organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o182-o183

N-(2,4,5-Tri­chloro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 26 November 2009; accepted 7 December 2009; online 16 December 2009)

The title compound, C10H6Cl3NO3, crystallizes with two independent mol­ecules in the asymmetric unit. The mol­ecular structure is stabilized by a short intra­molecular O—H⋯O hydrogen bond within the maleamic unit. In the crystal, each mol­ecule self-associates via N—H⋯O hydrogen bonds into chains, each running along the b axis. Two short inter­molecular Cl⋯O contacts [3.1267 (15) and 3.0523 (12) Å] and C—H⋯O inter­actions inter­connect these chains into a three-dimensional network.

Related literature

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945.], 2010[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296-o1297.]); Shakuntala et al. (2009[Shakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.]). For the concept of orthogonality of halogen and hydrogen bonds, see: Voth et al. (2009[Voth, A. R., Khuu, P., Oishi, K. & Ho, P. S. (2009). Nat. Chem. 1, 74-79.]). For a review on short halogen–oxygen contacts, see: Fourmigué (2009[Fourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36-45.]); Kubicki (2004[Kubicki, M. (2004). J. Mol. Struct. 698, 67-73.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6Cl3NO3

  • Mr = 294.51

  • Monoclinic, P 21 /c

  • a = 10.8979 (2) Å

  • b = 11.0225 (2) Å

  • c = 19.4739 (3) Å

  • β = 95.4761 (9)°

  • V = 2328.57 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 295 K

  • 0.34 × 0.25 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.794, Tmax = 0.852

  • 49446 measured reflections

  • 4424 independent reflections

  • 3825 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.06

  • 4424 reflections

  • 315 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.69 2.5080 (15) 175
O5—H5A⋯O4 0.82 1.72 2.5332 (17) 175
N1—H1N⋯O3i 0.77 (2) 2.30 (2) 3.0356 (18) 161.2 (19)
N2—H2N⋯O6ii 0.81 (2) 2.481 (19) 3.0775 (19) 131.3 (16)
N1—H1N⋯Cl1 0.77 (2) 2.56 (2) 2.9628 (14) 114.2 (17)
N2—H2N⋯Cl4 0.81 (2) 2.519 (18) 2.9476 (14) 114.3 (15)
C2—H2⋯O3i 0.93 2.29 3.123 (2) 149
C12—H12⋯O2 0.93 2.47 3.330 (2) 154
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Halogen-bond geometry (Å, °)

C—Cl⋯O Cl⋯O C—Cl⋯O
C9—Cl3⋯O6iii 3.1267 (15) 158.99 (6)
C16—Cl4⋯O1 3.0523 (12) 159.62 (7)
Symmetry code: (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}.]

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as a part of studying the effect of ring- and side-chain substitutions on the crystal structures of biologically significant amides (Gowda et al., 2009, 2010; Shakuntala et al., 2009; Prasad et al., 2002), the crystal structure of N-(2,4,5-trichlorophenyl)-maleamic acid (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1).

The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other, and the amide-O atom and the carbonyl-O atom of the acid segment are also anti to each other. Further, the amide-O atom is anti to the H atom attached to the adjacent C atom, while the carbonyl-O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure, a rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that observed in N-phenylmaleamic acid (Lo & Ng, 2009), N-(2,5-dichlorophenyl)maleamic acid (Shakuntala et al., 2009), N-(3,5-dichlorophenyl)maleamic acid (Gowda et al., 2010) and N-(2,4,6-dimethylphenyl)maleamic acid (Gowda et al., 2009). Further, the conformation of the N—H bond is syn to the 2-Cl in the phenyl ring, while it is anti to the 5-Cl in the ring. Each maleamic unit includes a short intramolecular hydrogen O—H···O bond (Table 1). The bond lengths of C2–C3 and C12–C13 (i.e. 1.329 (2) and 1.328 (2) Å) clearly indicate double bond character.

In both the molecules, the dihedral angle between the amido group –NHCO– and the tri-substituted phenyl ring is 6.1 (3)°. The two N—H···O hydrogen bonds have quite different geometry, as seen in the N—H···O angles (Table 1). Remarkably small N2—H2N···O6ii angle of 131.3 (16)° can be attributed to the competing effect of the neighbouring C9—Cl3···O6iii halogen bond. The angle Cl3···O6iii···H2N =78.24 (6)° is close to 90° and can be interpreted within the concept of orthogonality of halogen and hydrogen bonds (Voth et al., 2009). The N1—H1N···O3i hydrogen bond with the angle of 161.2 (19)° is much less influenced by the near C6—Cl1···O3i halogen bond, which is weaker as indicated by the Cl1···O3i contact of 3.2372 (13) A. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x, y + 1/2, -z + 3/2; (iii) x, -y + 1/2, z - 1/2.]

In the crystal of (I), the intermolecular N–H···O hydrogen bonds link the molecules, which self-associate, into infinite chains running along the b axis. These chains are connected through relatively short Cl···O contacts: Cl4···O1 =3.0523 (12), Cl3···O6(iii) =3.1267 (15) Å. [Symmetry codes: (iii) x, -y + 1/2, z - 1/2].(iii) x, -y + 1/2, z - 1/2] as well as C–H···O contacts to consolidate the crystal packing. Fig. 2 outlines part of the crystal structure of (I) with the N–H···O hydrogen bonding and Cl···O contacts highlighted. The data for the C–Cl···O halogen bonds are in agreement with others (Kubicki, 2004; Fourmigué, 2009).

Related literature top

For studies on the effect of ring- and side-chain substitutions on the crystal structures of amides, see: Gowda et al. (2009, 2010); Lo & Ng (2009); Prasad et al. (2002); Shakuntala et al. (2009). For the concept of orthogonality of halogen and hydrogen bonds, see: Voth et al. (2009). For a review on short halogen–oxygen contacts, see: Fourmigué (2009); Kubicki (2004).

Experimental top

The solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated drop-wise with the solution of 2,4,5-trichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,4,5-trichloroaniline. The resultant solid N-(2,4,5-trichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. Colourless single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement top

H atoms were visible in difference maps. In the final cycles of refinement, the amido-H atoms were refined freely, while the C,O-bound H atoms were placed in calculated positions and refined using the riding model with C–H = 0.93Å and O–H = 0.82 Å. The Uiso(H) values were set at 1.2Ueq(C,O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two independent molecules comprising the asymmetric unit in (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) showing the main intermolecular interactions: N–H···O hydrogen bonds and short Cl···O contacts (all represented by dashed lines). Symmetry codes: (i) -x + 1, y + 1/2, -z + 3/2; (ii) -x, y + 1/2, -z + 3/2; (iii) x, -y + 1/2, z - 1/2.
N-(2,4,5-Trichlorophenyl)maleamic acid top
Crystal data top
C10H6Cl3NO3F(000) = 1184
Mr = 294.51Dx = 1.68 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 30027 reflections
a = 10.8979 (2) Åθ = 1.8–29.5°
b = 11.0225 (2) ŵ = 0.78 mm1
c = 19.4739 (3) ÅT = 295 K
β = 95.4761 (9)°Block, colourless
V = 2328.57 (7) Å30.34 × 0.25 × 0.22 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
4424 independent reflections
Graphite monochromator3825 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.022
ω scansθmax = 25.7°, θmin = 1.9°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.794, Tmax = 0.852k = 1313
49446 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.5233P]
where P = (Fo2 + 2Fc2)/3
4424 reflections(Δ/σ)max = 0.001
315 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H6Cl3NO3V = 2328.57 (7) Å3
Mr = 294.51Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.8979 (2) ŵ = 0.78 mm1
b = 11.0225 (2) ÅT = 295 K
c = 19.4739 (3) Å0.34 × 0.25 × 0.22 mm
β = 95.4761 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
4424 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
3825 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.852Rint = 0.022
49446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
4424 reflectionsΔρmin = 0.32 e Å3
315 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44390 (14)0.49367 (14)0.63260 (8)0.0359 (3)
C20.49027 (16)0.44723 (15)0.70185 (8)0.0435 (4)
H20.55310.49210.72540.052*
C30.45354 (16)0.34984 (16)0.73449 (8)0.0437 (4)
H30.49450.33950.77820.052*
C40.36034 (14)0.25383 (14)0.71553 (8)0.0353 (3)
C50.47664 (14)0.65859 (13)0.55063 (8)0.0338 (3)
C60.55197 (15)0.75667 (14)0.53696 (8)0.0390 (4)
C70.52840 (17)0.82580 (15)0.47808 (9)0.0447 (4)
H70.57870.89170.47050.054*
C80.43056 (16)0.79770 (15)0.43042 (8)0.0418 (4)
C90.35753 (15)0.69853 (15)0.44191 (8)0.0385 (4)
C100.37961 (15)0.63019 (14)0.50161 (8)0.0374 (3)
H100.32890.56450.50900.045*
N10.50133 (13)0.59440 (12)0.61283 (7)0.0364 (3)
H1N0.5504 (19)0.6210 (18)0.6398 (10)0.047 (6)*
O10.36099 (12)0.44379 (11)0.59559 (6)0.0524 (3)
O20.29633 (10)0.25568 (10)0.65501 (6)0.0440 (3)
H2A0.31560.31540.63340.053*
O30.34614 (11)0.17281 (10)0.75610 (6)0.0439 (3)
Cl10.67690 (5)0.79432 (5)0.59434 (2)0.06029 (15)
Cl20.40225 (5)0.88690 (4)0.35759 (3)0.06031 (15)
Cl30.23559 (4)0.65766 (5)0.38355 (2)0.05600 (14)
C110.01578 (14)0.08037 (14)0.62405 (8)0.0356 (3)
C120.05760 (15)0.08711 (15)0.69170 (8)0.0405 (4)
H120.12000.14500.69530.049*
C130.04666 (15)0.02176 (16)0.74809 (8)0.0429 (4)
H130.10580.03980.78430.051*
C140.04107 (16)0.07430 (17)0.76485 (9)0.0468 (4)
C150.04415 (14)0.19115 (14)0.51309 (7)0.0348 (3)
C160.00319 (16)0.29029 (15)0.47665 (8)0.0393 (4)
C170.05759 (17)0.32085 (16)0.41215 (8)0.0450 (4)
H170.02980.38800.38920.054*
C180.15340 (16)0.25164 (15)0.38159 (8)0.0410 (4)
C190.19375 (15)0.15206 (15)0.41656 (8)0.0374 (3)
C200.14062 (15)0.12225 (14)0.48168 (8)0.0380 (4)
H200.16960.05570.50460.046*
N20.01228 (14)0.16733 (13)0.57959 (7)0.0393 (3)
H2N0.0613 (18)0.2172 (17)0.5962 (9)0.044 (5)*
O40.09307 (13)0.00116 (12)0.60847 (6)0.0572 (4)
O50.12126 (16)0.11735 (15)0.71730 (7)0.0818 (5)
H5A0.11460.08180.68080.098*
O60.03687 (14)0.11161 (13)0.82354 (7)0.0629 (4)
Cl40.11807 (5)0.37788 (4)0.51289 (2)0.05662 (14)
Cl50.22020 (5)0.29035 (5)0.30038 (2)0.06325 (15)
Cl60.31341 (4)0.06298 (4)0.38018 (2)0.05475 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0387 (8)0.0346 (8)0.0336 (8)0.0062 (6)0.0006 (6)0.0020 (6)
C20.0481 (10)0.0433 (9)0.0364 (8)0.0128 (7)0.0103 (7)0.0004 (7)
C30.0486 (10)0.0459 (9)0.0335 (8)0.0075 (8)0.0123 (7)0.0040 (7)
C40.0341 (8)0.0345 (8)0.0363 (8)0.0035 (6)0.0014 (6)0.0018 (7)
C50.0366 (8)0.0325 (8)0.0326 (7)0.0023 (6)0.0044 (6)0.0035 (6)
C60.0420 (9)0.0372 (8)0.0376 (8)0.0096 (7)0.0035 (7)0.0066 (7)
C70.0546 (10)0.0372 (9)0.0435 (9)0.0113 (7)0.0107 (8)0.0004 (7)
C80.0498 (10)0.0393 (9)0.0372 (8)0.0034 (7)0.0095 (7)0.0047 (7)
C90.0371 (8)0.0426 (9)0.0354 (8)0.0011 (7)0.0007 (7)0.0016 (7)
C100.0367 (8)0.0378 (8)0.0373 (8)0.0074 (7)0.0012 (7)0.0012 (7)
N10.0387 (7)0.0359 (7)0.0331 (7)0.0101 (6)0.0049 (6)0.0018 (6)
O10.0594 (8)0.0510 (7)0.0427 (6)0.0255 (6)0.0165 (6)0.0126 (5)
O20.0467 (7)0.0429 (6)0.0398 (6)0.0156 (5)0.0099 (5)0.0095 (5)
O30.0487 (7)0.0372 (6)0.0441 (6)0.0003 (5)0.0035 (5)0.0105 (5)
Cl10.0609 (3)0.0657 (3)0.0520 (3)0.0323 (2)0.0066 (2)0.0027 (2)
Cl20.0741 (3)0.0548 (3)0.0516 (3)0.0010 (2)0.0036 (2)0.0191 (2)
Cl30.0502 (3)0.0696 (3)0.0451 (2)0.0060 (2)0.01197 (19)0.0054 (2)
C110.0355 (8)0.0389 (8)0.0320 (8)0.0030 (7)0.0002 (6)0.0020 (6)
C120.0358 (8)0.0466 (9)0.0377 (8)0.0102 (7)0.0041 (7)0.0043 (7)
C130.0402 (9)0.0516 (10)0.0347 (8)0.0073 (7)0.0081 (7)0.0046 (7)
C140.0491 (10)0.0495 (10)0.0403 (9)0.0074 (8)0.0043 (8)0.0098 (8)
C150.0392 (8)0.0366 (8)0.0278 (7)0.0015 (6)0.0002 (6)0.0009 (6)
C160.0424 (9)0.0405 (9)0.0341 (8)0.0096 (7)0.0008 (7)0.0007 (7)
C170.0541 (10)0.0454 (9)0.0346 (8)0.0102 (8)0.0006 (7)0.0069 (7)
C180.0465 (9)0.0473 (9)0.0282 (7)0.0003 (7)0.0024 (7)0.0022 (7)
C190.0386 (8)0.0404 (9)0.0325 (8)0.0033 (7)0.0006 (6)0.0039 (6)
C200.0419 (9)0.0375 (8)0.0339 (8)0.0056 (7)0.0006 (7)0.0010 (6)
N20.0435 (8)0.0411 (8)0.0316 (7)0.0117 (6)0.0057 (6)0.0031 (6)
O40.0698 (8)0.0597 (8)0.0385 (6)0.0307 (7)0.0139 (6)0.0111 (6)
O50.0967 (12)0.0929 (12)0.0499 (8)0.0596 (10)0.0235 (8)0.0280 (8)
O60.0715 (9)0.0722 (9)0.0433 (7)0.0173 (7)0.0040 (6)0.0210 (6)
Cl40.0632 (3)0.0586 (3)0.0450 (2)0.0288 (2)0.0107 (2)0.0078 (2)
Cl50.0709 (3)0.0774 (3)0.0373 (2)0.0156 (3)0.0160 (2)0.0162 (2)
Cl60.0557 (3)0.0606 (3)0.0443 (2)0.0203 (2)0.0140 (2)0.0024 (2)
Geometric parameters (Å, º) top
C1—O11.2304 (18)C11—O41.2309 (19)
C1—N11.349 (2)C11—N21.346 (2)
C1—C21.485 (2)C11—C121.476 (2)
C2—C31.329 (2)C12—C131.328 (2)
C2—H20.9300C12—H120.9300
C3—C41.489 (2)C13—C141.484 (2)
C3—H30.9300C13—H130.9300
C4—O31.2121 (18)C14—O61.211 (2)
C4—O21.3111 (18)C14—O51.301 (2)
C5—C101.391 (2)C15—C201.390 (2)
C5—C61.398 (2)C15—C161.399 (2)
C5—N11.406 (2)C15—N21.404 (2)
C6—C71.380 (2)C16—C171.379 (2)
C6—Cl11.7274 (16)C16—Cl41.7315 (16)
C7—C81.380 (3)C17—C181.381 (2)
C7—H70.9300C17—H170.9300
C8—C91.383 (2)C18—C191.385 (2)
C8—Cl21.7292 (16)C18—Cl51.7301 (16)
C9—C101.387 (2)C19—C201.382 (2)
C9—Cl31.7240 (16)C19—Cl61.7292 (16)
C10—H100.9300C20—H200.9300
N1—H1N0.77 (2)N2—H2N0.81 (2)
O2—H2A0.8200O5—H5A0.8200
O1—C1—N1122.38 (14)O4—C11—N2122.58 (14)
O1—C1—C2123.03 (14)O4—C11—C12123.73 (14)
N1—C1—C2114.58 (13)N2—C11—C12113.65 (14)
C3—C2—C1128.39 (15)C13—C12—C11128.82 (15)
C3—C2—H2115.8C13—C12—H12115.6
C1—C2—H2115.8C11—C12—H12115.6
C2—C3—C4133.25 (15)C12—C13—C14132.80 (15)
C2—C3—H3113.4C12—C13—H13113.6
C4—C3—H3113.4C14—C13—H13113.6
O3—C4—O2120.49 (14)O6—C14—O5120.67 (16)
O3—C4—C3119.25 (14)O6—C14—C13118.86 (16)
O2—C4—C3120.25 (13)O5—C14—C13120.47 (15)
C10—C5—C6117.71 (14)C20—C15—C16117.90 (14)
C10—C5—N1123.25 (14)C20—C15—N2123.35 (14)
C6—C5—N1119.04 (14)C16—C15—N2118.74 (14)
C7—C6—C5121.26 (15)C17—C16—C15121.51 (15)
C7—C6—Cl1118.52 (13)C17—C16—Cl4118.70 (13)
C5—C6—Cl1120.22 (12)C15—C16—Cl4119.79 (12)
C6—C7—C8120.35 (15)C16—C17—C18119.95 (15)
C6—C7—H7119.8C16—C17—H17120.0
C8—C7—H7119.8C18—C17—H17120.0
C7—C8—C9119.22 (15)C17—C18—C19119.22 (14)
C7—C8—Cl2119.33 (13)C17—C18—Cl5119.50 (13)
C9—C8—Cl2121.46 (13)C19—C18—Cl5121.28 (13)
C8—C9—C10120.56 (15)C20—C19—C18120.96 (15)
C8—C9—Cl3121.27 (13)C20—C19—Cl6118.32 (12)
C10—C9—Cl3118.16 (13)C18—C19—Cl6120.72 (12)
C9—C10—C5120.85 (14)C19—C20—C15120.44 (15)
C9—C10—H10119.6C19—C20—H20119.8
C5—C10—H10119.6C15—C20—H20119.8
C1—N1—C5127.17 (14)C11—N2—C15128.30 (14)
C1—N1—H1N115.5 (15)C11—N2—H2N114.0 (13)
C5—N1—H1N117.3 (15)C15—N2—H2N117.0 (13)
C4—O2—H2A109.5C14—O5—H5A109.5
O1—C1—C2—C30.1 (3)O4—C11—C12—C137.6 (3)
N1—C1—C2—C3178.97 (18)N2—C11—C12—C13174.36 (18)
C1—C2—C3—C41.6 (3)C11—C12—C13—C142.5 (3)
C2—C3—C4—O3179.39 (19)C12—C13—C14—O6173.1 (2)
C2—C3—C4—O20.8 (3)C12—C13—C14—O56.7 (3)
C10—C5—C6—C72.3 (2)C20—C15—C16—C171.2 (2)
N1—C5—C6—C7177.16 (15)N2—C15—C16—C17177.78 (16)
C10—C5—C6—Cl1178.08 (12)C20—C15—C16—Cl4179.11 (13)
N1—C5—C6—Cl12.4 (2)N2—C15—C16—Cl41.9 (2)
C5—C6—C7—C81.3 (3)C15—C16—C17—C181.2 (3)
Cl1—C6—C7—C8179.06 (13)Cl4—C16—C17—C18179.12 (14)
C6—C7—C8—C90.9 (3)C16—C17—C18—C190.1 (3)
C6—C7—C8—Cl2179.30 (13)C16—C17—C18—Cl5179.56 (14)
C7—C8—C9—C102.0 (2)C17—C18—C19—C200.8 (3)
Cl2—C8—C9—C10178.14 (13)Cl5—C18—C19—C20179.46 (13)
C7—C8—C9—Cl3178.97 (13)C17—C18—C19—Cl6180.00 (14)
Cl2—C8—C9—Cl30.9 (2)Cl5—C18—C19—Cl60.3 (2)
C8—C9—C10—C51.0 (2)C18—C19—C20—C150.8 (3)
Cl3—C9—C10—C5179.95 (12)Cl6—C19—C20—C15179.99 (12)
C6—C5—C10—C91.1 (2)C16—C15—C20—C190.2 (2)
N1—C5—C10—C9178.32 (15)N2—C15—C20—C19178.71 (15)
O1—C1—N1—C51.4 (3)O4—C11—N2—C155.9 (3)
C2—C1—N1—C5179.53 (15)C12—C11—N2—C15176.01 (16)
C10—C5—N1—C15.1 (3)C20—C15—N2—C111.6 (3)
C6—C5—N1—C1175.47 (15)C16—C15—N2—C11177.28 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.692.5080 (15)175
O5—H5A···O40.821.722.5332 (17)175
N1—H1N···O3i0.77 (2)2.30 (2)3.0356 (18)161.2 (19)
N2—H2N···O6ii0.81 (2)2.481 (19)3.0775 (19)131.3 (16)
N1—H1N···Cl10.77 (2)2.56 (2)2.9628 (14)114.2 (17)
N2—H2N···Cl40.81 (2)2.519 (18)2.9476 (14)114.3 (15)
C2—H2···O3i0.932.293.123 (2)149
C12—H12···O20.932.473.330 (2)154
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H6Cl3NO3
Mr294.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.8979 (2), 11.0225 (2), 19.4739 (3)
β (°) 95.4761 (9)
V3)2328.57 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.34 × 0.25 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.794, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
49446, 4424, 3825
Rint0.022
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.06
No. of reflections4424
No. of parameters315
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.32

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.692.5080 (15)175
O5—H5A···O40.821.722.5332 (17)175
N1—H1N···O3i0.77 (2)2.30 (2)3.0356 (18)161.2 (19)
N2—H2N···O6ii0.81 (2)2.481 (19)3.0775 (19)131.3 (16)
N1—H1N···Cl10.77 (2)2.56 (2)2.9628 (14)114.2 (17)
N2—H2N···Cl40.81 (2)2.519 (18)2.9476 (14)114.3 (15)
C2—H2···O3i0.932.293.123 (2)149
C12—H12···O20.932.473.330 (2)154
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+3/2.
Table 2. Halogen-bond geometry (Å, °). top
C–Cl···OCl···OC–Cl···O
C9–Cl3···O6iii3.1267 (15)158.99 (6)
C16–Cl4···O13.0523 (12)159.62 (7)
Symmetry code: (iii) x, -y+1/2, z-1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement programme

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFourmigué, M. (2009). Curr. Opin. Solid State Mater. Sci. 13, 36–45.  Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2010). Acta Cryst. E66, o51.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubicki, M. (2004). J. Mol. Struct. 698, 67–73.  Web of Science CSD CrossRef CAS Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o1296–o1297.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Gowda, B. T., Tokarčík, M. & Kožíšek, J. (2009). Acta Cryst. E65, o3119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoth, A. R., Khuu, P., Oishi, K. & Ho, P. S. (2009). Nat. Chem. 1, 74–79.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o182-o183
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds