.0462 (4)
C90.85752 (12)0.40299 (14)0.30992 (18)0.0445 (4)
C20.47789 (12)0.61566 (14)0.36203 (18)0.0460 (4)
H20.42250.60940.30640.055*
O40.74584 (11)0.66581 (11)0.17247 (15)0.0626 (4)
C50.64214 (13)0.63370 (14)0.52862 (19)0.0467 (4)
H50.69690.63990.58570.056*
C80.77430 (12)0.44761 (13)0.51412 (18)0.0424 (4)
C140.84764 (13)0.29681 (15)0.2402 (2)0.0522 (4)
H14A0.78920.26490.27180.063*
H14B0.84380.30440.13580.063*
C130.93139 (16)0.22725 (18)0.2799 (3)0.0715 (6)
H13A0.93060.21260.38290.086*
H13B0.92520.16240.22840.086*
C100.95350 (14)0.45228 (17)0.2795 (2)0.0620 (5)
H10A0.95960.51550.33480.074*
H10B0.95640.46990.17760.074*
C111.03604 (15)0.3808 (2)0.3184 (3)0.0772 (7)
H11A1.09540.41270.29070.093*
H11B1.03820.37000.42230.093*
C170.72453 (19)0.6010 (2)0.0704 (2)0.0764 (7)
H17A0.65800.58900.08770.092*
H17B0.76080.54880.11840.092*
H17C0.74150.66760.10710.092*
C121.02541 (16)0.2775 (2)0.2422 (3)0.0867 (8)
H12A1.07740.23260.27100.104*
H12B1.02820.28760.13830.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0609 (3)0.0749 (3)0.0461 (3)0.0062 (2)0.0021 (2)0.0182 (2)
Cl10.0520 (3)0.0588 (3)0.0873 (4)0.0111 (2)0.0151 (2)0.0012 (3)
O20.0461 (6)0.0517 (7)0.0450 (6)0.0078 (6)0.0016 (5)0.0027 (5)
O10.0572 (8)0.0654 (8)0.0381 (6)0.0063 (6)0.0007 (5)0.0010 (6)
C40.0433 (8)0.0371 (8)0.0374 (8)0.0017 (7)0.0032 (7)0.0010 (6)
O30.0725 (9)0.0540 (7)0.0385 (6)0.0110 (7)0.0104 (6)0.0009 (5)
C160.0452 (9)0.0568 (11)0.0450 (9)0.0032 (8)0.0047 (7)0.0058 (9)
C70.0452 (9)0.0375 (8)0.0374 (8)0.0028 (7)0.0015 (7)0.0027 (7)
C60.0523 (10)0.0443 (9)0.0535 (10)0.0017 (8)0.0075 (8)0.0110 (8)
C150.0502 (9)0.0409 (9)0.0401 (8)0.0013 (7)0.0035 (7)0.0017 (7)
C30.0483 (9)0.0428 (9)0.0341 (8)0.0050 (7)0.0027 (7)0.0017 (7)
C10.0441 (9)0.0409 (9)0.0540 (10)0.0017 (7)0.0110 (8)0.0058 (8)
C90.0434 (9)0.0462 (9)0.0439 (9)0.0007 (7)0.0021 (7)0.0073 (7)
C20.0423 (9)0.0514 (10)0.0444 (9)0.0025 (8)0.0017 (7)0.0078 (8)
O40.0823 (10)0.0506 (8)0.0545 (8)0.0025 (7)0.0065 (7)0.0040 (7)
C50.0449 (9)0.0472 (10)0.0478 (9)0.0006 (8)0.0014 (7)0.0085 (8)
C80.0417 (8)0.0409 (9)0.0445 (9)0.0021 (7)0.0019 (7)0.0037 (7)
C140.0444 (9)0.0498 (10)0.0621 (11)0.0047 (8)0.0058 (8)0.0140 (9)
C130.0658 (13)0.0610 (13)0.0869 (16)0.0216 (11)0.0206 (12)0.0258 (12)
C100.0538 (11)0.0662 (13)0.0662 (12)0.0137 (10)0.0109 (10)0.0151 (10)
C110.0405 (10)0.1057 (19)0.0856 (16)0.0067 (11)0.0009 (10)0.0284 (14)
C170.0956 (17)0.0911 (17)0.0426 (10)0.0107 (14)0.0081 (11)0.0080 (11)
C120.0493 (12)0.112 (2)0.0985 (18)0.0272 (13)0.0115 (12)0.0418 (16)
Geometric parameters (Å, º) top
Cl2—C31.7388 (17)C9—C141.526 (2)
Cl1—C11.7437 (17)C2—H20.9300
O2—C81.359 (2)C5—H50.9300
O2—C91.457 (2)C14—C131.525 (3)
O1—C81.201 (2)C14—H14A0.9700
C4—C51.395 (2)C14—H14B0.9700
C4—C31.396 (2)C13—C121.520 (4)
C4—C71.473 (2)C13—H13A0.9700
O3—C151.368 (2)C13—H13B0.9700
O3—C161.385 (2)C10—C111.525 (3)
C16—O41.183 (2)C10—H10A0.9700
C16—C171.492 (3)C10—H10B0.9700
C7—C151.336 (2)C11—C121.520 (3)
C7—C81.486 (2)C11—H11A0.9700
C6—C11.377 (3)C11—H11B0.9700
C6—C51.381 (2)C17—H17A0.9600
C6—H60.9300C17—H17B0.9600
C15—C91.500 (2)C17—H17C0.9600
C3—C21.384 (2)C12—H12A0.9700
C1—C21.377 (3)C12—H12B0.9700
C9—C101.524 (3)
C8—O2—C9110.17 (12)O2—C8—C7109.76 (14)
C5—C4—C3116.84 (15)C13—C14—C9111.57 (15)
C5—C4—C7118.94 (14)C13—C14—H14A109.3
C3—C4—C7124.16 (15)C9—C14—H14A109.3
C15—O3—C16119.83 (14)C13—C14—H14B109.3
O4—C16—O3121.77 (16)C9—C14—H14B109.3
O4—C16—C17128.21 (19)H14A—C14—H14B108.0
O3—C16—C17110.02 (18)C12—C13—C14111.3 (2)
C15—C7—C4134.48 (15)C12—C13—H13A109.4
C15—C7—C8105.27 (15)C14—C13—H13A109.4
C4—C7—C8120.25 (14)C12—C13—H13B109.4
C1—C6—C5118.93 (16)C14—C13—H13B109.4
C1—C6—H6120.5H13A—C13—H13B108.0
C5—C6—H6120.5C9—C10—C11112.02 (18)
C7—C15—O3132.27 (16)C9—C10—H10A109.2
C7—C15—C9112.81 (15)C11—C10—H10A109.2
O3—C15—C9114.90 (14)C9—C10—H10B109.2
C2—C3—C4122.29 (15)C11—C10—H10B109.2
C2—C3—Cl2117.53 (13)H10A—C10—H10B107.9
C4—C3—Cl2120.18 (13)C12—C11—C10110.95 (17)
C6—C1—C2121.56 (16)C12—C11—H11A109.4
C6—C1—Cl1119.41 (14)C10—C11—H11A109.4
C2—C1—Cl1119.02 (14)C12—C11—H11B109.4
O2—C9—C15101.97 (13)C10—C11—H11B109.4
O2—C9—C10108.00 (14)H11A—C11—H11B108.0
C15—C9—C10112.41 (16)C16—C17—H17A109.5
O2—C9—C14108.69 (15)C16—C17—H17B109.5
C15—C9—C14113.02 (14)H17A—C17—H17B109.5
C10—C9—C14112.08 (15)C16—C17—H17C109.5
C1—C2—C3118.43 (16)H17A—C17—H17C109.5
C1—C2—H2120.8H17B—C17—H17C109.5
C3—C2—H2120.8C11—C12—C13110.58 (18)
C6—C5—C4121.95 (16)C11—C12—H12A109.5
C6—C5—H5119.0C13—C12—H12A109.5
C4—C5—H5119.0C11—C12—H12B109.5
O1—C8—O2121.23 (15)C13—C12—H12B109.5
O1—C8—C7129.01 (16)H12A—C12—H12B108.1
C15—O3—C16—O47.6 (3)C7—C15—C9—C14115.89 (18)
C15—O3—C16—C17172.61 (17)O3—C15—C9—C1462.8 (2)
C5—C4—C7—C15134.5 (2)C6—C1—C2—C30.2 (3)
C3—C4—C7—C1548.4 (3)Cl1—C1—C2—C3179.30 (13)
C5—C4—C7—C844.9 (2)C4—C3—C2—C10.4 (3)
C3—C4—C7—C8132.16 (17)Cl2—C3—C2—C1179.61 (13)
C4—C7—C15—O31.1 (3)C1—C6—C5—C40.7 (3)
C8—C7—C15—O3179.42 (18)C3—C4—C5—C60.5 (3)
C4—C7—C15—C9179.47 (17)C7—C4—C5—C6177.72 (16)
C8—C7—C15—C91.07 (19)C9—O2—C8—O1179.13 (16)
C16—O3—C15—C744.5 (3)C9—O2—C8—C70.84 (18)
C16—O3—C15—C9137.13 (16)C15—C7—C8—O1178.78 (18)
C5—C4—C3—C20.1 (2)C4—C7—C8—O10.8 (3)
C7—C4—C3—C2177.04 (15)C15—C7—C8—O21.19 (19)
C5—C4—C3—Cl2179.29 (13)C4—C7—C8—O2179.26 (14)
C7—C4—C3—Cl22.2 (2)O2—C9—C14—C1367.2 (2)
C5—C6—C1—C20.3 (3)C15—C9—C14—C13179.60 (18)
C5—C6—C1—Cl1178.78 (14)C10—C9—C14—C1352.1 (2)
C8—O2—C9—C150.20 (17)C9—C14—C13—C1255.0 (2)
C8—O2—C9—C10118.41 (16)O2—C9—C10—C1167.5 (2)
C8—O2—C9—C14119.78 (15)C15—C9—C10—C11179.18 (16)
C7—C15—C9—O20.60 (19)C14—C9—C10—C1152.2 (2)
O3—C15—C9—O2179.25 (14)C9—C10—C11—C1254.8 (3)
C7—C15—C9—C10116.02 (17)C10—C11—C12—C1357.3 (3)
O3—C15—C9—C1065.3 (2)C14—C13—C12—C1157.6 (3)

Experimental details

Crystal data
Chemical formulaC17H16Cl2O4
Mr355.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.0705 (5), 12.9731 (4), 9.2400 (3)
β (°) 90.892 (1)
V3)1686.45 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.47 × 0.45 × 0.29
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.834, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
16146, 3835, 2866
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.00
No. of reflections3835
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2009C21014) for financial support. The authors are grateful to Professor Jianming Gu for the crystal structure analysis.

References

First citationBAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.  Google Scholar
First citationBenson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res. 28, 15–18.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US patent No. 5 262 383.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem. 28, 837–840.  CAS Google Scholar
First citationZhou, Y., Cheng, J.-L., Zhu, G.-N. & Zhao, J.-H. (2009). Acta Cryst. E65, o2992.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds