organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­butyl­ammonium tris­­(methyl­sulfanylmeth­yl)phenyl­borate

aInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 11 December 2009; accepted 15 December 2009; online 19 December 2009)

In the title molecular salt, C16H36N+·C12H20BS3, three of the four n-butyl chains show a trans conformation, whereas the fourth has the C—C—C—C torsion angle in a gauche conformation [−77.8 (5)°]. In the crystal, mol­ecules are packed in layers parallel to the (101) plane.

Related literature

For the synthesis and properties of complexes with [(methyl­thio)meth­yl]borate ligands, see: Ohrenberg et al. (1996[Ohrenberg, C., Ge, P., Schebler, P. C. G., Riordan, C. G., Yap, G. P. A. & Rheingold, A. L. (1996). Inorg. Chem. 35, 749-754.]); Ruth et al. (2008[Ruth, K., Tüllmann, S., Vitze, H., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2008). Chem. Eur. J. 14, 6754-6770.]).

[Scheme 1]

Experimental

Crystal data
  • C16H36N+·C12H20BS3

  • Mr = 513.73

  • Monoclinic, P 21 /n

  • a = 9.8449 (8) Å

  • b = 15.6802 (9) Å

  • c = 20.8870 (17) Å

  • β = 92.215 (7)°

  • V = 3221.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.42 × 0.39 × 0.38 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.904, Tmax = 0.912

  • 17239 measured reflections

  • 5999 independent reflections

  • 4342 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.155

  • S = 1.01

  • 5999 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently we have described the synthesis and properties of complexes with [(methylthio)methyl]borate ligands (C6H5)Bpzx(CH2SMe)3-x (Ruth et al., 2008). It is interesting to note that these ligands facilitate an evaluation of the influence of gradual changes in the donor set of tripods on the chemical properties of the coordinated metal ion. Herein we report the crystal structure of the tetrabutylamonium [tris(methylthio)methyl]phenylborate [n-Bu4N][(C6H5)B(CH2SMe)3] (I). According to a literature procedure (Ohrenberg et al., 1996), the tetrabutylamonium [tris(methylthio)methyl]phenylborate [n-Bu4N][(C6H5)B(CH2SMe)3] was easily accessible from the reaction of PhBCl2 with Li(TMEDA)CH2SMe (TMEDA: N,N,N',N'-tetramethylethylenediamine) and a subsequent cation exchange, as shown in equation below.

The title compound (Figs. 1 and 2) features discrete cations and anions. Three of the four n-butyl chains show an all trans conformation whereas the forth has one torsion angle in a gauche conformation. In the crystal the molecules are packed in layers parallel to the (1 0 1) plane (Figure 3).

Related literature top

For the synthesis and properties of complexes with

[(methylthio)methyl]borate ligands, see: Ohrenberg et al. (1996); Ruth et al. (2008).

Experimental top

(CH3)2S (19 mL, 259 mmol) and TMEDA (24 mL,160 mmol) were combined under a N2 atmosphere. n-BuLi (60 mL, 1.6 M in hexane) was added dropwise at -78°C. After 1 h at 25°C, the solution was heated at 45°C for 30 min to drive off unreacted (CH3)2S. The solution was again cooled to -78°C and (C6H5)BCl2 (3.3 mL, 25 mmol) was added dropwise. The mixture was allowed to warm to 25°C and was then stirred for 48 h. After the reaction was terminated all volatiles were removed in vacuo and the residue was treated with 200 mL of H2O and 70 mL of CH2Cl2. The aqueous solution was filtered, and the product (I) was precipitated by addition of aqueous [n-Bu4N]Br. The flocculent white product was isolated by filtration, washed with Et2O (2 x 10 mL), and dried under vacuum. Single crystals were obtained by recrystallisation from Et2O. 1H NMR (CDCl3): δ 8.09 (d, CH, 2 H), 7.27 (t, CH, 2 H), 7.05 (t, CH, 1 H), 2.57 -2.48 (m, BCH2 / NCH2, 14H ), 2.28 (s, SCH3, 9 H), 1.20 -1.17 (m, NCH2CH2CH2CH3, 16 H), 1.35 (m, CH2, 16 H), 0.87 (t, CH3, 12 H). 11B{1H} NMR (CDCl3): δ -14.4. Yield: 8.0 g (63%).

Refinement top

Hydrogen atoms were located in a difference Fourier map but they were included in calculated positions [C—H = 0.95 - 0.99 Å] and refined as riding [Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl)].

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the anion of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the cation of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. Crystal packing of the title compound with view along the b axis. H atoms are omitted for clarity.
[Figure 4] Fig. 4. The formation of the title compound.
Tetrabutylammonium tris(methylsulfanylmethyl)phenylborate top
Crystal data top
C16H36N+·C12H20BS3F(000) = 1136
Mr = 513.73Dx = 1.059 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 13831 reflections
a = 9.8449 (8) Åθ = 3.5–25.9°
b = 15.6802 (9) ŵ = 0.25 mm1
c = 20.8870 (17) ÅT = 173 K
β = 92.215 (7)°Block, colourless
V = 3221.9 (4) Å30.42 × 0.39 × 0.38 mm
Z = 4
Data collection top
Stoe IPDS-II two-circle
diffractometer
5999 independent reflections
Radiation source: fine-focus sealed tube4342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 25.8°, θmin = 3.4°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1011
Tmin = 0.904, Tmax = 0.912k = 1619
17239 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0983P)2]
where P = (Fo2 + 2Fc2)/3
5999 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H36N+·C12H20BS3V = 3221.9 (4) Å3
Mr = 513.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8449 (8) ŵ = 0.25 mm1
b = 15.6802 (9) ÅT = 173 K
c = 20.8870 (17) Å0.42 × 0.39 × 0.38 mm
β = 92.215 (7)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
5999 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
4342 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.912Rint = 0.066
17239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.72 e Å3
5999 reflectionsΔρmin = 0.32 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.4152 (3)0.77978 (17)0.68202 (11)0.0359 (5)
S10.56606 (7)0.65306 (4)0.61210 (3)0.04352 (18)
S20.51768 (7)0.83143 (4)0.80904 (3)0.04459 (19)
S30.46045 (9)0.89280 (6)0.57424 (4)0.0682 (3)
C10.5653 (2)0.73852 (16)0.66989 (10)0.0383 (5)
H1A0.60390.71690.71120.046*
H1B0.62600.78440.65540.046*
C20.7422 (3)0.6237 (2)0.61991 (13)0.0580 (7)
H2A0.76020.57660.59060.087*
H2B0.76390.60590.66410.087*
H2C0.79880.67280.60930.087*
C30.4401 (3)0.86025 (15)0.73206 (11)0.0397 (5)
H3A0.35140.88770.73920.048*
H3B0.49860.90290.71160.048*
C40.5650 (3)0.9351 (2)0.83934 (14)0.0584 (7)
H4A0.60920.92910.88200.088*
H4B0.48350.97060.84230.088*
H4C0.62800.96200.81030.088*
C50.3466 (3)0.8213 (2)0.61550 (12)0.0547 (7)
H5A0.26360.85320.62620.066*
H5B0.31880.77440.58610.066*
C60.3446 (5)0.9760 (2)0.54940 (17)0.0845 (12)
H6A0.39361.01970.52600.127*
H6B0.30501.00160.58720.127*
H6C0.27210.95200.52150.127*
C110.3093 (2)0.71146 (14)0.71190 (9)0.0348 (5)
C120.3530 (3)0.64613 (18)0.75270 (13)0.0515 (6)
H120.44790.63920.76110.062*
C130.2638 (4)0.59029 (19)0.78188 (15)0.0620 (8)
H130.29810.54710.81000.074*
C140.1245 (3)0.59827 (18)0.76956 (14)0.0593 (8)
H140.06290.56010.78860.071*
C150.0777 (3)0.6619 (2)0.72964 (13)0.0573 (7)
H150.01730.66830.72120.069*
C160.1677 (3)0.71714 (18)0.70135 (11)0.0449 (6)
H160.13220.76060.67370.054*
N10.5861 (2)0.65794 (14)0.39600 (8)0.0396 (5)
C210.5628 (3)0.6327 (2)0.32574 (10)0.0531 (7)
H21A0.54380.68500.30050.064*
H21B0.64800.60780.31040.064*
C220.4488 (4)0.5700 (3)0.31219 (14)0.0858 (12)
H22A0.36390.59330.32910.103*
H22B0.46980.51610.33520.103*
C230.4255 (5)0.5507 (3)0.24087 (17)0.1044 (16)
H23A0.51470.54250.22150.125*
H23B0.37430.49660.23610.125*
C240.3540 (5)0.6152 (3)0.20706 (19)0.1017 (14)
H24A0.34380.59940.16170.153*
H24B0.40450.66900.21110.153*
H24C0.26400.62230.22480.153*
C310.4585 (2)0.69867 (18)0.42244 (10)0.0432 (6)
H31A0.38560.65520.42190.052*
H31B0.47850.71440.46770.052*
C320.4051 (3)0.7766 (2)0.38756 (12)0.0551 (7)
H32A0.38940.76300.34160.066*
H32B0.47340.82280.39110.066*
C330.2732 (3)0.8065 (2)0.41532 (13)0.0550 (7)
H33A0.20510.76020.41150.066*
H33B0.28910.81920.46140.066*
C340.2171 (4)0.8853 (3)0.38171 (17)0.0761 (10)
H34A0.13290.90290.40150.114*
H34B0.19820.87250.33630.114*
H34C0.28390.93150.38560.114*
C410.6161 (2)0.58012 (17)0.43699 (10)0.0404 (5)
H41A0.53740.54100.43250.048*
H41B0.62340.59850.48230.048*
C420.7434 (3)0.53021 (17)0.42250 (11)0.0441 (6)
H42A0.82420.56730.42870.053*
H42B0.73850.51100.37730.053*
C430.7567 (3)0.45311 (17)0.46679 (11)0.0464 (6)
H43A0.75640.47290.51180.056*
H43B0.67670.41570.45930.056*
C440.8850 (3)0.40157 (19)0.45726 (13)0.0570 (7)
H44A0.88820.35330.48710.086*
H44B0.96480.43790.46540.086*
H44C0.88480.38020.41320.086*
C510.7038 (3)0.72033 (18)0.39848 (11)0.0454 (6)
H51A0.67810.77020.37160.054*
H51B0.78240.69270.37880.054*
C520.7496 (3)0.7524 (2)0.46443 (13)0.0550 (7)
H52A0.67350.78250.48430.066*
H52B0.77620.70350.49210.066*
C530.8687 (3)0.8124 (2)0.45910 (16)0.0638 (8)
H53A0.84170.86020.43040.077*
H53B0.94420.78160.43940.077*
C540.9186 (5)0.8482 (3)0.5233 (2)0.0880 (12)
H54A0.99460.88730.51690.132*
H54B0.94900.80140.55150.132*
H54C0.84450.87910.54310.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0354 (13)0.0366 (14)0.0357 (11)0.0025 (12)0.0024 (10)0.0031 (10)
S10.0477 (4)0.0445 (4)0.0385 (3)0.0020 (3)0.0025 (2)0.0098 (2)
S20.0522 (4)0.0429 (4)0.0391 (3)0.0079 (3)0.0075 (2)0.0054 (2)
S30.0601 (5)0.0804 (6)0.0645 (4)0.0095 (4)0.0053 (3)0.0372 (4)
C10.0387 (13)0.0389 (13)0.0375 (10)0.0030 (11)0.0055 (9)0.0081 (9)
C20.0628 (19)0.0598 (18)0.0513 (14)0.0236 (15)0.0014 (12)0.0098 (12)
C30.0382 (13)0.0340 (12)0.0474 (12)0.0010 (10)0.0069 (10)0.0019 (9)
C40.0533 (17)0.0574 (18)0.0649 (16)0.0126 (14)0.0093 (13)0.0234 (13)
C50.0454 (15)0.0674 (19)0.0512 (14)0.0094 (14)0.0001 (11)0.0208 (13)
C60.117 (3)0.057 (2)0.082 (2)0.017 (2)0.044 (2)0.0157 (17)
C110.0393 (12)0.0332 (12)0.0320 (10)0.0026 (10)0.0050 (8)0.0060 (8)
C120.0507 (16)0.0463 (15)0.0587 (14)0.0045 (13)0.0155 (12)0.0108 (12)
C130.079 (2)0.0410 (15)0.0687 (17)0.0040 (15)0.0302 (15)0.0095 (13)
C140.073 (2)0.0422 (15)0.0654 (16)0.0237 (15)0.0324 (15)0.0152 (13)
C150.0453 (15)0.071 (2)0.0565 (15)0.0218 (15)0.0073 (12)0.0138 (14)
C160.0412 (14)0.0538 (15)0.0399 (11)0.0074 (12)0.0029 (10)0.0045 (10)
N10.0335 (10)0.0543 (13)0.0313 (9)0.0039 (9)0.0056 (7)0.0103 (8)
C210.0553 (16)0.0746 (19)0.0297 (11)0.0172 (15)0.0045 (10)0.0087 (11)
C220.098 (3)0.110 (3)0.0477 (16)0.026 (3)0.0208 (16)0.0047 (17)
C230.108 (3)0.134 (4)0.068 (2)0.052 (3)0.033 (2)0.039 (2)
C240.099 (3)0.130 (4)0.075 (2)0.010 (3)0.016 (2)0.010 (2)
C310.0317 (12)0.0621 (16)0.0362 (11)0.0033 (12)0.0072 (9)0.0077 (10)
C320.0435 (15)0.073 (2)0.0490 (13)0.0127 (14)0.0092 (11)0.0139 (13)
C330.0408 (15)0.0704 (19)0.0537 (14)0.0105 (14)0.0023 (11)0.0007 (13)
C340.059 (2)0.088 (3)0.082 (2)0.0294 (19)0.0013 (16)0.0093 (18)
C410.0369 (13)0.0511 (14)0.0333 (10)0.0015 (11)0.0025 (9)0.0089 (9)
C420.0432 (14)0.0498 (15)0.0395 (11)0.0011 (12)0.0024 (10)0.0050 (10)
C430.0500 (15)0.0467 (15)0.0421 (12)0.0023 (12)0.0018 (10)0.0039 (10)
C440.069 (2)0.0479 (16)0.0543 (14)0.0092 (15)0.0008 (13)0.0012 (12)
C510.0364 (13)0.0525 (15)0.0481 (12)0.0035 (12)0.0133 (10)0.0163 (11)
C520.0457 (16)0.0625 (18)0.0573 (15)0.0082 (14)0.0094 (12)0.0043 (13)
C530.0512 (18)0.0590 (19)0.082 (2)0.0114 (15)0.0116 (15)0.0012 (15)
C540.082 (3)0.081 (3)0.101 (3)0.024 (2)0.003 (2)0.019 (2)
Geometric parameters (Å, º) top
B1—C111.635 (3)C22—H22A0.9900
B1—C11.642 (4)C22—H22B0.9900
B1—C31.651 (3)C23—C241.406 (6)
B1—C51.655 (3)C23—H23A0.9900
S1—C21.796 (3)C23—H23B0.9900
S1—C11.804 (2)C24—H24A0.9800
S2—C41.799 (3)C24—H24B0.9800
S2—C31.811 (2)C24—H24C0.9800
S3—C61.796 (4)C31—C321.507 (4)
S3—C51.825 (3)C31—H31A0.9900
C1—H1A0.9900C31—H31B0.9900
C1—H1B0.9900C32—C331.517 (4)
C2—H2A0.9800C32—H32A0.9900
C2—H2B0.9800C32—H32B0.9900
C2—H2C0.9800C33—C341.514 (4)
C3—H3A0.9900C33—H33A0.9900
C3—H3B0.9900C33—H33B0.9900
C4—H4A0.9800C34—H34A0.9800
C4—H4B0.9800C34—H34B0.9800
C4—H4C0.9800C34—H34C0.9800
C5—H5A0.9900C41—C421.518 (4)
C5—H5B0.9900C41—H41A0.9900
C6—H6A0.9800C41—H41B0.9900
C6—H6B0.9800C42—C431.525 (3)
C6—H6C0.9800C42—H42A0.9900
C11—C121.390 (4)C42—H42B0.9900
C11—C161.406 (3)C43—C441.519 (4)
C12—C131.396 (4)C43—H43A0.9900
C12—H120.9500C43—H43B0.9900
C13—C141.391 (5)C44—H44A0.9800
C13—H130.9500C44—H44B0.9800
C14—C151.369 (5)C44—H44C0.9800
C14—H140.9500C51—C521.518 (4)
C15—C161.387 (4)C51—H51A0.9900
C15—H150.9500C51—H51B0.9900
C16—H160.9500C52—C531.510 (4)
N1—C411.513 (3)C52—H52A0.9900
N1—C511.516 (3)C52—H52B0.9900
N1—C211.529 (3)C53—C541.519 (5)
N1—C311.531 (3)C53—H53A0.9900
C21—C221.511 (5)C53—H53B0.9900
C21—H21A0.9900C54—H54A0.9800
C21—H21B0.9900C54—H54B0.9800
C22—C231.529 (4)C54—H54C0.9800
C11—B1—C1113.1 (2)C22—C23—H23A108.8
C11—B1—C3109.90 (17)C24—C23—H23B108.8
C1—B1—C3106.64 (19)C22—C23—H23B108.8
C11—B1—C5109.4 (2)H23A—C23—H23B107.7
C1—B1—C5111.48 (19)C23—C24—H24A109.5
C3—B1—C5106.1 (2)C23—C24—H24B109.5
C2—S1—C199.11 (13)H24A—C24—H24B109.5
C4—S2—C3100.46 (13)C23—C24—H24C109.5
C6—S3—C5100.82 (16)H24A—C24—H24C109.5
B1—C1—S1115.02 (16)H24B—C24—H24C109.5
B1—C1—H1A108.5C32—C31—N1116.09 (18)
S1—C1—H1A108.5C32—C31—H31A108.3
B1—C1—H1B108.5N1—C31—H31A108.3
S1—C1—H1B108.5C32—C31—H31B108.3
H1A—C1—H1B107.5N1—C31—H31B108.3
S1—C2—H2A109.5H31A—C31—H31B107.4
S1—C2—H2B109.5C31—C32—C33110.8 (2)
H2A—C2—H2B109.5C31—C32—H32A109.5
S1—C2—H2C109.5C33—C32—H32A109.5
H2A—C2—H2C109.5C31—C32—H32B109.5
H2B—C2—H2C109.5C33—C32—H32B109.5
B1—C3—S2114.75 (16)H32A—C32—H32B108.1
B1—C3—H3A108.6C34—C33—C32112.2 (2)
S2—C3—H3A108.6C34—C33—H33A109.2
B1—C3—H3B108.6C32—C33—H33A109.2
S2—C3—H3B108.6C34—C33—H33B109.2
H3A—C3—H3B107.6C32—C33—H33B109.2
S2—C4—H4A109.5H33A—C33—H33B107.9
S2—C4—H4B109.5C33—C34—H34A109.5
H4A—C4—H4B109.5C33—C34—H34B109.5
S2—C4—H4C109.5H34A—C34—H34B109.5
H4A—C4—H4C109.5C33—C34—H34C109.5
H4B—C4—H4C109.5H34A—C34—H34C109.5
B1—C5—S3113.57 (18)H34B—C34—H34C109.5
B1—C5—H5A108.9N1—C41—C42116.60 (18)
S3—C5—H5A108.9N1—C41—H41A108.1
B1—C5—H5B108.9C42—C41—H41A108.1
S3—C5—H5B108.9N1—C41—H41B108.1
H5A—C5—H5B107.7C42—C41—H41B108.1
S3—C6—H6A109.5H41A—C41—H41B107.3
S3—C6—H6B109.5C41—C42—C43109.9 (2)
H6A—C6—H6B109.5C41—C42—H42A109.7
S3—C6—H6C109.5C43—C42—H42A109.7
H6A—C6—H6C109.5C41—C42—H42B109.7
H6B—C6—H6C109.5C43—C42—H42B109.7
C12—C11—C16115.1 (2)H42A—C42—H42B108.2
C12—C11—B1122.0 (2)C44—C43—C42113.2 (2)
C16—C11—B1122.8 (2)C44—C43—H43A108.9
C11—C12—C13123.0 (3)C42—C43—H43A108.9
C11—C12—H12118.5C44—C43—H43B108.9
C13—C12—H12118.5C42—C43—H43B108.9
C14—C13—C12119.6 (3)H43A—C43—H43B107.7
C14—C13—H13120.2C43—C44—H44A109.5
C12—C13—H13120.2C43—C44—H44B109.5
C15—C14—C13119.0 (3)H44A—C44—H44B109.5
C15—C14—H14120.5C43—C44—H44C109.5
C13—C14—H14120.5H44A—C44—H44C109.5
C14—C15—C16120.6 (3)H44B—C44—H44C109.5
C14—C15—H15119.7N1—C51—C52116.39 (18)
C16—C15—H15119.7N1—C51—H51A108.2
C15—C16—C11122.6 (3)C52—C51—H51A108.2
C15—C16—H16118.7N1—C51—H51B108.2
C11—C16—H16118.7C52—C51—H51B108.2
C41—N1—C51111.63 (18)H51A—C51—H51B107.3
C41—N1—C21110.7 (2)C53—C52—C51110.1 (2)
C51—N1—C21106.63 (18)C53—C52—H52A109.6
C41—N1—C31106.10 (16)C51—C52—H52A109.6
C51—N1—C31110.8 (2)C53—C52—H52B109.6
C21—N1—C31111.09 (18)C51—C52—H52B109.6
C22—C21—N1115.5 (2)H52A—C52—H52B108.2
C22—C21—H21A108.4C52—C53—C54113.0 (3)
N1—C21—H21A108.4C52—C53—H53A109.0
C22—C21—H21B108.4C54—C53—H53A109.0
N1—C21—H21B108.4C52—C53—H53B109.0
H21A—C21—H21B107.5C54—C53—H53B109.0
C21—C22—C23113.2 (3)H53A—C53—H53B107.8
C21—C22—H22A108.9C53—C54—H54A109.5
C23—C22—H22A108.9C53—C54—H54B109.5
C21—C22—H22B108.9H54A—C54—H54B109.5
C23—C22—H22B108.9C53—C54—H54C109.5
H22A—C22—H22B107.8H54A—C54—H54C109.5
C24—C23—C22113.6 (4)H54B—C54—H54C109.5
C24—C23—H23A108.8
C11—B1—C1—S163.1 (2)C14—C15—C16—C110.2 (4)
C3—B1—C1—S1176.06 (15)C12—C11—C16—C150.2 (3)
C5—B1—C1—S160.7 (3)B1—C11—C16—C15176.3 (2)
C2—S1—C1—B1175.47 (18)C41—N1—C21—C2258.3 (3)
C11—B1—C3—S262.7 (2)C51—N1—C21—C22179.9 (3)
C1—B1—C3—S260.2 (2)C31—N1—C21—C2259.3 (3)
C5—B1—C3—S2179.10 (16)N1—C21—C22—C23177.0 (3)
C4—S2—C3—B1166.25 (18)C21—C22—C23—C2477.8 (5)
C11—B1—C5—S3175.62 (18)C41—N1—C31—C32177.9 (2)
C1—B1—C5—S349.8 (3)C51—N1—C31—C3260.7 (3)
C3—B1—C5—S365.9 (2)C21—N1—C31—C3257.6 (3)
C6—S3—C5—B1139.8 (2)N1—C31—C32—C33175.7 (2)
C1—B1—C11—C1231.9 (3)C31—C32—C33—C34179.5 (3)
C3—B1—C11—C1287.1 (3)C51—N1—C41—C4256.3 (3)
C5—B1—C11—C12156.8 (2)C21—N1—C41—C4262.3 (3)
C1—B1—C11—C16151.8 (2)C31—N1—C41—C42177.1 (2)
C3—B1—C11—C1689.2 (3)N1—C41—C42—C43178.7 (2)
C5—B1—C11—C1626.9 (3)C41—C42—C43—C44177.6 (2)
C16—C11—C12—C130.6 (4)C41—N1—C51—C5256.9 (3)
B1—C11—C12—C13176.0 (2)C21—N1—C51—C52177.9 (2)
C11—C12—C13—C141.0 (4)C31—N1—C51—C5261.1 (3)
C12—C13—C14—C151.0 (4)N1—C51—C52—C53178.9 (2)
C13—C14—C15—C160.6 (4)C51—C52—C53—C54179.1 (3)

Experimental details

Crystal data
Chemical formulaC16H36N+·C12H20BS3
Mr513.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.8449 (8), 15.6802 (9), 20.8870 (17)
β (°) 92.215 (7)
V3)3221.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.42 × 0.39 × 0.38
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.904, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
17239, 5999, 4342
Rint0.066
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.155, 1.01
No. of reflections5999
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.32

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOhrenberg, C., Ge, P., Schebler, P. C. G., Riordan, C. G., Yap, G. P. A. & Rheingold, A. L. (1996). Inorg. Chem. 35, 749–754.  CSD CrossRef CAS Web of Science Google Scholar
First citationRuth, K., Tüllmann, S., Vitze, H., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2008). Chem. Eur. J. 14, 6754–6770.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds