organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o81-o82

Atalaphylline

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 19 November 2009; accepted 2 December 2009; online 9 December 2009)

The title acridone alkaloid [systematic name: 1,3,5-trihydr­oxy-2,4-bis­(3-methyl­but-2-en­yl)acridin-9(10H)-one], C23H25NO4, known as atalaphylline, was isolated from Atalantia monophylla Corrêa, a mangrove plant. The mol­ecule contains three fused planar rings with an r.m.s. deviation of 0.026 (2) Å. Both 3-methyl­but-2-enyl substituents are in a (−)anticlinal conformation. An intra­molecular N—H⋯O hydrogen bond generates an S(5) ring motif, while an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, the mol­ecules are linked into screw chains along [010] by inter­molecular O—H⋯O hydrogen bonds. These chains are stacked along the a axis by ππ inter­actions with centroid–centroid distances of 3.6695 (13) and 3.6696 (13) Å.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of acridone alkaloids and their biological activity, see: Basu & Basa (1972[Basu, D. & Basa, S. C. (1972). J. Org. Chem. 37, 3035-3036.]); Itoigawa et al. (2003[Itoigawa, M., Ito, C., Wu, T. S., Enjo, F., Tokuda, H., Nishino, H. & Furakawa, H. (2003). Cancer Lett. 193, 133-138.]); Kawaii et al. (1999a[Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M., Ito, C. & Furakawa, H. (1999a). J. Nat. Prod. 62, 587-589.],b[Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M. & Furakawa, H. (1999b). Leuk. Res. 23, 263-269.]). For a related structure, see: Chukaew et al. (2007[Chukaew, A., Fun, H.-K., Chantrapromma, S. & Ponglimanont, C. (2007). Acta Cryst. E63, o3723-o3724.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25NO4

  • Mr = 379.44

  • Orthorhombic, P 21 21 21

  • a = 5.0650 (1) Å

  • b = 15.0131 (4) Å

  • c = 24.5813 (5) Å

  • V = 1869.20 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.21 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.996

  • 17852 measured reflections

  • 3142 independent reflections

  • 2525 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.118

  • S = 1.03

  • 3142 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.82 1.82 2.554 (2) 149
O3—H1O3⋯O2i 0.82 1.93 2.752 (2) 175
N1—H1N1⋯O3 0.86 2.34 2.692 (3) 105
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridone alkaloids display a variety of biological activities such as antiproliferative (Kawii et al., 1999a), induction of human promyelocytic leukemia cell (HL-60) differentiation (Kawii et al., 1999b) and cancer chemopreventive activities (Itoigawa et al., 2003). The title acridone alkaloid (I) known as atalaphylline (Basu & Basa, 1972) was isolated from Atalantia monophylla Corrêa, known locally in Thai as Manao Phi, a mangrove plant which was collected from Trang province in the southern part of Thailand. We previously reported the crystal structure of N-methylataphyllinine, an acridone alkaloid which was isolated from the same plant (Chukaew et al., 2007). As part of our research on the crystal structures of natural product compounds from Thai medicinal plants, the molecular and crystal structure of the title acridone alkaloid was investigated and is reported here.

The title molecule (Fig. 1) has a three-fused planar rings with an r.m.s. deviation of 0.026 (2) Å. The pyridine ring makes the dihedral angles of 1.82 (11) and 1.14 (11)° with the C1–C3/C11–C13 and C5–C10 benzene rings, respectively. All the three hydroxyl groups are co-planar with the attached benzene rings. All C atoms of each of the 3-methylbut-2-enyl substituents lie on the same plane with r.m.s. deviations of 0.018 (2) and 0.004 (3)Å for the C14/C15/C16/C17/C18 and C19/C20/C21/C22/C23 planes, respectively. These two planes make dihedral angles of 88.55 (13) (for the 3-methylbut-2-enyl unit at atom C1) and 69.66 (13)° (for the 3-methylbut-2-enyl unit at atom C12) with the C1–C3/C11–C13 benzene ring. The torsion angles C2–C1–C19–C20 and C13–C12–C14–C15 are -103.0 (3) and -120.8 (2)°, indicating an (-)anti-clinal conformation of both the 3-methylbut-2-enyl units. An intramolecular N—H···O hydrogen bond generates an S(5) ring while an intramolecular O—H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995); these help to maintain the planarity of the acridone skeleton. The bond lengths in (I) are within normal ranges (Allen et al., 1987) and comparable with those found in a related structure (Chukaew et al., 2007).

In the crystal packing (Fig. 2), the molecules are linked into screw chains along the [0 1 0] direction by O3—H1O3···O2 hydrogen bonds (Table 1). These chains are stacked along the a axis (Fig. 2) by π···π interactions with distances Cg1···Cg2 = 3.6696 (13) Å and Cg2···Cg3 = 3.6695 (13) Å (symmetry codes for the interactions: 1 + x, y, z and -1 + x, y, z respectively); Cg1, Cg2 and Cg3 are the centroids of C3–C5/C10–C11/N1, C1–C3/C11–C13 and C5–C10 rings, respectively.

Related literature top

For hydrogen-bond motifs, see Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For details of acridone alkaloids and their biological activity, see: Basu & Basa (1972); Itoigawa et al. (2003); Kawaii et al. (1999a,b). For a related structure, see: Chukaew et al. (2007). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The air-dried and pulverized root of A. monophylla (6.0 kg) was exhaustively extracted with methylene chloride (2 × 20 l for one week) at room temperature. Removal of the solvent from the methylene chloride extract under reduced pressure gave a yellow viscous residue (52.5 g) which was subjected to quick column chromatography over silica gel using solvents of increasing polarity from n-hexane through EtOAc. The eluents were separated into 18 fractions (F1–F18) on the basis of TLC analysis. Fraction F12 (4.3 g) was further separated by quick column chromatography (QCC) with a gradient of acetone-hexane to afford 6 subfractions (12 A-12 F). Subfraction 12 C (385.0 mg) was further purified by QCC with a gradient of acetone-hexane to give the title compound (22.0 mg). Brown plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from CHCl3/CH3OH (9:1, v/v) after several days, m.p. 518–520 K.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.82 Å, d(N—H) = 0.86 Å and d(C—H) = 0.93 Å for aromatic and CH, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for hydroxy and methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.68 Å from C5 and the deepest hole is located at 1.28 Å from C10. A total of 2260 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) view along the a axis. Hydrogen bonds are drawn as dashed lines.
1,3,5-trihydroxy-2,4-bis(3-methylbut-2-enyl)acridin-9(10H)-one top
Crystal data top
C23H25NO4Dx = 1.348 Mg m3
Mr = 379.44Melting point = 518–520 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3142 reflections
a = 5.0650 (1) Åθ = 1.6–30.0°
b = 15.0131 (4) ŵ = 0.09 mm1
c = 24.5813 (5) ÅT = 100 K
V = 1869.20 (7) Å3Plate, brown
Z = 40.40 × 0.21 × 0.04 mm
F(000) = 808
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3142 independent reflections
Radiation source: sealed tube2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 67
Tmin = 0.964, Tmax = 0.996k = 2115
17852 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.5624P]
where P = (Fo2 + 2Fc2)/3
3142 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H25NO4V = 1869.20 (7) Å3
Mr = 379.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.0650 (1) ŵ = 0.09 mm1
b = 15.0131 (4) ÅT = 100 K
c = 24.5813 (5) Å0.40 × 0.21 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3142 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2525 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.996Rint = 0.041
17852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3142 reflectionsΔρmin = 0.26 e Å3
257 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3340 (3)0.33730 (11)0.16280 (7)0.0193 (4)
H1O10.45520.33070.18450.029*
O20.7218 (3)0.37946 (11)0.22404 (6)0.0183 (4)
O30.9035 (4)0.77231 (10)0.22808 (6)0.0187 (4)
H1O31.01120.80670.24150.028*
O40.0692 (3)0.56738 (12)0.05943 (7)0.0220 (4)
H1O40.15450.52440.04870.026*
N10.6177 (4)0.64068 (12)0.18267 (8)0.0150 (4)
H1N10.60020.69560.17340.018*
C10.1293 (5)0.44831 (15)0.11046 (9)0.0149 (5)
C20.3171 (5)0.42414 (15)0.14846 (9)0.0148 (5)
C30.4888 (4)0.48744 (14)0.17270 (9)0.0137 (4)
C40.6867 (5)0.46079 (15)0.21169 (9)0.0141 (4)
C50.8434 (5)0.53044 (15)0.23695 (9)0.0152 (5)
C61.0356 (5)0.51065 (15)0.27656 (9)0.0193 (5)
H6A1.06480.45190.28680.023*
C71.1794 (5)0.57750 (17)0.29992 (10)0.0226 (5)
H7A1.30610.56390.32600.027*
C81.1368 (5)0.66664 (16)0.28480 (9)0.0198 (5)
H8A1.23420.71160.30140.024*
C90.9534 (5)0.68805 (15)0.24586 (9)0.0159 (5)
C100.8024 (5)0.61953 (15)0.22133 (9)0.0147 (4)
C110.4593 (4)0.57851 (14)0.15804 (9)0.0143 (4)
C120.2707 (5)0.60543 (15)0.11958 (9)0.0149 (5)
C130.1139 (5)0.53968 (15)0.09674 (9)0.0167 (5)
C140.2242 (5)0.70302 (15)0.10646 (10)0.0176 (5)
H14A0.07470.70720.08190.021*
H14B0.17650.73360.13980.021*
C150.4547 (5)0.75103 (16)0.08107 (9)0.0185 (5)
H15A0.54470.72100.05370.022*
C160.5433 (5)0.83205 (16)0.09377 (10)0.0214 (5)
C170.7643 (6)0.87496 (19)0.06275 (13)0.0337 (7)
H17A0.82380.83530.03470.051*
H17B0.90770.88770.08710.051*
H17C0.70280.92940.04660.051*
C180.4340 (6)0.88750 (17)0.13926 (11)0.0284 (6)
H18A0.29030.85640.15620.043*
H18B0.37170.94320.12500.043*
H18C0.57000.89840.16560.043*
C190.0597 (5)0.38065 (15)0.08666 (9)0.0179 (5)
H19A0.06380.32870.11010.022*
H19B0.23580.40600.08620.022*
C200.0113 (5)0.35141 (15)0.02980 (9)0.0190 (5)
H20A0.16200.31640.02660.023*
C210.1154 (5)0.36960 (16)0.01649 (10)0.0219 (5)
C220.0143 (7)0.3355 (2)0.07035 (10)0.0323 (7)
H22A0.13690.29820.06430.049*
H22B0.03490.38500.09290.049*
H22C0.15020.30170.08800.049*
C230.3584 (6)0.4259 (2)0.02118 (12)0.0333 (6)
H23A0.43160.43560.01430.050*
H23B0.48590.39610.04360.050*
H23C0.31340.48210.03730.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0209 (8)0.0137 (8)0.0235 (8)0.0020 (7)0.0046 (7)0.0007 (7)
O20.0205 (8)0.0100 (7)0.0243 (8)0.0001 (7)0.0030 (7)0.0012 (7)
O30.0236 (9)0.0098 (7)0.0227 (8)0.0018 (7)0.0055 (7)0.0001 (6)
O40.0206 (8)0.0205 (8)0.0251 (9)0.0028 (8)0.0084 (7)0.0007 (7)
N10.0153 (9)0.0083 (9)0.0214 (9)0.0004 (8)0.0029 (8)0.0009 (7)
C10.0155 (10)0.0137 (10)0.0155 (10)0.0026 (9)0.0010 (9)0.0029 (9)
C20.0167 (11)0.0107 (10)0.0169 (11)0.0015 (9)0.0031 (9)0.0020 (9)
C30.0143 (10)0.0110 (9)0.0158 (10)0.0010 (9)0.0004 (9)0.0014 (8)
C40.0147 (10)0.0133 (10)0.0141 (10)0.0009 (9)0.0006 (9)0.0013 (9)
C50.0169 (11)0.0121 (10)0.0164 (10)0.0003 (9)0.0003 (9)0.0013 (9)
C60.0255 (12)0.0112 (10)0.0213 (12)0.0022 (10)0.0066 (10)0.0013 (9)
C70.0264 (13)0.0179 (11)0.0236 (12)0.0013 (11)0.0108 (11)0.0011 (10)
C80.0246 (12)0.0135 (11)0.0211 (12)0.0040 (10)0.0063 (10)0.0031 (9)
C90.0194 (11)0.0113 (10)0.0170 (11)0.0017 (9)0.0008 (10)0.0021 (9)
C100.0152 (10)0.0144 (10)0.0145 (10)0.0006 (9)0.0003 (9)0.0003 (9)
C110.0125 (10)0.0115 (9)0.0190 (11)0.0019 (9)0.0013 (9)0.0006 (9)
C120.0161 (10)0.0099 (10)0.0186 (11)0.0000 (9)0.0008 (9)0.0011 (9)
C130.0159 (11)0.0176 (11)0.0167 (10)0.0012 (10)0.0006 (9)0.0014 (9)
C140.0154 (11)0.0121 (10)0.0252 (12)0.0004 (9)0.0036 (10)0.0024 (9)
C150.0200 (11)0.0174 (11)0.0181 (11)0.0026 (10)0.0021 (9)0.0023 (9)
C160.0192 (11)0.0191 (11)0.0258 (12)0.0022 (10)0.0084 (10)0.0073 (10)
C170.0237 (13)0.0263 (14)0.0510 (18)0.0056 (13)0.0017 (14)0.0111 (13)
C180.0376 (15)0.0150 (11)0.0326 (14)0.0031 (12)0.0083 (13)0.0037 (11)
C190.0172 (11)0.0155 (10)0.0211 (11)0.0045 (10)0.0004 (9)0.0005 (9)
C200.0202 (11)0.0148 (10)0.0220 (12)0.0034 (10)0.0012 (10)0.0033 (9)
C210.0283 (13)0.0170 (11)0.0205 (12)0.0085 (11)0.0017 (11)0.0007 (10)
C220.0453 (17)0.0313 (14)0.0204 (13)0.0074 (15)0.0010 (13)0.0022 (11)
C230.0268 (14)0.0446 (17)0.0287 (14)0.0006 (14)0.0086 (12)0.0017 (13)
Geometric parameters (Å, º) top
O1—C21.353 (3)C12—C141.519 (3)
O1—H1O10.8200C14—C151.508 (3)
O2—C41.271 (3)C14—H14A0.9700
O3—C91.362 (3)C14—H14B0.9700
O3—H1O30.8200C15—C161.334 (3)
O4—C131.369 (3)C15—H15A0.9300
O4—H1O40.8200C16—C171.500 (4)
N1—C101.371 (3)C16—C181.500 (4)
N1—C111.372 (3)C17—H17A0.9600
N1—H1N10.8600C17—H17B0.9600
C1—C21.381 (3)C17—H17C0.9600
C1—C131.415 (3)C18—H18A0.9600
C1—C191.514 (3)C18—H18B0.9600
C2—C31.419 (3)C18—H18C0.9600
C3—C111.422 (3)C19—C201.508 (3)
C3—C41.443 (3)C19—H19A0.9700
C4—C51.452 (3)C19—H19B0.9700
C5—C101.407 (3)C20—C211.335 (3)
C5—C61.408 (3)C20—H20A0.9300
C6—C71.366 (3)C21—C231.497 (4)
C6—H6A0.9300C21—C221.509 (3)
C7—C81.406 (3)C22—H22A0.9600
C7—H7A0.9300C22—H22B0.9600
C8—C91.372 (3)C22—H22C0.9600
C8—H8A0.9300C23—H23A0.9600
C9—C101.417 (3)C23—H23B0.9600
C11—C121.404 (3)C23—H23C0.9600
C12—C131.386 (3)
C2—O1—H1O1109.5C12—C14—H14A108.4
C9—O3—H1O3109.5C15—C14—H14B108.4
C13—O4—H1O4109.5C12—C14—H14B108.4
C10—N1—C11123.20 (19)H14A—C14—H14B107.5
C10—N1—H1N1118.4C16—C15—C14126.8 (2)
C11—N1—H1N1118.4C16—C15—H15A116.6
C2—C1—C13117.0 (2)C14—C15—H15A116.6
C2—C1—C19121.4 (2)C15—C16—C17121.6 (3)
C13—C1—C19121.6 (2)C15—C16—C18123.8 (2)
O1—C2—C1118.2 (2)C17—C16—C18114.6 (2)
O1—C2—C3119.8 (2)C16—C17—H17A109.5
C1—C2—C3122.0 (2)C16—C17—H17B109.5
C2—C3—C11118.2 (2)H17A—C17—H17B109.5
C2—C3—C4121.2 (2)C16—C17—H17C109.5
C11—C3—C4120.5 (2)H17A—C17—H17C109.5
O2—C4—C3121.5 (2)H17B—C17—H17C109.5
O2—C4—C5120.9 (2)C16—C18—H18A109.5
C3—C4—C5117.64 (19)C16—C18—H18B109.5
C10—C5—C6119.4 (2)H18A—C18—H18B109.5
C10—C5—C4119.1 (2)C16—C18—H18C109.5
C6—C5—C4121.4 (2)H18A—C18—H18C109.5
C7—C6—C5120.3 (2)H18B—C18—H18C109.5
C7—C6—H6A119.9C20—C19—C1113.73 (19)
C5—C6—H6A119.9C20—C19—H19A108.8
C6—C7—C8120.4 (2)C1—C19—H19A108.8
C6—C7—H7A119.8C20—C19—H19B108.8
C8—C7—H7A119.8C1—C19—H19B108.8
C9—C8—C7120.8 (2)H19A—C19—H19B107.7
C9—C8—H8A119.6C21—C20—C19128.0 (2)
C7—C8—H8A119.6C21—C20—H20A116.0
O3—C9—C8124.5 (2)C19—C20—H20A116.0
O3—C9—C10116.0 (2)C20—C21—C23125.2 (2)
C8—C9—C10119.5 (2)C20—C21—C22121.0 (2)
N1—C10—C5120.7 (2)C23—C21—C22113.8 (2)
N1—C10—C9119.7 (2)C21—C22—H22A109.5
C5—C10—C9119.6 (2)C21—C22—H22B109.5
N1—C11—C12119.97 (19)H22A—C22—H22B109.5
N1—C11—C3118.7 (2)C21—C22—H22C109.5
C12—C11—C3121.3 (2)H22A—C22—H22C109.5
C13—C12—C11117.3 (2)H22B—C22—H22C109.5
C13—C12—C14120.8 (2)C21—C23—H23A109.5
C11—C12—C14121.8 (2)C21—C23—H23B109.5
O4—C13—C12116.3 (2)H23A—C23—H23B109.5
O4—C13—C1119.5 (2)C21—C23—H23C109.5
C12—C13—C1124.2 (2)H23A—C23—H23C109.5
C15—C14—C12115.4 (2)H23B—C23—H23C109.5
C15—C14—H14A108.4
C13—C1—C2—O1179.2 (2)O3—C9—C10—C5179.3 (2)
C19—C1—C2—O12.1 (3)C8—C9—C10—C50.4 (3)
C13—C1—C2—C30.3 (3)C10—N1—C11—C12178.7 (2)
C19—C1—C2—C3177.5 (2)C10—N1—C11—C30.6 (3)
O1—C2—C3—C11177.9 (2)C2—C3—C11—N1177.7 (2)
C1—C2—C3—C111.7 (3)C4—C3—C11—N11.7 (3)
O1—C2—C3—C41.4 (3)C2—C3—C11—C121.7 (3)
C1—C2—C3—C4179.0 (2)C4—C3—C11—C12179.0 (2)
C2—C3—C4—O23.0 (3)N1—C11—C12—C13179.0 (2)
C11—C3—C4—O2177.7 (2)C3—C11—C12—C130.3 (3)
C2—C3—C4—C5176.4 (2)N1—C11—C12—C143.6 (3)
C11—C3—C4—C52.9 (3)C3—C11—C12—C14175.7 (2)
O2—C4—C5—C10178.7 (2)C11—C12—C13—O4179.85 (19)
C3—C4—C5—C102.0 (3)C14—C12—C13—O44.4 (3)
O2—C4—C5—C61.2 (3)C11—C12—C13—C11.2 (3)
C3—C4—C5—C6178.2 (2)C14—C12—C13—C1174.3 (2)
C10—C5—C6—C70.5 (4)C2—C1—C13—O4179.8 (2)
C4—C5—C6—C7179.6 (2)C19—C1—C13—O42.7 (3)
C5—C6—C7—C80.1 (4)C2—C1—C13—C121.2 (3)
C6—C7—C8—C90.9 (4)C19—C1—C13—C12176.0 (2)
C7—C8—C9—O3178.7 (2)C13—C12—C14—C15120.8 (2)
C7—C8—C9—C101.0 (4)C11—C12—C14—C1564.0 (3)
C11—N1—C10—C51.6 (3)C12—C14—C15—C16136.1 (2)
C11—N1—C10—C9178.3 (2)C14—C15—C16—C17175.8 (2)
C6—C5—C10—N1179.6 (2)C14—C15—C16—C184.2 (4)
C4—C5—C10—N10.2 (3)C2—C1—C19—C20103.0 (3)
C6—C5—C10—C90.4 (3)C13—C1—C19—C2079.9 (3)
C4—C5—C10—C9179.7 (2)C1—C19—C20—C21110.2 (3)
O3—C9—C10—N10.7 (3)C19—C20—C21—C231.2 (4)
C8—C9—C10—N1179.6 (2)C19—C20—C21—C22179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.821.822.554 (2)149
O3—H1O3···O2i0.821.932.752 (2)175
N1—H1N1···O30.862.342.692 (3)105
C14—H14A···O40.972.292.773 (3)110
C19—H19A···O10.972.402.811 (3)105
Symmetry code: (i) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H25NO4
Mr379.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.0650 (1), 15.0131 (4), 24.5813 (5)
V3)1869.20 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.21 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.964, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
17852, 3142, 2525
Rint0.041
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.118, 1.03
No. of reflections3142
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.821.822.554 (2)149
O3—H1O3···O2i0.821.932.752 (2)175
N1—H1N1···O30.862.342.692 (3)105
C14—H14A···O40.972.292.773 (3)110
C19—H19A···O10.972.402.811 (3)105
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Footnotes

This paper is dedicated to the late His Royal Highness Prince Mahidol of Songkla for his contributions to the development of medical education in Thailand.

Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors thank Prince of Songkla University for financial support through the Crystal Materials Research Unit. NB thanks the Development and Promotion of Science and Technology Talents Project for a fellowship. Mr Arnon Chukaew is acknowledged for supplying the authentic sample of atalaphylline. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationBasu, D. & Basa, S. C. (1972). J. Org. Chem. 37, 3035–3036.  CrossRef CAS Web of Science
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChukaew, A., Fun, H.-K., Chantrapromma, S. & Ponglimanont, C. (2007). Acta Cryst. E63, o3723–o3724.  Web of Science CSD CrossRef IUCr Journals
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals
First citationItoigawa, M., Ito, C., Wu, T. S., Enjo, F., Tokuda, H., Nishino, H. & Furakawa, H. (2003). Cancer Lett. 193, 133–138.  Web of Science CrossRef PubMed CAS
First citationKawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M. & Furakawa, H. (1999b). Leuk. Res. 23, 263–269.  Web of Science CrossRef PubMed CAS
First citationKawaii, S., Tomono, Y., Katase, E., Ogawa, K., Yano, M., Takemura, Y., Ju-ichi, M., Ito, C. & Furakawa, H. (1999a). J. Nat. Prod. 62, 587–589.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o81-o82
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds