organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-o-tolyl­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 25 November 2009; accepted 26 November 2009; online 4 December 2009)

In the title compound, C15H15NO, the C—N—C(O)—C amide unit is planar (r.m.s. deviation = 0.003 Å) and subtends dihedral angles of 44.71 (5) and 43.33 (5)° with the two o-tolyl rings. These aromatic rings are inclined at 4.94 (7)° to one another. The ortho-methyl groups of the two tolyl rings are anti to one another. In the crystal structure, N—H⋯O hydrogen bonds augmented by C—H⋯π inter­actions link the mol­ecules in a head-to-head fashion into chains along a. Independent chains pack in a herringbone pattern along c.

Related literature

For background to our work on benzamide derivatives, see: Saeed et al. (2008[Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.]). For the 2-methyl-N-(3-methyl­phen­yl)benzamide isomer, see: Gowda et al. (2008b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541.]). For other related structures see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],c[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1605.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /n

  • a = 4.9340 (4) Å

  • b = 23.639 (2) Å

  • c = 10.0228 (8) Å

  • β = 91.184 (4)°

  • V = 1168.75 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 89 K

  • 0.59 × 0.23 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.762, Tmax = 1.000

  • 19815 measured reflections

  • 3831 independent reflections

  • 3010 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.168

  • S = 1.09

  • 3831 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 2.03 2.8891 (13) 166
C31—H31ACg1ii 0.98 2.76 3.6522 (12) 152
C91—H91CCg2i 0.98 2.83 3.6999 (12) 148
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z. Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 benzene rings.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The background to our work on benzamide derivatives has been described in a previous paper (Saeed et al., 2008). In the title compound, (I), the C–N–C(O)–C amide unit is planar, r.m.s. deviation 0.003 Å, and subtends dihedral angles of 44.71 (5)° and 43.33 (5)°, respectively, to the two tolyl rings, Fig. 1. These are inclined at 4.94 (7)° to one another giving the overall molecule a stepped structure. The ortho-methyl groups of the two tolyl rings are anti to one another in contrast to the situation for the isomeric 2-methyl-N-(3-methylphenyl)benzamide structure where the methyl substituents are mutually syn (Gowda et al., 2008b). Bond distances within the molecule are normal and similar to those observed in comparable structures (Gowda et al., 2008a,b,c 2009).

In the crystal structure N1—H1N···O1 hydrogen bonds link molecules in a head to head fashion into chains along b. This leaves the methyl groups of the two tolyl rings positioned to form C—H···π contacts which reinforce the chain formation, Table 1, Fig. 2. There are no apparent contacts between adjacent chains that generate a herringbone packing motif along c, Fig. 3.

Related literature top

For background to our work on benzamide derivatives, see: Saeed et al. (2008). For the 2-methyl-N-(3-methylphenyl)benzamide isomer, see: Gowda et al. (2008b). For other related structures see: Gowda et al. (2008a,c, 2009). Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 benzene rings.

Experimental top

o-Tolyl chloride (1 mmol) in CHCl3 was treated with o-toluidine (1 mmol) under a nitrogen atmosphere at reflux for 2 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq. HCl and saturated aq. NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (81%) as colourless crystals: Anal. calcd. for C15H15NO: C, 79.97; H, 6.71; N, 6.22%; found: C, 80.02; H, 6.66; N, 6.36%.

Refinement top

All H-atoms were placed in calculated positions and refined using a riding model with d(N—H) = 0.88 Å, Uiso=1.2Ueq (N); d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic-H; and 0.98 Å, Uiso = 1.5Ueq (C) for CH3 H atoms. The final difference Fourier map showed a high peak close to the O1 and H1N atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. N—H···O hydrogen bonds (dashed lines) and C—H···π interactions in (I) (dotted lines) linking the molecules into chains along a. The coloured spheres represent the ring centroids.
[Figure 3] Fig. 3. Crystal packing of (I) viewed down the c axis, with hydrogen bonds drawn as dashed lines.
2-Methyl-N-o-tolylbenzamide top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4591 reflections
a = 4.9340 (4) Åθ = 2.2–31.3°
b = 23.639 (2) ŵ = 0.08 mm1
c = 10.0228 (8) ÅT = 89 K
β = 91.184 (4)°Triangular, colourless
V = 1168.75 (17) Å30.59 × 0.23 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3831 independent reflections
Radiation source: fine-focus sealed tube3010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 31.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 77
Tmin = 0.762, Tmax = 1.000k = 3322
19815 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0962P)2 + 0.1512P]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H15NOV = 1168.75 (17) Å3
Mr = 225.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9340 (4) ŵ = 0.08 mm1
b = 23.639 (2) ÅT = 89 K
c = 10.0228 (8) Å0.59 × 0.23 × 0.13 mm
β = 91.184 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3010 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 1.000Rint = 0.064
19815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.09Δρmax = 0.80 e Å3
3831 reflectionsΔρmin = 0.33 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0409 (2)0.11397 (4)0.02480 (10)0.0144 (2)
H1N0.21090.12240.04070.017*
C10.1521 (2)0.13178 (5)0.11331 (11)0.0135 (2)
O10.39796 (17)0.12286 (4)0.09903 (9)0.0201 (2)
C20.0510 (2)0.16434 (5)0.23088 (11)0.0125 (2)
C30.1575 (2)0.15349 (5)0.35932 (12)0.0132 (2)
C310.3642 (2)0.10786 (5)0.38777 (13)0.0181 (3)
H31A0.54050.11970.35420.027*
H31B0.30720.07280.34330.027*
H31C0.37910.10150.48430.027*
C40.0611 (2)0.18607 (5)0.46491 (12)0.0173 (2)
H40.12890.17910.55280.021*
C50.1310 (3)0.22825 (5)0.44439 (13)0.0201 (3)
H50.19260.24980.51770.024*
C60.2333 (3)0.23888 (5)0.31665 (14)0.0201 (3)
H60.36400.26790.30210.024*
C70.1427 (2)0.20680 (5)0.21060 (13)0.0160 (2)
H70.21310.21380.12320.019*
C80.0152 (2)0.08234 (5)0.09270 (11)0.0127 (2)
C90.1221 (2)0.09560 (5)0.21238 (12)0.0132 (2)
C910.3265 (2)0.14277 (5)0.22165 (13)0.0171 (2)
H91A0.34880.15470.31490.026*
H91B0.26300.17490.16760.026*
H91C0.50080.12950.18850.026*
C100.0626 (2)0.06309 (5)0.32468 (12)0.0175 (3)
H100.15250.07130.40720.021*
C110.1242 (3)0.01915 (5)0.31890 (13)0.0196 (3)
H110.16180.00210.39680.024*
C120.2556 (2)0.00638 (5)0.19899 (12)0.0175 (2)
H120.38280.02380.19450.021*
C130.2009 (2)0.03771 (5)0.08573 (12)0.0154 (2)
H130.28960.02880.00340.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0129 (4)0.0156 (5)0.0146 (5)0.0006 (3)0.0006 (3)0.0028 (3)
C10.0161 (5)0.0119 (5)0.0125 (5)0.0027 (4)0.0006 (4)0.0005 (4)
O10.0119 (4)0.0272 (5)0.0213 (5)0.0003 (3)0.0014 (3)0.0051 (3)
C20.0118 (5)0.0111 (5)0.0147 (5)0.0022 (3)0.0016 (4)0.0014 (4)
C30.0119 (5)0.0124 (5)0.0152 (5)0.0014 (4)0.0011 (4)0.0016 (4)
C310.0164 (6)0.0188 (5)0.0192 (6)0.0022 (4)0.0003 (4)0.0010 (4)
C40.0177 (6)0.0177 (6)0.0164 (6)0.0020 (4)0.0013 (4)0.0045 (4)
C50.0211 (6)0.0157 (5)0.0238 (6)0.0007 (4)0.0061 (5)0.0082 (4)
C60.0173 (6)0.0124 (5)0.0307 (7)0.0027 (4)0.0027 (5)0.0023 (4)
C70.0141 (5)0.0132 (5)0.0208 (6)0.0011 (4)0.0014 (4)0.0010 (4)
C80.0127 (5)0.0123 (5)0.0131 (5)0.0015 (4)0.0019 (4)0.0005 (4)
C90.0114 (5)0.0128 (5)0.0153 (5)0.0007 (4)0.0008 (4)0.0001 (4)
C910.0150 (5)0.0165 (5)0.0197 (6)0.0030 (4)0.0002 (4)0.0017 (4)
C100.0188 (6)0.0194 (6)0.0143 (5)0.0016 (4)0.0021 (4)0.0022 (4)
C110.0227 (6)0.0186 (6)0.0178 (6)0.0019 (4)0.0020 (5)0.0059 (4)
C120.0166 (6)0.0148 (5)0.0211 (6)0.0035 (4)0.0014 (4)0.0012 (4)
C130.0147 (5)0.0152 (5)0.0162 (6)0.0008 (4)0.0011 (4)0.0005 (4)
Geometric parameters (Å, º) top
N1—C11.3553 (15)C6—H60.9500
N1—C81.4270 (14)C7—H70.9500
N1—H1N0.8800C8—C131.3980 (16)
C1—O11.2423 (14)C8—C91.4007 (16)
C1—C21.5013 (16)C9—C101.3989 (16)
C2—C71.3979 (16)C9—C911.5054 (16)
C2—C31.4040 (16)C91—H91A0.9800
C3—C41.4000 (16)C91—H91B0.9800
C3—C311.5074 (16)C91—H91C0.9800
C31—H31A0.9800C10—C111.3891 (17)
C31—H31B0.9800C10—H100.9500
C31—H31C0.9800C11—C121.3869 (18)
C4—C51.3881 (17)C11—H110.9500
C4—H40.9500C12—C131.3867 (17)
C5—C61.3893 (19)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—C71.3872 (17)
C1—N1—C8123.87 (10)C6—C7—C2120.75 (11)
C1—N1—H1N118.1C6—C7—H7119.6
C8—N1—H1N118.1C2—C7—H7119.6
O1—C1—N1123.13 (11)C13—C8—C9121.08 (10)
O1—C1—C2121.24 (10)C13—C8—N1119.50 (10)
N1—C1—C2115.62 (10)C9—C8—N1119.40 (10)
C7—C2—C3120.41 (10)C10—C9—C8117.42 (10)
C7—C2—C1119.42 (10)C10—C9—C91120.57 (10)
C3—C2—C1120.12 (10)C8—C9—C91122.01 (10)
C4—C3—C2117.78 (10)C9—C91—H91A109.5
C4—C3—C31119.32 (11)C9—C91—H91B109.5
C2—C3—C31122.89 (10)H91A—C91—H91B109.5
C3—C31—H31A109.5C9—C91—H91C109.5
C3—C31—H31B109.5H91A—C91—H91C109.5
H31A—C31—H31B109.5H91B—C91—H91C109.5
C3—C31—H31C109.5C11—C10—C9121.81 (11)
H31A—C31—H31C109.5C11—C10—H10119.1
H31B—C31—H31C109.5C9—C10—H10119.1
C5—C4—C3121.65 (12)C12—C11—C10119.79 (11)
C5—C4—H4119.2C12—C11—H11120.1
C3—C4—H4119.2C10—C11—H11120.1
C4—C5—C6120.02 (11)C11—C12—C13119.84 (11)
C4—C5—H5120.0C11—C12—H12120.1
C6—C5—H5120.0C13—C12—H12120.1
C7—C6—C5119.38 (11)C12—C13—C8120.05 (11)
C7—C6—H6120.3C12—C13—H13120.0
C5—C6—H6120.3C8—C13—H13120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.032.8891 (13)166
C31—H31A···Cg1ii0.982.763.6522 (12)152
C91—H91C···Cg2i0.982.833.6999 (12)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)89
a, b, c (Å)4.9340 (4), 23.639 (2), 10.0228 (8)
β (°) 91.184 (4)
V3)1168.75 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.59 × 0.23 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.762, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19815, 3831, 3010
Rint0.064
(sin θ/λ)max1)0.733
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.168, 1.09
No. of reflections3831
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.33

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.032.8891 (13)166
C31—H31A···Cg1ii0.982.763.6522 (12)152
C91—H91C···Cg2i0.982.833.6999 (12)148
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

We thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008c). Acta Cryst. E64, o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds