organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(3-Chloro­phen­yl)-3-phenyl­prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Manalaganotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 December 2009; accepted 11 December 2009; online 16 December 2009)

In the title compound, C15H11ClO, the dihedral angle between the mean planes of the benzene ring and the chloro-substituted benzene ring is 48.8 (3)°. The dihedral angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chloro­phenyl and benzene rings are 27.0 (4) and 27.9 (3)°, respectively. In the crystal, weak inter­molecular C—H⋯π-ring inter­actions occur.

Related literature

For background to chalcones, see: Chen et al. (1994[Chen, M., Theander, T. G., Christensen, S. B., Hviid, L., Zhai, L. & Kharazmi, A. (1994). Antimicrob. Agents Chemother. 38, 1470-1475.]); Marais et al. (2005[Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145-2176.]); Poornesh et al. (2009[Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mat. 31, 854-859.]); Ram et al. (2000[Ram, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]); Shettigar et al. (2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.], 2008[Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mat. 30, 1297-1303.]); Troeberg et al. (2000[Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660-669.]). For related structures, see: Jasinski et al. (2007[Jasinski, J. P., Butcher, R. J., Lakshmana, K., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4715.]); Li & Su (1994[Li, Z. & Su, G. (1994). Acta Cryst. C50, 126-127.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClO

  • Mr = 242.69

  • Triclinic, [P \overline 1]

  • a = 5.8388 (7) Å

  • b = 7.5975 (11) Å

  • c = 13.1300 (16) Å

  • α = 83.182 (11)°

  • β = 89.422 (10)°

  • γ = 86.662 (11)°

  • V = 577.35 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.74 mm−1

  • T = 110 K

  • 0.50 × 0.32 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.541, Tmax = 1.000

  • 3661 measured reflections

  • 2243 independent reflections

  • 2148 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.02

  • 2243 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg2i 0.95 2.90 3.5541 (16) 127
C5—H5ACg2ii 0.95 2.90 3.5338 (17) 125
C12—H12ACg1iii 0.95 2.92 3.6040 (17) 130
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+1, -z+2; (iii) -x+2, -y+2, -z+2. Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais et al., 2005). Chalcones exhibit various biological activities like insecticidal, antimicrobial, antichinoviral, antipicorniviral and bacteriostatic properties. Azachalcones, the derivatives of chalcones with an annular nitrogen atom in the phenyl ring, were reported to have a wide range of biological activities, such as antibacterial, antituberculostatic and anti-inflammatory. An important feature of chalcones are their ability to act as activated unsaturated systems in conjugated addition of carbanions in presence of suitable basic catalysts. Many chalcones have been described for their high antimalarial activity, probably as a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000; Ram et al., 2000). Licochalcone A, isolated from Chinese liquorice roots, has been reported as being highly effective in chloroquine resistant Plasmodium falciparum strains in a [3H] hypoxanthine uptake assay (Chen et al., 1994). Chalcones are also finding applications as organic non-linear optical materials (NLO) due to their good SHG conversion efficiencies (Sarojini et al., 2006). Recently, non-linear optical studies on a few chalcones and their derivatives were reported (Poornesh et al., 2009; Shettigar et al., 2006; 2008). In continuation with our studies of chalcones (Jasinski et al., 2007) and their derivatives and owing to the importance of these flavanoid analogs, the title chalcone, (I), was synthesized and its crystal structure reported herein.

The title compound, (I), is a chalcone with 3-chlorophenyl and benzene rings bonded at the opposite ends of a propenone group, the biologically active region (Fig.1). The dihedral angle between mean planes of the benzene and chloro substituted benzene rings is 48.8 (3)° as compared to 14.3 (7)° in the 4-chloro benzene analogue compound (Li & Su, 1994). The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chlorophenyl and benzene rings are 27.0 (4)° and 27.9 (3)°, respectively, as compared to 19.4 (2)° and 11.9 (9)° in the aforementioned 4-chloro benzene compound. While no classical hydrogen bonds are present, weak intermolecular C–H···π-ring interactions are observed which contribute to the stability of crystal packing (Table 1).

Related literature top

For background to chalcones, see: Chen et al. (1994); Marais et al. (2005); Poornesh et al. (2009); Ram et al. (2000); Sarojini et al. (2006); Shettigar et al. (2006, 2008); Troeberg et al. (2000). For related structures, see: Jasinski et al. (2007); Li & Su (1994).

Experimental top

50% KOH was added to a mixture of 3-chloro acetophenone (0.01 mol) and benzaldehyde (0.01 mol) in 25 ml of ethanol (Scheme 2). The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from ethyl acetate by slow evaporation method and yield of the compound was 72% (m.p.: 354–356 K). Analytical data for C15H11ClO: Found (Calculated): C%: 74.19 (74.23); H%: 4.55 (4.57).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 Å, and with Uiso(H) = 1.17–1.22Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97) (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labeling scheme and 50% probability displacement ellipsoids.
(2E)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one top
Crystal data top
C15H11ClOZ = 2
Mr = 242.69F(000) = 252
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.8388 (7) ÅCell parameters from 3077 reflections
b = 7.5975 (11) Åθ = 5.9–73.8°
c = 13.1300 (16) ŵ = 2.74 mm1
α = 83.182 (11)°T = 110 K
β = 89.422 (10)°Prism, colorless
γ = 86.662 (11)°0.50 × 0.32 × 0.28 mm
V = 577.35 (13) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2243 independent reflections
Radiation source: Enhance (Cu) X-ray Source2148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.5081 pixels mm-1θmax = 73.8°, θmin = 5.9°
ω scansh = 75
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 99
Tmin = 0.541, Tmax = 1.000l = 1615
3661 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
2243 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H11ClOγ = 86.662 (11)°
Mr = 242.69V = 577.35 (13) Å3
Triclinic, P1Z = 2
a = 5.8388 (7) ÅCu Kα radiation
b = 7.5975 (11) ŵ = 2.74 mm1
c = 13.1300 (16) ÅT = 110 K
α = 83.182 (11)°0.50 × 0.32 × 0.28 mm
β = 89.422 (10)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
2243 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2148 reflections with I > 2σ(I)
Tmin = 0.541, Tmax = 1.000Rint = 0.017
3661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
2243 reflectionsΔρmin = 0.22 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.32652 (6)0.68985 (5)0.56518 (3)0.02296 (15)
O0.27901 (18)0.72419 (15)0.96930 (8)0.0224 (3)
C10.5736 (2)0.67070 (18)0.84979 (11)0.0160 (3)
C20.4270 (2)0.69988 (18)0.76536 (11)0.0162 (3)
H2A0.27590.75100.77190.019*
C30.5060 (3)0.65289 (19)0.67198 (11)0.0165 (3)
C40.7258 (3)0.57602 (19)0.66031 (12)0.0189 (3)
H4A0.77710.54480.59560.023*
C50.8677 (3)0.54612 (19)0.74507 (12)0.0193 (3)
H5A1.01700.49160.73870.023*
C60.7950 (2)0.59463 (19)0.83940 (12)0.0177 (3)
H6A0.89550.57620.89660.021*
C70.4848 (3)0.72066 (19)0.95085 (11)0.0175 (3)
C80.6548 (3)0.7663 (2)1.02521 (12)0.0192 (3)
H8A0.80810.78501.00350.023*
C90.5952 (2)0.78129 (19)1.12239 (11)0.0170 (3)
H9A0.44230.75601.14180.020*
C100.7434 (2)0.83314 (19)1.20198 (11)0.0161 (3)
C110.9534 (3)0.90987 (19)1.17865 (11)0.0180 (3)
H11A1.00360.92931.10940.022*
C121.0875 (3)0.95730 (19)1.25607 (12)0.0194 (3)
H12A1.22871.01031.23960.023*
C131.0172 (3)0.9280 (2)1.35792 (12)0.0217 (3)
H13A1.11070.96001.41080.026*
C140.8103 (3)0.8519 (2)1.38218 (12)0.0221 (3)
H14A0.76230.83131.45170.026*
C150.6734 (3)0.80576 (19)1.30478 (12)0.0185 (3)
H15A0.53090.75521.32170.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0222 (2)0.0308 (2)0.0164 (2)0.00195 (15)0.00390 (14)0.00610 (14)
O0.0149 (5)0.0340 (6)0.0190 (5)0.0032 (4)0.0000 (4)0.0044 (4)
C10.0171 (7)0.0139 (6)0.0173 (7)0.0054 (5)0.0001 (5)0.0010 (5)
C20.0140 (7)0.0149 (7)0.0198 (7)0.0028 (5)0.0000 (5)0.0019 (5)
C30.0177 (7)0.0173 (7)0.0152 (7)0.0036 (5)0.0023 (5)0.0031 (5)
C40.0209 (7)0.0165 (7)0.0203 (7)0.0034 (5)0.0034 (6)0.0050 (6)
C50.0145 (7)0.0156 (7)0.0277 (8)0.0003 (5)0.0009 (6)0.0030 (6)
C60.0161 (7)0.0160 (7)0.0208 (7)0.0032 (5)0.0023 (5)0.0001 (5)
C70.0175 (7)0.0168 (7)0.0179 (7)0.0030 (5)0.0005 (5)0.0002 (5)
C80.0166 (7)0.0213 (7)0.0199 (7)0.0033 (6)0.0009 (6)0.0023 (6)
C90.0143 (7)0.0154 (7)0.0212 (7)0.0003 (5)0.0004 (5)0.0021 (5)
C100.0155 (7)0.0139 (6)0.0188 (7)0.0015 (5)0.0010 (5)0.0030 (5)
C110.0173 (7)0.0175 (7)0.0189 (7)0.0001 (5)0.0011 (5)0.0024 (5)
C120.0161 (7)0.0156 (7)0.0264 (8)0.0011 (5)0.0017 (6)0.0020 (6)
C130.0228 (8)0.0201 (7)0.0227 (8)0.0003 (6)0.0064 (6)0.0046 (6)
C140.0268 (8)0.0221 (8)0.0171 (7)0.0001 (6)0.0010 (6)0.0027 (6)
C150.0172 (7)0.0166 (7)0.0220 (8)0.0010 (5)0.0029 (6)0.0032 (6)
Geometric parameters (Å, º) top
Cl—C31.7452 (15)C8—H8A0.9500
O—C71.2226 (19)C9—C101.467 (2)
C1—C21.396 (2)C9—H9A0.9500
C1—C61.397 (2)C10—C151.402 (2)
C1—C71.502 (2)C10—C111.404 (2)
C2—C31.385 (2)C11—C121.383 (2)
C2—H2A0.9500C11—H11A0.9500
C3—C41.393 (2)C12—C131.391 (2)
C4—C51.383 (2)C12—H12A0.9500
C4—H4A0.9500C13—C141.387 (2)
C5—C61.389 (2)C13—H13A0.9500
C5—H5A0.9500C14—C151.389 (2)
C6—H6A0.9500C14—H14A0.9500
C7—C81.483 (2)C15—H15A0.9500
C8—C91.335 (2)
C2—C1—C6120.12 (14)C7—C8—H8A119.6
C2—C1—C7118.15 (13)C8—C9—C10126.15 (14)
C6—C1—C7121.73 (13)C8—C9—H9A116.9
C3—C2—C1118.72 (13)C10—C9—H9A116.9
C3—C2—H2A120.6C15—C10—C11118.75 (13)
C1—C2—H2A120.6C15—C10—C9119.08 (13)
C2—C3—C4121.96 (13)C11—C10—C9122.18 (13)
C2—C3—Cl119.50 (11)C12—C11—C10120.27 (14)
C4—C3—Cl118.54 (11)C12—C11—H11A119.9
C5—C4—C3118.53 (14)C10—C11—H11A119.9
C5—C4—H4A120.7C11—C12—C13120.46 (14)
C3—C4—H4A120.7C11—C12—H12A119.8
C4—C5—C6120.91 (14)C13—C12—H12A119.8
C4—C5—H5A119.5C14—C13—C12119.92 (14)
C6—C5—H5A119.5C14—C13—H13A120.0
C5—C6—C1119.74 (14)C12—C13—H13A120.0
C5—C6—H6A120.1C13—C14—C15119.97 (14)
C1—C6—H6A120.1C13—C14—H14A120.0
O—C7—C8122.19 (14)C15—C14—H14A120.0
O—C7—C1120.25 (13)C14—C15—C10120.63 (14)
C8—C7—C1117.56 (13)C14—C15—H15A119.7
C9—C8—C7120.80 (14)C10—C15—H15A119.7
C9—C8—H8A119.6
C6—C1—C2—C30.3 (2)O—C7—C8—C912.5 (2)
C7—C1—C2—C3179.41 (12)C1—C7—C8—C9168.11 (14)
C1—C2—C3—C40.7 (2)C7—C8—C9—C10177.12 (13)
C1—C2—C3—Cl179.48 (10)C8—C9—C10—C15166.17 (15)
C2—C3—C4—C50.1 (2)C8—C9—C10—C1114.0 (2)
Cl—C3—C4—C5179.76 (11)C15—C10—C11—C120.0 (2)
C3—C4—C5—C61.2 (2)C9—C10—C11—C12179.79 (13)
C4—C5—C6—C11.6 (2)C10—C11—C12—C130.6 (2)
C2—C1—C6—C50.8 (2)C11—C12—C13—C140.5 (2)
C7—C1—C6—C5178.26 (12)C12—C13—C14—C150.2 (2)
C2—C1—C7—O26.0 (2)C13—C14—C15—C100.9 (2)
C6—C1—C7—O153.08 (14)C11—C10—C15—C140.7 (2)
C2—C1—C7—C8153.42 (13)C9—C10—C15—C14179.46 (13)
C6—C1—C7—C827.50 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.952.903.5541 (16)127
C5—H5A···Cg2ii0.952.903.5338 (17)125
C12—H12A···Cg1iii0.952.923.6040 (17)130
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC15H11ClO
Mr242.69
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)5.8388 (7), 7.5975 (11), 13.1300 (16)
α, β, γ (°)83.182 (11), 89.422 (10), 86.662 (11)
V3)577.35 (13)
Z2
Radiation typeCu Kα
µ (mm1)2.74
Crystal size (mm)0.50 × 0.32 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Cu) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.541, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3661, 2243, 2148
Rint0.017
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.02
No. of reflections2243
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97) (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.952.903.5541 (16)127
C5—H5A···Cg2ii0.952.903.5338 (17)125
C12—H12A···Cg1iii0.952.923.6040 (17)130
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+2; (iii) x+2, y+2, z+2.
 

Acknowledgements

KV thanks the UGC for the sanction of a Junior Research Fellowship and for a SAP Chemical grant. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationChen, M., Theander, T. G., Christensen, S. B., Hviid, L., Zhai, L. & Kharazmi, A. (1994). Antimicrob. Agents Chemother. 38, 1470–1475.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Lakshmana, K., Narayana, B. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z. & Su, G. (1994). Acta Cryst. C50, 126–127.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPoornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mat. 31, 854–859.  Web of Science CrossRef CAS Google Scholar
First citationRam, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationShettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mat. 30, 1297–1303.  Web of Science CrossRef CAS Google Scholar
First citationTroeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds