organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Pyridylsulfan­yl)acetic acid

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China.
*Correspondence e-mail: smuchem@yahoo.com.cn

(Received 14 December 2009; accepted 16 December 2009; online 24 December 2009)

All non-H atoms of the title compound, C7H7NO2S, lie on a crystallographic mirror plane, with the two methyl­ene H atoms bis­ected by this plane. The crystal packing is characterized by inter­molecular C—H⋯O and O—H⋯N contacts, which link the mol­ecules into infinite zigzag chains parallel to [010].

Related literature

For background to the design of similar ligands, see: Akrivos (2001[Akrivos, P. D. (2001). Coord. Chem. Rev. 213, 181-210.]); Ye et al. (2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO2S

  • Mr = 169.20

  • Orthorhombic, P n m a

  • a = 14.5521 (19) Å

  • b = 6.6774 (13) Å

  • c = 7.7212 (19) Å

  • V = 750.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.37 × 0.35 × 0.27 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.906

  • 1160 measured reflections

  • 805 independent reflections

  • 473 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.00

  • 805 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N1i 0.82 1.79 2.606 (5) 175
C2—H2A⋯O2ii 0.93 2.50 3.410 (6) 167
C3—H3A⋯O1iii 0.93 2.46 3.229 (5) 140
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Compounds involving heterocyclic thiolate groups are ambidentate ligands which can form various metal-organic coordination structures via coordination of the exocyclic sulfur or the endocyclic nitrogen atoms (Akrivos, 2001). Similarly, carboxylic acids also exhibit diverse coordination modes in different metal complexes (Ye et al., 2005). In attempts to develop novel coordination frameworks, we have designed and synthesized the title compound, 2-(pyridin-2-ylthio)acetic acid (I), as a potentially multidentate ligand. Its crystal structure is reported here.

The single-crystal X-ray analysis of I reveals that all the bond lengths in compound I are within normal ranges (Allen et al., 1987). All the non-hydrogen atoms in each molecule are coplanar with the methylene hydrogen atoms related by mirror symmetry (Fig. 1). In the crystal structure molecules are linked into infinite, one dimensional, zigzag chains due to intermolecular H-bonding (Fig. 2, Table 2).

Related literature top

For background to the design of similar ligands, see: Akrivos (2001); Ye et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by heating a mixture of 2-pyridinethione (0.335 g, 3 mmol), chloroacetic acid (0.292 g, 3.1 mmol) and sodium hydroxide (0.248 g, 6.2 mmol) in ethanol at 353 K with magnetic stirring for 8 h. The pH of the solution was adjusted to 6 with hydrochloric acid. Yellow crystals were obtained after being recrystrallized twice from the ethanol solution (yield 78%). Analysis, calculated for C7H7NO2S: C 49.69, H 4.17, N 8.28%; Found: C 50.06, H 4.27, N 8.06%.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic 0.97Å, Uiso = 1.2Ueq (C) for CH2, and 0.82Å, Uiso = 1.5Ueq (O) for the OH group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the structure of I. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packin of the title compound viewed down the b axis.
2-(2-Pyridylsulfanyl)acetic acid top
Crystal data top
C7H7NO2SF(000) = 352
Mr = 169.20Dx = 1.498 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 343 reflections
a = 14.5521 (19) Åθ = 2.8–28.0°
b = 6.6774 (13) ŵ = 0.37 mm1
c = 7.7212 (19) ÅT = 293 K
V = 750.3 (3) Å3Block, yellow
Z = 40.37 × 0.35 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
805 independent reflections
Radiation source: fine-focus sealed tube473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 171
Tmin = 0.875, Tmax = 0.906k = 18
1160 measured reflectionsl = 91
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0634P)2]
where P = (Fo2 + 2Fc2)/3
805 reflections(Δ/σ)max = 0.003
67 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C7H7NO2SV = 750.3 (3) Å3
Mr = 169.20Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 14.5521 (19) ŵ = 0.37 mm1
b = 6.6774 (13) ÅT = 293 K
c = 7.7212 (19) Å0.37 × 0.35 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
805 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
473 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.906Rint = 0.066
1160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
805 reflectionsΔρmin = 0.35 e Å3
67 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.34558 (7)0.25000.33858 (14)0.0562 (6)
C10.5342 (3)0.25000.6916 (6)0.0583 (19)
H1A0.59810.25000.68790.070*
C20.4919 (3)0.25000.8503 (6)0.0560 (17)
H2A0.52620.25000.95200.067*
C30.3973 (3)0.25000.8547 (6)0.0545 (17)
H3A0.36680.25000.96050.065*
C40.3481 (3)0.25000.7029 (5)0.0484 (15)
H4A0.28420.25000.70500.058*
C50.3950 (3)0.25000.5463 (5)0.0452 (15)
C60.2251 (2)0.25000.3861 (5)0.0459 (15)
H6A0.20930.13220.45330.055*0.50
H6B0.20930.36780.45330.055*0.50
C70.1723 (3)0.25000.2160 (6)0.0454 (15)
N10.4877 (2)0.25000.5405 (5)0.0474 (13)
O10.2095 (2)0.25000.0775 (4)0.0638 (13)
O20.08419 (18)0.25000.2437 (4)0.0557 (12)
H2B0.05690.25000.15080.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0240 (6)0.1177 (15)0.0269 (6)0.0000.0001 (5)0.000
C10.025 (2)0.109 (6)0.041 (3)0.0000.0074 (19)0.000
C20.042 (3)0.095 (5)0.031 (2)0.0000.007 (2)0.000
C30.041 (3)0.099 (5)0.023 (2)0.0000.006 (2)0.000
C40.028 (2)0.086 (5)0.031 (2)0.0000.0029 (18)0.000
C50.023 (2)0.083 (5)0.030 (2)0.0000.0021 (17)0.000
C60.0196 (19)0.088 (5)0.030 (2)0.0000.0003 (17)0.000
C70.027 (2)0.080 (5)0.029 (2)0.0000.0009 (18)0.000
N10.0240 (17)0.088 (4)0.0304 (18)0.0000.0001 (15)0.000
O10.0268 (15)0.134 (4)0.0310 (16)0.0000.0006 (13)0.000
O20.0211 (16)0.112 (4)0.0345 (16)0.0000.0018 (13)0.000
Geometric parameters (Å, º) top
S1—C51.757 (4)C4—C51.389 (6)
S1—C61.791 (4)C4—H4A0.9300
C1—N11.348 (5)C5—N11.350 (5)
C1—C21.372 (6)C6—C71.522 (6)
C1—H1A0.9300C6—H6A0.9700
C2—C31.377 (6)C6—H6B0.9700
C2—H2A0.9300C7—O11.198 (5)
C3—C41.374 (6)C7—O21.301 (5)
C3—H3A0.9300O2—H2B0.8200
C5—S1—C6102.31 (19)N1—C5—S1112.3 (3)
N1—C1—C2123.2 (4)C4—C5—S1126.4 (3)
N1—C1—H1A118.4C7—C6—S1108.5 (3)
C2—C1—H1A118.4C7—C6—H6A110.0
C1—C2—C3118.1 (4)S1—C6—H6A110.0
C1—C2—H2A121.0C7—C6—H6B110.0
C3—C2—H2A121.0S1—C6—H6B110.0
C4—C3—C2120.0 (4)H6A—C6—H6B108.4
C4—C3—H3A120.0O1—C7—O2126.3 (4)
C2—C3—H3A120.0O1—C7—C6122.9 (4)
C3—C4—C5119.1 (4)O2—C7—C6110.8 (4)
C3—C4—H4A120.4C1—N1—C5118.3 (4)
C5—C4—H4A120.4C7—O2—H2B109.5
N1—C5—C4121.3 (4)
N1—C1—C2—C30.000 (1)C5—S1—C6—C7180.0
C1—C2—C3—C40.000 (1)S1—C6—C7—O10.0
C2—C3—C4—C50.000 (1)S1—C6—C7—O2180.0
C3—C4—C5—N10.0C2—C1—N1—C50.0
C3—C4—C5—S1180.0C4—C5—N1—C10.0
C6—S1—C5—N1180.0S1—C5—N1—C1180.0
C6—S1—C5—C40.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.821.792.606 (5)175
C2—H2A···O2ii0.932.503.410 (6)167
C3—H3A···O1iii0.932.463.229 (5)140
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+3/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H7NO2S
Mr169.20
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)14.5521 (19), 6.6774 (13), 7.7212 (19)
V3)750.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.37 × 0.35 × 0.27
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.875, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
1160, 805, 473
Rint0.066
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.00
No. of reflections805
No. of parameters67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.821.792.606 (5)174.7
C2—H2A···O2ii0.9312.4963.410 (6)167.4
C3—H3A···O1iii0.9302.4613.229 (5)140.0
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+3/2; (iii) x, y, z+1.
 

Acknowledgements

The authors thank the Project of the Shanghai Municipal Education Commission (2008080, 2008068, 09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the Innovative Activities of University Students in Shanghai Maritime University Project (090503) and the State Key Laboratory of Pollution Control and Resource Re-use Foundation (PCRRF09001) for financial support.

References

First citationAkrivos, P. D. (2001). Coord. Chem. Rev. 213, 181–210.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds