organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Benzyl­oxymethyl-9-bromo-6-chloro-9-de­aza­purine

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 18 November 2009; accepted 25 November 2009; online 16 December 2009)

The title compound, C14H11BrClN3O, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, the molecules are linked by C—N⋯Br halogen bonds, as well as weak methyl­ene C—H⋯π, phenyl C—H⋯π, C—H⋯Br and phenyl C—H⋯O(ether) inter­actions.

Related literature

For synthetic details, see Clinch et al. (2010[ Clinch, K., Evans, G. B., Fröhlich, R. F. G., Gutierrez, J. A., Mason, J. M., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2010). Bioorg. Med. Chem. Submitted.]). For Br⋯N halogen bonding, see: Kubicki (2004[ Kubicki, M. (2004). Acta Cryst. B60, 333-342.]); Metrangolo et al. (2008[ Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]). For a related structure, see: Sakore & Sobell (1969[ Sakore, T. D. & Sobell, H. M. (1969). J. Mol. Biol. 43, 77-87.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrClN3O

  • Mr = 352.62

  • Triclinic, [P \overline 1]

  • a = 7.8999 (2) Å

  • b = 11.5023 (4) Å

  • c = 15.5571 (5) Å

  • α = 86.111 (2)°

  • β = 84.564 (2)°

  • γ = 89.037 (2)°

  • V = 1403.95 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 118 K

  • 0.41 × 0.21 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[ Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.606, Tmax = 0.747

  • 40101 measured reflections

  • 9403 independent reflections

  • 6435 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.081

  • S = 1.01

  • 9403 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected torsion angles (°)

C5—N7—C8—C9 0.3 (3)
N7—C10—O11—C12 −68.2 (3)
C10—O11—C12—C13 −172.6 (2)
C5′—N7′—C8′—C9′ 0.1 (3)
N7′—C10′—O11′—C12′ −77.3 (2)
C10′—O11′—C12′—C13′ −161.5 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br9i 0.95 2.90 3.805 (3) 159
C8—H8⋯N1ii 0.95 2.46 3.394 (3) 166
C8′—H8′⋯N1′ii 0.95 2.48 3.410 (3) 166
C10′—H10C⋯Br9iii 0.99 2.78 3.700 (2) 156
C15—H15⋯O11′iv 0.95 2.60 3.497 (4) 158
C10—H10ACg1v 0.99 2.60 3.466 (3) 146
C14—H14⋯Cg2iv 0.95 2.87 3.794 (3) 165
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) x-1, y, z+1; (v) -x+1, -y+1, -z+1. Cg1 and Cg2 are the centroids of the N7′,C4′,C5′,C8′,C9′ and C13′–C18′ rings, respectively.

Table 3
C—N⋯Br inter­actions (Å, °)

C—N⋯Br C—N N⋯Br C⋯Br C—N⋯Br
C2—N3⋯Br9′vi 1.320 (3) 2.964 (2) 3.457 (3) 100.45 (17)
C2′—N3′⋯Brvii 1.324 (3) 3.043 (2) 3.565 (3) 102.17 (14)
Symmetry codes: (vi) x, y-1, z; (vii) 1+x, 1+y, z.

Data collection: APEX2 (Bruker, 2005[ Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[ Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Bruker, 2005[ Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[ Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[ Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The title compound was prepared for incorporation into potential transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase (Clinch et al., 2010).

The asymmetric unit of the title compound contains two independent 7-benzyloxymethyl-9-bromo-6-chloro-9-deazapurine molecules (Fig. 1, Table 1) which are nearly identical. The molecular labels are related by the addition of a prime (e.g. molecule 1, Br9 and molecule 2, Br9'). The overlay figure (Fig. 2) illustrates the rmsd fit of 0.077 Å, with maximum deviation at the Cl6 (C16') atom sites of 0.274 Å. The five-membered rings (i.e. C4,C5,C8,C9,N7) are planar (maximum deviations 0.004 (2), 0.001 (2) Å), as are the fused six-membered rings (C4,C5,C6,N1,C2,N3) with maximum deviations 0.017 (2), 0.010 (2) Å; the angles between these two planes are 2.62 (13) and 1.00 (12)°, respectively. The dihedral angles between the mean planes through the deazapurine ring systems and the phenyl rings are 52.76 (12) and 58.02 (11)°.

Torsion angles (Table 1) are similar to those observed earlier in 9-ethyl-8-bromohypoxanthine (Sakore & Sobell, 1969).

Lattice binding is provided principally by Br···N halogen bonding (Metrangolo et al., 2008; Kubicki, 2004) between the two independent molecules, forming layers parallel to the (0,1,2) plane (Table 3; Fig. 3). Inter-layer links are provided by weak methylene C–H···π, phenyl C–H···π, C–H···Br, and phenyl C–H···O(ether) interactions (Table 2). In Table 2, Cg1 and Cg2 are the centroids of N7',C4',C5',C8',C9' and C13'–C18', respectively.

Related literature top

For synthetic details, see Clinch et al. (2010). For Br···N halogen bonding, see: Kubicki (2004); Metrangolo et al. (2008). For a related structure, see: Sakore & Sobell (1969). Cg1 and Cg2 are the centroids of the N7',C4',C5',C8',C9' and C13'–C18' rings, respectively.

Experimental top

Synthetic details are given in Clinch et al. (2010).

Refinement top

Data was restricted to 2θ = 64°. All carbon-bound H atoms were constrained to their expected geometries [C—H 0.95, 0.99 Å] and refined with Uiso(H) = 1.2Ueq(parent atom). All non-hydrogen atoms were refined with anisotropic thermal parameters.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound (Farrugia, 1997).
[Figure 2] Fig. 2. Overlap view of the two molecules (Mercury 2.3, Macrae et al. (2008)). Single coloured (purple) molecule is primed molecule 2.
[Figure 3] Fig. 3. A packing view (Mercury 2.3, Macrae et al. (2008)) of the unit cell, highlighting the layers formed by Br···N bonding in the crystal structure (Table 3). Some of the other weak interactions (Table 2) are shown, with contact atoms in ball mode; only H atoms involved in short contacts are included. Symmetry codes: (i) x, 1 + y,z (ii) x - 1,y,z (iii) 1 - x,1 - y,1 - z (iv) x - 1,1 + y,z.
5-Benzyloxymethyl-7-bromo-4-chloro-5H-pyrrolo[3,2-d]pyrimidine top
Crystal data top
C14H11BrClN3OZ = 4
Mr = 352.62F(000) = 704
Triclinic, P1Dx = 1.668 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8999 (2) ÅCell parameters from 7237 reflections
b = 11.5023 (4) Åθ = 2.3–28.2°
c = 15.5571 (5) ŵ = 3.12 mm1
α = 86.111 (2)°T = 118 K
β = 84.564 (2)°Plate, colourless
γ = 89.037 (2)°0.41 × 0.21 × 0.02 mm
V = 1403.95 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
9403 independent reflections
Radiation source: fine-focus sealed tube6435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8.333 pixels mm-1θmax = 32.0°, θmin = 2.8°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(Blessing, 1995)
k = 1717
Tmin = 0.606, Tmax = 0.747l = 2323
40101 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.5143P]
where P = (Fo2 + 2Fc2)/3
9403 reflections(Δ/σ)max = 0.002
361 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C14H11BrClN3Oγ = 89.037 (2)°
Mr = 352.62V = 1403.95 (8) Å3
Triclinic, P1Z = 4
a = 7.8999 (2) ÅMo Kα radiation
b = 11.5023 (4) ŵ = 3.12 mm1
c = 15.5571 (5) ÅT = 118 K
α = 86.111 (2)°0.41 × 0.21 × 0.02 mm
β = 84.564 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9403 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6435 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.747Rint = 0.060
40101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.01Δρmax = 0.54 e Å3
9403 reflectionsΔρmin = 0.45 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br90.07829 (3)0.13291 (2)0.558649 (16)0.02240 (6)
Cl60.55993 (8)0.24034 (6)0.75030 (4)0.03239 (15)
N10.6523 (2)0.0585 (2)0.66667 (15)0.0294 (5)
C20.6243 (3)0.0336 (3)0.62176 (19)0.0337 (7)
H20.72220.07600.60100.040*
N30.4768 (2)0.07252 (19)0.60296 (14)0.0271 (5)
C40.3419 (3)0.0102 (2)0.63424 (15)0.0204 (5)
C50.3551 (3)0.0859 (2)0.68449 (15)0.0194 (5)
C60.5190 (3)0.1184 (2)0.69711 (16)0.0226 (5)
N70.1938 (2)0.12957 (17)0.70536 (13)0.0200 (4)
C80.0815 (3)0.0629 (2)0.66795 (15)0.0207 (5)
H80.03830.07450.67200.025*
C90.1670 (3)0.0223 (2)0.62432 (15)0.0187 (5)
C100.1459 (3)0.2263 (2)0.75875 (16)0.0244 (5)
H10A0.20340.29750.73210.029*
H10B0.02180.24000.75920.029*
O110.1867 (2)0.20846 (15)0.84366 (11)0.0265 (4)
C120.0892 (4)0.1195 (3)0.89288 (19)0.0465 (8)
H12A0.11870.04260.87020.056*
H12B0.03360.13440.88880.056*
C130.1286 (4)0.1199 (3)0.98518 (18)0.0343 (6)
C140.0310 (4)0.1865 (2)1.0417 (2)0.0362 (7)
H140.05920.23331.02150.043*
C150.0629 (4)0.1861 (3)1.12723 (19)0.0377 (7)
H150.00610.23181.16560.045*
C160.1938 (4)0.1200 (3)1.1573 (2)0.0395 (7)
H160.21580.12001.21630.047*
C170.2929 (4)0.0539 (3)1.1013 (2)0.0446 (8)
H170.38410.00821.12150.054*
C180.2602 (4)0.0536 (3)1.0156 (2)0.0410 (7)
H180.32890.00730.97730.049*
Br9'0.59248 (3)0.72770 (2)0.500913 (16)0.02152 (6)
Cl6'1.15241 (7)0.36355 (6)0.28870 (4)0.02845 (14)
N1'1.2108 (2)0.54047 (18)0.37585 (13)0.0228 (4)
C2'1.1644 (3)0.6305 (2)0.42386 (17)0.0257 (5)
H2'1.25470.67440.44110.031*
N3'1.0089 (2)0.66584 (18)0.45013 (13)0.0223 (4)
C4'0.8857 (3)0.6018 (2)0.42261 (15)0.0182 (5)
C5'0.9182 (3)0.5069 (2)0.37055 (14)0.0175 (4)
C6'1.0881 (3)0.4791 (2)0.34985 (15)0.0197 (5)
N7'0.7642 (2)0.46355 (17)0.35311 (12)0.0190 (4)
C8'0.6378 (3)0.5300 (2)0.39368 (15)0.0199 (5)
H8'0.51940.51860.39210.024*
C9'0.7066 (3)0.6140 (2)0.43611 (15)0.0190 (5)
C10'0.7317 (3)0.3645 (2)0.30284 (16)0.0225 (5)
H10C0.80140.29710.32220.027*
H10D0.61070.34270.31500.027*
O11'0.76778 (19)0.38677 (15)0.21388 (11)0.0250 (4)
C12'0.6421 (3)0.4559 (3)0.17201 (17)0.0320 (6)
H12C0.65460.53920.18200.038*
H12D0.52640.43120.19530.038*
C13'0.6698 (3)0.4377 (2)0.07720 (17)0.0271 (6)
C14'0.5969 (3)0.3438 (3)0.04404 (19)0.0361 (7)
H14'0.52470.29280.08100.043*
C15'0.6289 (4)0.3240 (3)0.04277 (19)0.0408 (7)
H15'0.57900.25920.06520.049*
C16'0.7331 (3)0.3979 (3)0.09698 (19)0.0371 (7)
H16'0.75550.38420.15650.045*
C17'0.8045 (4)0.4920 (3)0.06387 (19)0.0397 (7)
H17'0.87580.54340.10080.048*
C18'0.7726 (3)0.5115 (3)0.02262 (18)0.0357 (7)
H18'0.82210.57660.04480.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br90.01902 (11)0.02210 (13)0.02763 (14)0.00162 (8)0.00850 (9)0.00370 (10)
Cl60.0302 (3)0.0355 (4)0.0336 (4)0.0109 (3)0.0062 (3)0.0109 (3)
N10.0160 (9)0.0408 (14)0.0332 (13)0.0029 (8)0.0051 (8)0.0111 (11)
C20.0144 (11)0.0463 (18)0.0423 (18)0.0040 (10)0.0035 (10)0.0164 (14)
N30.0163 (9)0.0343 (13)0.0323 (13)0.0021 (8)0.0042 (8)0.0107 (10)
C40.0173 (10)0.0242 (13)0.0198 (13)0.0013 (8)0.0034 (8)0.0004 (10)
C50.0167 (10)0.0251 (13)0.0166 (12)0.0010 (8)0.0030 (8)0.0005 (10)
C60.0216 (11)0.0289 (14)0.0182 (12)0.0054 (9)0.0058 (9)0.0025 (10)
N70.0170 (9)0.0223 (11)0.0213 (11)0.0000 (7)0.0034 (7)0.0049 (8)
C80.0149 (10)0.0263 (13)0.0214 (13)0.0008 (8)0.0044 (8)0.0019 (10)
C90.0174 (10)0.0204 (12)0.0191 (12)0.0024 (8)0.0052 (8)0.0022 (9)
C100.0272 (12)0.0232 (13)0.0230 (14)0.0031 (9)0.0011 (9)0.0045 (11)
O110.0326 (9)0.0286 (10)0.0185 (9)0.0086 (7)0.0009 (7)0.0031 (8)
C120.062 (2)0.051 (2)0.0268 (17)0.0310 (16)0.0012 (14)0.0029 (14)
C130.0421 (15)0.0349 (16)0.0258 (15)0.0169 (12)0.0013 (11)0.0004 (12)
C140.0421 (16)0.0290 (16)0.0390 (18)0.0022 (12)0.0110 (13)0.0023 (13)
C150.0475 (17)0.0343 (17)0.0324 (17)0.0003 (13)0.0042 (13)0.0100 (13)
C160.0494 (17)0.0420 (18)0.0281 (16)0.0092 (14)0.0097 (13)0.0007 (14)
C170.0379 (16)0.049 (2)0.047 (2)0.0003 (14)0.0113 (14)0.0032 (16)
C180.0364 (15)0.0460 (19)0.0393 (19)0.0044 (13)0.0072 (13)0.0086 (15)
Br9'0.01786 (10)0.02498 (14)0.02185 (13)0.00062 (8)0.00097 (8)0.00401 (10)
Cl6'0.0234 (3)0.0316 (3)0.0305 (4)0.0022 (2)0.0014 (2)0.0094 (3)
N1'0.0177 (9)0.0271 (12)0.0235 (12)0.0024 (8)0.0023 (7)0.0005 (9)
C2'0.0148 (10)0.0315 (14)0.0315 (15)0.0057 (9)0.0052 (9)0.0012 (11)
N3'0.0187 (9)0.0254 (11)0.0235 (11)0.0034 (8)0.0044 (8)0.0029 (9)
C4'0.0177 (10)0.0192 (12)0.0178 (12)0.0013 (8)0.0034 (8)0.0009 (9)
C5'0.0166 (9)0.0222 (12)0.0142 (11)0.0025 (8)0.0035 (8)0.0017 (9)
C6'0.0199 (10)0.0236 (12)0.0151 (12)0.0011 (9)0.0007 (8)0.0001 (10)
N7'0.0151 (8)0.0243 (11)0.0187 (11)0.0031 (7)0.0040 (7)0.0045 (8)
C8'0.0122 (9)0.0282 (13)0.0189 (12)0.0001 (8)0.0013 (8)0.0021 (10)
C9'0.0188 (10)0.0224 (12)0.0158 (12)0.0008 (8)0.0014 (8)0.0007 (9)
C10'0.0236 (11)0.0229 (13)0.0219 (13)0.0037 (9)0.0056 (9)0.0037 (10)
O11'0.0226 (8)0.0349 (10)0.0187 (9)0.0060 (7)0.0058 (6)0.0064 (8)
C12'0.0312 (13)0.0412 (17)0.0249 (15)0.0107 (11)0.0078 (10)0.0060 (12)
C13'0.0260 (12)0.0348 (15)0.0219 (14)0.0063 (10)0.0079 (10)0.0055 (11)
C14'0.0411 (15)0.0394 (17)0.0282 (16)0.0068 (12)0.0063 (12)0.0005 (13)
C15'0.0510 (17)0.0438 (19)0.0299 (17)0.0083 (14)0.0098 (13)0.0089 (14)
C16'0.0405 (15)0.0497 (19)0.0226 (15)0.0026 (13)0.0079 (11)0.0064 (13)
C17'0.0404 (16)0.052 (2)0.0272 (16)0.0108 (13)0.0059 (12)0.0008 (14)
C18'0.0412 (15)0.0386 (17)0.0294 (16)0.0075 (12)0.0114 (12)0.0052 (13)
Geometric parameters (Å, º) top
Br9—C91.870 (2)Br9'—C9'1.873 (2)
Cl6—C61.726 (2)Cl6'—C6'1.728 (2)
N1—C61.316 (3)N1'—C6'1.318 (3)
N1—C21.341 (3)N1'—C2'1.344 (3)
C2—N31.320 (3)C2'—N3'1.324 (3)
C2—H20.9500C2'—H2'0.9500
N3—C41.345 (3)N3'—C4'1.348 (3)
C4—C51.407 (3)C4'—C5'1.409 (3)
C4—C91.415 (3)C4'—C9'1.417 (3)
C5—N71.380 (3)C5'—N7'1.379 (3)
C5—C61.390 (3)C5'—C6'1.388 (3)
N7—C81.377 (3)N7'—C8'1.379 (3)
N7—C101.457 (3)N7'—C10'1.465 (3)
C8—C91.363 (3)C8'—C9'1.355 (3)
C8—H80.9500C8'—H8'0.9500
C10—O111.390 (3)C10'—O11'1.394 (3)
C10—H10A0.9900C10'—H10C0.9900
C10—H10B0.9900C10'—H10D0.9900
O11—C121.427 (3)O11'—C12'1.438 (3)
C12—C131.498 (4)C12'—C13'1.499 (4)
C12—H12A0.9900C12'—H12C0.9900
C12—H12B0.9900C12'—H12D0.9900
C13—C141.378 (4)C13'—C18'1.377 (4)
C13—C181.380 (4)C13'—C14'1.385 (4)
C14—C151.377 (4)C14'—C15'1.384 (4)
C14—H140.9500C14'—H14'0.9500
C15—C161.372 (4)C15'—C16'1.381 (4)
C15—H150.9500C15'—H15'0.9500
C16—C171.376 (4)C16'—C17'1.380 (4)
C16—H160.9500C16'—H16'0.9500
C17—C181.382 (4)C17'—C18'1.378 (4)
C17—H170.9500C17'—H17'0.9500
C18—H180.9500C18'—H18'0.9500
C6—N1—C2117.6 (2)C6'—N1'—C2'117.19 (19)
N3—C2—N1127.8 (2)N3'—C2'—N1'128.2 (2)
N3—C2—H2116.1N3'—C2'—H2'115.9
N1—C2—H2116.1N1'—C2'—H2'115.9
C2—N3—C4113.9 (2)C2'—N3'—C4'113.4 (2)
N3—C4—C5123.5 (2)N3'—C4'—C5'123.7 (2)
N3—C4—C9130.0 (2)N3'—C4'—C9'129.7 (2)
C5—C4—C9106.56 (19)C5'—C4'—C9'106.58 (19)
N7—C5—C6135.4 (2)N7'—C5'—C6'135.8 (2)
N7—C5—C4108.42 (18)N7'—C5'—C4'108.19 (18)
C6—C5—C4116.1 (2)C6'—C5'—C4'116.05 (19)
N1—C6—C5121.1 (2)N1'—C6'—C5'121.4 (2)
N1—C6—Cl6116.47 (17)N1'—C6'—Cl6'115.92 (17)
C5—C6—Cl6122.42 (19)C5'—C6'—Cl6'122.65 (18)
C8—N7—C5107.50 (19)C8'—N7'—C5'107.52 (19)
C8—N7—C10124.96 (19)C8'—N7'—C10'123.80 (18)
C5—N7—C10127.53 (19)C5'—N7'—C10'128.67 (19)
C9—C8—N7110.16 (19)C9'—C8'—N7'110.33 (19)
C9—C8—H8124.9C9'—C8'—H8'124.8
N7—C8—H8124.9N7'—C8'—H8'124.8
C8—C9—C4107.4 (2)C8'—C9'—C4'107.4 (2)
C8—C9—Br9128.03 (17)C8'—C9'—Br9'127.83 (17)
C4—C9—Br9124.56 (18)C4'—C9'—Br9'124.78 (17)
O11—C10—N7113.9 (2)O11'—C10'—N7'113.58 (19)
O11—C10—H10A108.8O11'—C10'—H10C108.9
N7—C10—H10A108.8N7'—C10'—H10C108.9
O11—C10—H10B108.8O11'—C10'—H10D108.9
N7—C10—H10B108.8N7'—C10'—H10D108.9
H10A—C10—H10B107.7H10C—C10'—H10D107.7
C10—O11—C12113.6 (2)C10'—O11'—C12'115.05 (18)
O11—C12—C13108.2 (2)O11'—C12'—C13'107.2 (2)
O11—C12—H12A110.1O11'—C12'—H12C110.3
C13—C12—H12A110.1C13'—C12'—H12C110.3
O11—C12—H12B110.1O11'—C12'—H12D110.3
C13—C12—H12B110.1C13'—C12'—H12D110.3
H12A—C12—H12B108.4H12C—C12'—H12D108.5
C14—C13—C18118.8 (3)C18'—C13'—C14'119.2 (3)
C14—C13—C12119.8 (3)C18'—C13'—C12'120.5 (2)
C18—C13—C12121.4 (3)C14'—C13'—C12'120.2 (3)
C15—C14—C13120.7 (3)C15'—C14'—C13'120.2 (3)
C15—C14—H14119.7C15'—C14'—H14'119.9
C13—C14—H14119.7C13'—C14'—H14'119.9
C16—C15—C14120.4 (3)C16'—C15'—C14'120.3 (3)
C16—C15—H15119.8C16'—C15'—H15'119.9
C14—C15—H15119.8C14'—C15'—H15'119.9
C15—C16—C17119.3 (3)C17'—C16'—C15'119.4 (3)
C15—C16—H16120.3C17'—C16'—H16'120.3
C17—C16—H16120.3C15'—C16'—H16'120.3
C16—C17—C18120.3 (3)C18'—C17'—C16'120.2 (3)
C16—C17—H17119.9C18'—C17'—H17'119.9
C18—C17—H17119.9C16'—C17'—H17'119.9
C13—C18—C17120.5 (3)C13'—C18'—C17'120.7 (3)
C13—C18—H18119.8C13'—C18'—H18'119.7
C17—C18—H18119.8C17'—C18'—H18'119.7
C6—N1—C2—N30.7 (5)C6'—N1'—C2'—N3'1.0 (4)
N1—C2—N3—C40.4 (4)N1'—C2'—N3'—C4'1.0 (4)
C2—N3—C4—C51.7 (4)C2'—N3'—C4'—C5'0.4 (3)
C2—N3—C4—C9177.1 (3)C2'—N3'—C4'—C9'178.8 (2)
N3—C4—C5—N7179.8 (2)N3'—C4'—C5'—N7'178.6 (2)
C9—C4—C5—N70.8 (3)C9'—C4'—C5'—N7'0.1 (3)
N3—C4—C5—C63.3 (4)N3'—C4'—C5'—C6'1.7 (3)
C9—C4—C5—C6175.7 (2)C9'—C4'—C5'—C6'179.6 (2)
C2—N1—C6—C51.2 (4)C2'—N1'—C6'—C5'0.5 (3)
C2—N1—C6—Cl6177.1 (2)C2'—N1'—C6'—Cl6'179.70 (19)
N7—C5—C6—N1178.2 (3)N7'—C5'—C6'—N1'178.7 (2)
C4—C5—C6—N13.0 (4)C4'—C5'—C6'—N1'1.7 (3)
N7—C5—C6—Cl60.0 (4)N7'—C5'—C6'—Cl6'1.0 (4)
C4—C5—C6—Cl6175.20 (18)C4'—C5'—C6'—Cl6'178.51 (17)
C6—C5—N7—C8174.8 (3)C6'—C5'—N7'—C8'179.5 (3)
C4—C5—N7—C80.7 (3)C4'—C5'—N7'—C8'0.1 (3)
C6—C5—N7—C106.7 (4)C6'—C5'—N7'—C10'0.6 (4)
C4—C5—N7—C10177.9 (2)C4'—C5'—N7'—C10'179.0 (2)
C5—N7—C8—C90.3 (3)C5'—N7'—C8'—C9'0.1 (3)
C10—N7—C8—C9178.3 (2)C10'—N7'—C8'—C9'179.0 (2)
N7—C8—C9—C40.2 (3)N7'—C8'—C9'—C4'0.0 (3)
N7—C8—C9—Br9177.46 (17)N7'—C8'—C9'—Br9'179.70 (17)
N3—C4—C9—C8179.5 (3)N3'—C4'—C9'—C8'178.6 (2)
C5—C4—C9—C80.6 (3)C5'—C4'—C9'—C8'0.1 (3)
N3—C4—C9—Br91.8 (4)N3'—C4'—C9'—Br9'1.1 (4)
C5—C4—C9—Br9177.16 (17)C5'—C4'—C9'—Br9'179.77 (17)
C8—N7—C10—O11116.7 (2)C8'—N7'—C10'—O11'107.8 (2)
C5—N7—C10—O1161.7 (3)C5'—N7'—C10'—O11'73.4 (3)
N7—C10—O11—C1268.2 (3)N7'—C10'—O11'—C12'77.3 (2)
C10—O11—C12—C13172.6 (2)C10'—O11'—C12'—C13'161.5 (2)
O11—C12—C13—C1491.4 (3)O11'—C12'—C13'—C18'92.3 (3)
O11—C12—C13—C1889.4 (3)O11'—C12'—C13'—C14'85.3 (3)
C18—C13—C14—C150.7 (4)C18'—C13'—C14'—C15'0.7 (4)
C12—C13—C14—C15178.6 (3)C12'—C13'—C14'—C15'177.0 (3)
C13—C14—C15—C160.7 (4)C13'—C14'—C15'—C16'0.3 (5)
C14—C15—C16—C170.2 (5)C14'—C15'—C16'—C17'0.2 (5)
C15—C16—C17—C180.3 (5)C15'—C16'—C17'—C18'0.3 (4)
C14—C13—C18—C170.2 (4)C14'—C13'—C18'—C17'0.6 (4)
C12—C13—C18—C17179.0 (3)C12'—C13'—C18'—C17'177.0 (3)
C16—C17—C18—C130.3 (5)C16'—C17'—C18'—C13'0.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br9i0.952.903.805 (3)159
C8—H8···N1ii0.952.463.394 (3)166
C8—H8···N1ii0.952.483.410 (3)166
C10—H10C···Br9iii0.992.783.700 (2)156
C15—H15···O11iv0.952.603.497 (4)158
C10—H10A···Cg1v0.992.603.466 (3)146
C14—H14···Cg2iv0.952.873.794 (3)165
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x1, y, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H11BrClN3O
Mr352.62
Crystal system, space groupTriclinic, P1
Temperature (K)118
a, b, c (Å)7.8999 (2), 11.5023 (4), 15.5571 (5)
α, β, γ (°)86.111 (2), 84.564 (2), 89.037 (2)
V3)1403.95 (8)
Z4
Radiation typeMo Kα
µ (mm1)3.12
Crystal size (mm)0.41 × 0.21 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.606, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
40101, 9403, 6435
Rint0.060
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.081, 1.01
No. of reflections9403
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C5—N7—C8—C90.3 (3)C5'—N7'—C8'—C9'0.1 (3)
N7—C10—O11—C1268.2 (3)N7'—C10'—O11'—C12'77.3 (2)
C10—O11—C12—C13172.6 (2)C10'—O11'—C12'—C13'161.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br9i0.952.903.805 (3)159
C8—H8···N1ii0.952.463.394 (3)166
C8'—H8'···N1'ii0.952.483.410 (3)166
C10'—H10C···Br9iii0.992.783.700 (2)156
C15—H15···O11'iv0.952.603.497 (4)158
C10—H10A···Cg1v0.992.603.466 (3)146
C14—H14···Cg2iv0.952.873.794 (3)165
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x1, y, z+1; (v) x+1, y+1, z+1.
C—N···Br interactions (Å, °) top
C—N···BrC—NN···BrC···BrC—N···Br
C2—N3···Br9'vi1.320 (3)2.964 (2)3.457 (3)100.45 (17)
C2'—N3'···Brvii1.324 (3)3.043 (2)3.565 (3)102.17 (14)
Symmetry codes: (vi) x, y-1, z; (vii) 1+x, 1+y, z.
 

Acknowledgements

This work was supported by a New Zealand Foundation for Research Science and Technology contract [number C08X0701]. We thank Dr C. Fitchett of the University of Canterbury, New Zealand, for his assistance.

References

First citation Blessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citation Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Clinch, K., Evans, G. B., Fröhlich, R. F. G., Gutierrez, J. A., Mason, J. M., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2010). Bioorg. Med. Chem. Submitted.  Google Scholar
First citation Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Kubicki, M. (2004). Acta Cryst. B60, 333–342.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citation Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citation Sakore, T. D. & Sobell, H. M. (1969). J. Mol. Biol. 43, 77–87.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Spek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds