metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[bis­­(ethyl­enedi­amine-κ2N,N′)cadmium(II)] dichloride

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

(Received 10 December 2009; accepted 20 December 2009; online 24 December 2009)

The crystal structure of the title compound, [Cd2Cl2(C2H8N2)4]Cl2, consists of binuclear centrosymmetric [Cd2(C2H8N2)4Cl2]2+ cations and discrete chloride anions. The CdII cation is coordinated by four N atoms of two ethyl­enediamine ligands and two symmetry-related chloride anions within a distorted CdN4Cl2 octa­hedron. Two CdII cations are connected by two chloride anions via μ2-coordination, forming a four-membered Cd2Cl2 ring. The uncoordinated chloride anions are linked to the amino groups via N—H⋯Cl hydrogen bonding. Two C atoms of one of the two crystallographically independent ethyl­enediamine ligands are disordered and were refined using a split model [occupancy ratio 0.674 (9):0.326 (9)].

Related literature

For the general background to this work see: Bhosekar et al. (2006[Bhosekar, G., Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 6508-6515.]); Näther et al. (2007a[Näther, C., Bhosekar, G. & Jess, I. (2007a). Inorg. Chem. 46, 8079-8087.],b[Näther, C., Bhosekar, G. & Jess, I. (2007b). Eur. J. Inorg. Chem. 34, 5353-5359.]). For related structures, see: Cannas et al. (1980[Cannas, M., Marongiu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090-2094.]); Marsh (1999[Marsh, R. E. (1999). Acta Cryst. B55, 931-936.]); Pauly et al. (2000[Pauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830-2846.]); Chen et al. (2005[Chen, W.-T., Wang, M. S., Cai, L. Z., Guo, G. C. & Huang, J. S. (2005). Aust. J. Chem. 58, 578-584 .]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2Cl2(C2H8N2)4]Cl2

  • Mr = 607.02

  • Monoclinic, P 21 /n

  • a = 6.3869 (8) Å

  • b = 11.3143 (10) Å

  • c = 14.8255 (19) Å

  • β = 92.621 (13)°

  • V = 1070.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1998[Stoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.576, Tmax = 0.613

  • 6562 measured reflections

  • 3110 independent reflections

  • 2699 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.047

  • S = 1.04

  • 3110 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N2 2.3268 (15)
Cd1—N3 2.3314 (15)
Cd1—N1 2.3513 (14)
Cd1—N4 2.3971 (16)
Cd1—Cl1i 2.6200 (5)
Cd1—Cl1 2.7078 (5)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯Cl2ii 0.90 2.73 3.6137 (15) 168
N1—H2N1⋯Cl2i 0.90 2.54 3.3941 (15) 159
N2—H2N2⋯Cl2iii 0.90 2.42 3.3123 (15) 171
N3—H1N3⋯Cl1iv 0.90 2.53 3.3581 (16) 154
N3—H2N3⋯Cl2 0.90 2.67 3.4919 (17) 152
N4—H3N4⋯Cl2ii 0.90 2.78 3.653 (2) 164
N4—H4N4⋯Cl2iii 0.90 2.85 3.708 (2) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.

Data collection: DIF4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

Recently, we became interested in the synthesis, structures and thermal behaviour of coordination polymers based on zinc(II) halides and N-donor ligands. We have found out that new ligand-deficient coordination polymers can simply be prepared by thermal decomposition of suitable ligand-rich precursor compounds (Bhosekar et al., 2006; Näther et al., 2007a,b). In related studies we started to investigate the properties of the heavier homologue cadmium. As a part of this project the crystal structure of the title compound, [Cd2(C2H8N2)4Cl2]Cl2, was investigated.

In the crystal structure discrete [(C2H8N2)4Cd2Cl2]2+ cations are found which are located on centres of inversion. The structure contains additional chloride anions which are not connected to the cations and are located in general positions. In the complex cation the Cd2+ atoms are cis-coordinated by two symmetry related chloride anions and four N atoms of two crystallographically independent ethylenediamine ligands, leading to distorted CdN4Cl2 octahedra (Fig. 1 and Table 1). The Cd2+ atoms are linked by two symmetry-related chloride anions into a 4-membered centrosymmetric and planar Cd2Cl2 ring. This structural motif is known and found in some other Cd halide complexes (Cannas et al., 1980; Marsh, 1999; Pauly et al., 2000). Both Cd—Cl distances (Table 1) are different but comparable to those in the related compounds. The chloride anions that are not involved in Cd coordination are connected to the H atoms of the amino groups by N—H···Cl hydrogen bonding (Table 2).

Related literature top

For the general background to this work see: Bhosekar et al. (2006); Näther et al. (2007a,b). For related structures, see: Cannas et al. (1980); Marsh (1999); Pauly et al. (2000); Chen et al. (2005).

Experimental top

0.1833 g CdCl2 (1 mmol) were reacted with 0.3005 g ethylenediamine (5 mmol) in a glass tube at room temperature. After three days colourless crystals of the title compound have formed as the minor phase in a mixture with the literature known compound tris(ethylenediamine-N,N')-cadmium(II) dichloride monohydrate (Chen et al., 2005).

Refinement top

All H atoms were were positioned with idealized geometry and were refined isotropically with Ueq(H) = 1.2 Ueq(C,N) of the parent atom using a riding model with C—H = 0.97 and N—H = 0.90 Å. Two C atoms of one of the two crystallographically independent ethylenediamine ligands are disordered and were refined using a split model with a 0.674 (9): 0.326 (9) occupancy ratio.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4 (Stoe & Cie, 1992); data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i=-x + 1, -y + 1, -z + 1.
Di-µ-chlorido-bis[bis(ethylenediamine-κ2N,N')cadmium(II)] dichloride top
Crystal data top
[Cd2Cl2(C2H8N2)4]Cl2F(000) = 600
Mr = 607.02Dx = 1.884 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 120 reflections
a = 6.3869 (8) Åθ = 10–25°
b = 11.3143 (10) ŵ = 2.49 mm1
c = 14.8255 (19) ÅT = 293 K
β = 92.621 (13)°Block, colourless
V = 1070.2 (2) Å30.3 × 0.2 × 0.2 mm
Z = 2
Data collection top
Stoe IPDS-1
diffractometer
3110 independent reflections
Radiation source: fine-focus sealed tube2699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ scanθmax = 30.0°, θmin = 2.3°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 08
Tmin = 0.576, Tmax = 0.613k = 1515
6562 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.1639P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3110 reflectionsΔρmax = 0.53 e Å3
120 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (4)
Crystal data top
[Cd2Cl2(C2H8N2)4]Cl2V = 1070.2 (2) Å3
Mr = 607.02Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.3869 (8) ŵ = 2.49 mm1
b = 11.3143 (10) ÅT = 293 K
c = 14.8255 (19) Å0.3 × 0.2 × 0.2 mm
β = 92.621 (13)°
Data collection top
Stoe IPDS-1
diffractometer
3110 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
2699 reflections with I > 2σ(I)
Tmin = 0.576, Tmax = 0.613Rint = 0.018
6562 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
3110 reflectionsΔρmin = 0.49 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.658581 (17)0.626379 (10)0.561674 (7)0.03352 (5)
Cl10.70739 (6)0.39404 (4)0.52416 (3)0.04109 (9)
Cl20.67265 (8)0.63867 (4)0.20632 (4)0.05032 (11)
N10.5276 (2)0.61258 (13)0.70697 (10)0.0382 (3)
H1N10.43370.67030.71550.046*
H2N10.46450.54230.71420.046*
C10.7084 (3)0.62488 (17)0.77133 (11)0.0475 (4)
H1A0.67090.59700.83030.057*
H1B0.74710.70760.77680.057*
C20.8923 (3)0.55455 (18)0.73977 (13)0.0491 (4)
H2A1.00720.55860.78480.059*
H2B0.85230.47230.73220.059*
N20.9601 (2)0.60183 (13)0.65389 (10)0.0394 (3)
H1N21.04870.55120.62840.047*
H2N21.02590.67150.66270.047*
N30.8018 (2)0.70351 (15)0.43233 (10)0.0447 (3)
H1N30.94270.70190.43770.054*0.326 (9)
H2N30.75980.66100.38350.054*0.326 (9)
H3N30.92230.66600.42140.054*0.674 (9)
H4N30.71210.69330.38440.054*0.674 (9)
C30.7267 (15)0.8259 (6)0.4236 (4)0.0468 (19)0.326 (9)
H3C0.78860.86410.37260.056*0.326 (9)
H3D0.57540.82710.41390.056*0.326 (9)
C40.7884 (17)0.8874 (6)0.5075 (5)0.054 (2)0.326 (9)
H4C0.76320.97160.50090.065*0.326 (9)
H4D0.93650.87530.52210.065*0.326 (9)
C3'0.8423 (7)0.8322 (3)0.4474 (3)0.0536 (10)0.674 (9)
H3A0.86030.87080.38990.064*0.674 (9)
H3B0.97080.84210.48410.064*0.674 (9)
C4'0.6641 (8)0.8893 (3)0.4939 (3)0.0557 (10)0.674 (9)
H4A0.68700.97380.49890.067*0.674 (9)
H4B0.53330.87600.45950.067*0.674 (9)
N40.6547 (3)0.83613 (14)0.58432 (12)0.0531 (4)
H1N40.52280.86420.57980.064*0.326 (9)
H2N40.71200.85500.63900.064*0.326 (9)
H3N40.53680.85830.61070.064*0.674 (9)
H4N40.76580.85880.61970.064*0.674 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03410 (7)0.03660 (7)0.02973 (6)0.00457 (4)0.00013 (4)0.00078 (4)
Cl10.02885 (16)0.04039 (19)0.0533 (2)0.00407 (14)0.00646 (15)0.01037 (16)
Cl20.0504 (2)0.0410 (2)0.0597 (3)0.00376 (17)0.0042 (2)0.01005 (18)
N10.0337 (6)0.0439 (7)0.0374 (6)0.0007 (5)0.0052 (5)0.0035 (5)
C10.0458 (9)0.0665 (12)0.0302 (7)0.0017 (8)0.0017 (6)0.0002 (7)
C20.0439 (9)0.0571 (10)0.0455 (9)0.0089 (8)0.0067 (7)0.0085 (8)
N20.0303 (6)0.0422 (7)0.0458 (7)0.0000 (5)0.0008 (5)0.0061 (6)
N30.0360 (7)0.0607 (9)0.0378 (7)0.0050 (6)0.0062 (5)0.0027 (6)
C30.045 (4)0.051 (3)0.044 (3)0.003 (3)0.002 (3)0.019 (2)
C40.063 (5)0.038 (3)0.062 (4)0.008 (3)0.008 (4)0.013 (3)
C3'0.047 (2)0.0619 (19)0.0529 (19)0.0065 (14)0.0122 (16)0.0177 (14)
C4'0.059 (3)0.0456 (15)0.063 (2)0.0064 (15)0.0113 (17)0.0172 (13)
N40.0788 (12)0.0383 (7)0.0430 (8)0.0001 (8)0.0106 (8)0.0019 (7)
Geometric parameters (Å, º) top
Cd1—N22.3268 (15)N3—H1N30.9000
Cd1—N32.3314 (15)N3—H2N30.9000
Cd1—N12.3513 (14)N3—H3N30.9000
Cd1—N42.3971 (16)N3—H4N30.9000
Cd1—Cl1i2.6200 (5)C3—C41.464 (12)
Cd1—Cl12.7078 (5)C3—H3C0.9700
Cl1—Cd1i2.6200 (5)C3—H3D0.9700
N1—C11.471 (2)C4—N41.566 (7)
N1—H1N10.9000C4—H4C0.9700
N1—H2N10.9000C4—H4D0.9700
C1—C21.511 (3)C3'—C4'1.503 (6)
C1—H1A0.9700C3'—H3A0.9700
C1—H1B0.9700C3'—H3B0.9700
C2—N21.465 (2)C4'—N41.473 (4)
C2—H2A0.9700C4'—H4A0.9700
C2—H2B0.9700C4'—H4B0.9700
N2—H1N20.9000N4—H1N40.9000
N2—H2N20.9000N4—H2N40.9000
N3—C31.469 (7)N4—H3N40.9000
N3—C3'1.494 (4)N4—H4N40.9000
N2—Cd1—N3100.53 (6)H1N3—N3—H3N331.4
N2—Cd1—N176.90 (5)H2N3—N3—H3N380.1
N3—Cd1—N1161.39 (5)C3—N3—H4N381.8
N2—Cd1—N492.83 (6)C3'—N3—H4N3110.0
N3—Cd1—N475.61 (6)Cd1—N3—H4N3110.0
N1—Cd1—N486.05 (5)H1N3—N3—H4N3131.6
N2—Cd1—Cl1i166.14 (4)H2N3—N3—H4N330.7
N3—Cd1—Cl1i90.48 (4)H3N3—N3—H4N3108.4
N1—Cd1—Cl1i95.29 (4)C4—C3—N3107.4 (7)
N4—Cd1—Cl1i98.09 (5)C4—C3—H3C110.2
N2—Cd1—Cl184.54 (4)N3—C3—H3C110.2
N3—Cd1—Cl198.12 (4)C4—C3—H3D110.2
N1—Cd1—Cl199.95 (4)N3—C3—H3D110.2
N4—Cd1—Cl1172.69 (5)H3C—C3—H3D108.5
Cl1i—Cd1—Cl185.593 (13)C3—C4—N4107.9 (6)
Cd1i—Cl1—Cd194.407 (13)C3—C4—H4C110.1
C1—N1—Cd1106.64 (10)N4—C4—H4C110.1
C1—N1—H1N1110.4C3—C4—H4D110.1
Cd1—N1—H1N1110.4N4—C4—H4D110.1
C1—N1—H2N1110.4H4C—C4—H4D108.4
Cd1—N1—H2N1110.4N3—C3'—C4'111.0 (3)
H1N1—N1—H2N1108.6N3—C3'—H3A109.4
N1—C1—C2110.35 (15)C4'—C3'—H3A109.4
N1—C1—H1A109.6N3—C3'—H3B109.4
C2—C1—H1A109.6C4'—C3'—H3B109.4
N1—C1—H1B109.6H3A—C3'—H3B108.0
C2—C1—H1B109.6N4—C4'—C3'107.7 (3)
H1A—C1—H1B108.1N4—C4'—H4A110.2
N2—C2—C1109.99 (14)C3'—C4'—H4A110.2
N2—C2—H2A109.7N4—C4'—H4B110.2
C1—C2—H2A109.7C3'—C4'—H4B110.2
N2—C2—H2B109.7H4A—C4'—H4B108.5
C1—C2—H2B109.7C4'—N4—C430.7 (3)
H2A—C2—H2B108.2C4'—N4—Cd1106.00 (17)
C2—N2—Cd1106.55 (10)C4—N4—Cd1104.8 (3)
C2—N2—H1N2110.4C4'—N4—H1N482.3
Cd1—N2—H1N2110.4C4—N4—H1N4110.8
C2—N2—H2N2110.4Cd1—N4—H1N4110.8
Cd1—N2—H2N2110.4C4'—N4—H2N4133.7
H1N2—N2—H2N2108.6C4—N4—H2N4110.8
C3—N3—C3'31.6 (3)Cd1—N4—H2N4110.8
C3—N3—Cd1106.7 (2)H1N4—N4—H2N4108.9
C3'—N3—Cd1108.26 (14)C4'—N4—H3N4110.5
C3—N3—H1N3110.4C4—N4—H3N4135.0
C3'—N3—H1N380.9Cd1—N4—H3N4110.5
Cd1—N3—H1N3110.4H1N4—N4—H3N430.0
C3—N3—H2N3110.4H2N4—N4—H3N481.8
C3'—N3—H2N3133.2C4'—N4—H4N4110.5
Cd1—N3—H2N3110.4C4—N4—H4N483.0
H1N3—N3—H2N3108.6Cd1—N4—H4N4110.5
C3—N3—H3N3135.0H1N4—N4—H4N4130.7
C3'—N3—H3N3110.0H2N4—N4—H4N429.5
Cd1—N3—H3N3110.0H3N4—N4—H4N4108.7
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl2ii0.902.733.6137 (15)168
N1—H2N1···Cl2i0.902.543.3941 (15)159
N2—H2N2···Cl2iii0.902.423.3123 (15)171
N3—H1N3···Cl1iv0.902.533.3581 (16)154
N3—H2N3···Cl20.902.673.4919 (17)152
N4—H3N4···Cl2ii0.902.783.653 (2)164
N4—H4N4···Cl2iii0.902.853.708 (2)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cd2Cl2(C2H8N2)4]Cl2
Mr607.02
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.3869 (8), 11.3143 (10), 14.8255 (19)
β (°) 92.621 (13)
V3)1070.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerStoe IPDS1
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.576, 0.613
No. of measured, independent and
observed [I > 2σ(I)] reflections
6562, 3110, 2699
Rint0.018
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.047, 1.04
No. of reflections3110
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.49

Computer programs: DIF4 (Stoe & Cie, 1992), REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N22.3268 (15)Cd1—N42.3971 (16)
Cd1—N32.3314 (15)Cd1—Cl1i2.6200 (5)
Cd1—N12.3513 (14)Cd1—Cl12.7078 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl2ii0.902.733.6137 (15)167.8
N1—H2N1···Cl2i0.902.543.3941 (15)159.1
N2—H2N2···Cl2iii0.902.423.3123 (15)171.4
N3—H1N3···Cl1iv0.902.533.3581 (16)154.1
N3—H2N3···Cl20.902.673.4919 (17)152.0
N4—H3N4···Cl2ii0.902.783.653 (2)164.1
N4—H4N4···Cl2iii0.902.853.708 (2)160.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the state of Schleswig-Holstein and the Deutsche Forschungsgemeinschaft (Projekt No. NA 720/1–1). We thank Professor Dr Wolfgang Bensch for the facility to use his experimental equipment.

References

First citationBhosekar, G., Jess, I. & Näther, C. (2006). Inorg. Chem. 45, 6508–6515.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCannas, M., Marongiu, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090–2094.  CSD CrossRef Web of Science Google Scholar
First citationChen, W.-T., Wang, M. S., Cai, L. Z., Guo, G. C. & Huang, J. S. (2005). Aust. J. Chem. 58, 578–584 .  Web of Science CSD CrossRef CAS Google Scholar
First citationMarsh, R. E. (1999). Acta Cryst. B55, 931–936.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNäther, C., Bhosekar, G. & Jess, I. (2007a). Inorg. Chem. 46, 8079–8087.  Web of Science PubMed Google Scholar
First citationNäther, C., Bhosekar, G. & Jess, I. (2007b). Eur. J. Inorg. Chem. 34, 5353–5359.  Google Scholar
First citationPauly, J. W., Sander, J., Kuppert, D., Winter, M., Reiss, G. J., Zürcher, F., Hoffmann, R., Fässler, T. F. & Hegetschweiler, K. (2000). Chem. Eur. J. 6, 2830–2846.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (1998). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds