organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[4-(Di­methyl­amino)phen­yl]-1-(4-methyl­phen­yl)prop-2-en-1-one

aBinzhou Medical University, Yantai 264003, People's Republic of China
*Correspondence e-mail: wanglei424@163.com

(Received 22 November 2009; accepted 5 December 2009; online 16 December 2009)

In the title compound, C18H19NO, the dihedral angle between 4-methyl­phenyl and 4-(dimethyl­amino)phenyl rings is 45.5 (3)°. The C—C=C—C torsion angle of 173.8 (3)° indicates that the mol­ecule adopts an E configuration. The dimethyl­amino group is nearly coplanar with the attached benzene ring, making a dihedral angle of 2.7 (3)°. Weak inter­molecular C—H⋯π inter­actions are observed in the crystal structure.

Related literature

The title compound is a chalcone derivative; for the biological activiy of chalcones, see: Modzelewska et al. (2006[Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Lin et al. (2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]); Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]); Lunardi et al. (2003[Lunardi, F., Guzela, M., Rodrigues, A. T., Correa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. & Santos, A. R. S. (2003). Antimicrob. Agents Chemother. 47, 1449-1451.]); Tang et al. (2008[Tang, S.-P., Kuang, D.-Z., Feng, Y.-L., Li, W. & Chen, Z.-M. (2008). Acta Cryst. E64, o1123.]). For the organic non-linear optical properties of chalcones, see: Indira et al. (2002[Indira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Ravindra et al. (2009[Ravindra, H. J., Harrison, W. T., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2009). J. Cryst. Growth, 311, 310-315.]). For related structures, see: Wang et al. (2004[Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696-o698.]); Yang et al. (2006[Yang, W., Wang, L. & Zhang, D.-C. (2006). J. Chem. Crystallogr. 36, 195-198.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19NO

  • Mr = 265.34

  • Orthorhombic, P 21 21 21

  • a = 7.276 (2) Å

  • b = 11.567 (3) Å

  • c = 17.642 (5) Å

  • V = 1484.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 193 K

  • 0.59 × 0.35 × 0.18 mm

Data collection
  • Rigaku Mercury diffractometer

  • 16704 measured reflections

  • 1958 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.136

  • S = 1.31

  • 1958 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cg1i 0.95 2.94 3.697 (3) 138
C9—H9⋯Cg2ii 0.95 2.93 3.712 (3) 141
C16—H16BCg2iii 0.98 2.70 3.643 (3) 161
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{5\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 1999[Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku, 2000[Rigaku (2000). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcones are open chain flavonoids which consist of two substituted benzene rings bridged by a prop-2-en-1-one group. They are renowned for their broad biological activities (Opletalova & Sedivy, 1999), such as anticancer (Modzelewska et al., 2006), antitubercular (Lin et al., 2002), anti-inflammatory (Hsieh et al., 1998), trypanocidal (Lunardi et al., 2003) and antibacterial properties (Tang et al. 2008). In addition, chalcones are also finding applications as organic non-linear optical (NLO) materials for their excellent blue light transmittance and good crystal stabitily (Indira et al., 2002; Ravindra et al., 2009). As a part of our searches for NLO materials based on chalcones (Wang, et al., 2004; Yang, et al., 2006), the title compound (I) was synthesized and its crystal structure is reported. The crystal should exhibit second-order NLO properties, because it crystallizes in a non-centrosymmetric space group.

In the title compound(I) (Fig.1), the molecule adopts an E configuration with respect to C13C14 double bond [1.340 (4) Å]: the torsion angle C1—C13—C14—C15=173.8 (3)°. The dihedral angle between the C1—C6 ring (Plane A) and the C7—C12 ring (Plane B) is 45.5 (3)°, showing the two phenyl rings are rotated oppositely with respect to the enone segment. The mean plane of C1—C13=C14—C15 (Plane C) makes dihedral angles of 8.7 (3)° and 36.7 (4)° with plane A and plane B, respectively. The phenone O1 atom deviates from plane C by 0.240 (3) Å, suggesting C=O is not coplanar with Plane C. The dimethylamino group (Plane D) is nearly coplanar with the phenyl ring to which it is bound. The dehedral angel beween plane A and plane D is 2.7 (3)°. While no classical hydrogen bonds are present, weak intermolecular C—H···π interactions are observed, which contribute to the stability of crystal packing (Table 1).

Related literature top

The title compound is a chalcone derivative; for the biological activiy of chalcones, see: Modzelewska et al. (2006); Opletalova & Sedivy (1999); Lin et al. (2002); Hsieh et al. (1998); Lunardi et al. (2003); Tang et al. (2008). For the organic non-linear optical properties of chalcones, see: Indira et al. (2002); Ravindra et al. (2009). For related structures, see: Wang et al. (2004); Yang et al. (2006).

Experimental top

The synthesis of the title compound was carried out by adding an aqueous solution of sodium hydroxide (10%, 10 ml) to a solution of 4-methylacetophenone (0.02 mol) and 4-(dimethylamino)benzaldehyde (0.02 mol). The reaction mixture was stirred for 5 h at room temperature and then neutralized with HCl solution (10%). The product was recrystallized three times from ethanol (95%). Crystals suitable for X-ray analysis were grown by slow evaporation of the acetone solution at room temperature.

Refinement top

All of the H Atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95–0.98 Å, and with Uiso (H)=1.2 or 1.5Ueq(C). In the absence of significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear (Rigaku, 1999); data reduction: CrystalStructure (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLEASE PROVIDE; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids and atom labels for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis.
(E)-3-[4-(Dimethylamino)phenyl]-1-(4-methylphenyl)prop-2-en-1-one top
Crystal data top
C18H19NOF(000) = 568
Mr = 265.34Dx = 1.187 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71070 Å
Hall symbol: p 2ac 2abCell parameters from 5334 reflections
a = 7.276 (2) Åθ = 3.0–27.5°
b = 11.567 (3) ŵ = 0.07 mm1
c = 17.642 (5) ÅT = 193 K
V = 1484.8 (7) Å3Block, yellow
Z = 40.59 × 0.35 × 0.18 mm
Data collection top
Rigaku Mercury
diffractometer
1846 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
Detector resolution: 7.31 pixels mm-1h = 99
ω scansk = 1414
16704 measured reflectionsl = 1922
1958 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.31 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.3222P]
where P = (Fo2 + 2Fc2)/3
1958 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C18H19NOV = 1484.8 (7) Å3
Mr = 265.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.276 (2) ŵ = 0.07 mm1
b = 11.567 (3) ÅT = 193 K
c = 17.642 (5) Å0.59 × 0.35 × 0.18 mm
Data collection top
Rigaku Mercury
diffractometer
1846 reflections with I > 2σ(I)
16704 measured reflectionsRint = 0.055
1958 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.31Δρmax = 0.18 e Å3
1958 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9451 (4)0.62914 (17)0.28002 (11)0.0570 (7)
N11.0052 (4)0.9449 (2)0.14961 (12)0.0474 (7)
C10.9388 (4)0.8121 (2)0.07087 (15)0.0340 (6)
C21.0071 (4)0.9237 (2)0.05857 (14)0.0342 (6)
H21.03930.97010.10100.041*
C31.0288 (4)0.9681 (2)0.01345 (15)0.0355 (6)
H31.07541.04420.01950.043*
C40.9833 (4)0.9029 (2)0.07801 (15)0.0361 (6)
C50.9100 (4)0.7916 (2)0.06585 (15)0.0389 (6)
H50.87340.74580.10790.047*
C60.8909 (4)0.7489 (3)0.00638 (17)0.0377 (6)
H60.84310.67320.01270.045*
C70.9790 (4)0.7943 (2)0.35669 (14)0.0339 (6)
C81.0590 (4)0.7345 (2)0.41698 (16)0.0395 (6)
H81.10250.65800.40940.047*
C91.0757 (4)0.7849 (2)0.48706 (16)0.0424 (7)
H91.13430.74350.52680.051*
C101.0082 (4)0.8956 (3)0.50109 (15)0.0399 (6)
C110.9305 (4)0.9556 (3)0.44122 (15)0.0410 (7)
H110.88541.03170.44930.049*
C120.9174 (4)0.9066 (2)0.36960 (15)0.0371 (6)
H120.86590.94990.32910.045*
C130.9252 (4)0.7595 (2)0.14493 (15)0.0370 (6)
H130.88530.68130.14550.044*
C140.9611 (4)0.8060 (2)0.21291 (14)0.0377 (6)
H140.98960.88600.21630.045*
C150.9573 (4)0.7358 (2)0.28210 (15)0.0382 (6)
C161.0849 (5)1.0576 (3)0.16376 (19)0.0606 (9)
H16A1.20401.06310.13810.091*
H16B1.00251.11770.14440.091*
H16C1.10221.06810.21840.091*
C170.9558 (6)0.8769 (3)0.21540 (16)0.0685 (11)
H17A0.82500.85680.21290.103*
H17B1.02940.80590.21640.103*
H17C0.97940.92180.26150.103*
C181.0179 (5)0.9481 (3)0.57936 (17)0.0571 (9)
H18A0.90120.93520.60580.086*
H18B1.04081.03140.57510.086*
H18C1.11790.91190.60800.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0875 (18)0.0342 (10)0.0492 (12)0.0048 (12)0.0013 (13)0.0026 (9)
N10.0567 (17)0.0519 (14)0.0335 (12)0.0061 (14)0.0025 (12)0.0008 (11)
C10.0297 (12)0.0345 (12)0.0378 (13)0.0005 (12)0.0019 (11)0.0026 (11)
C20.0345 (13)0.0343 (13)0.0339 (13)0.0001 (12)0.0010 (12)0.0039 (11)
C30.0337 (14)0.0334 (13)0.0394 (14)0.0019 (11)0.0012 (12)0.0015 (11)
C40.0335 (13)0.0400 (13)0.0348 (13)0.0043 (12)0.0008 (12)0.0008 (11)
C50.0375 (14)0.0431 (14)0.0360 (14)0.0043 (13)0.0030 (12)0.0099 (12)
C60.0354 (14)0.0350 (12)0.0426 (14)0.0062 (12)0.0010 (12)0.0056 (11)
C70.0297 (13)0.0369 (13)0.0351 (13)0.0004 (12)0.0021 (11)0.0058 (11)
C80.0390 (15)0.0337 (12)0.0458 (15)0.0025 (13)0.0022 (13)0.0076 (12)
C90.0421 (15)0.0443 (15)0.0409 (14)0.0033 (14)0.0048 (13)0.0132 (12)
C100.0346 (14)0.0496 (15)0.0353 (13)0.0105 (13)0.0030 (12)0.0029 (12)
C110.0370 (14)0.0441 (15)0.0418 (15)0.0014 (13)0.0039 (13)0.0037 (12)
C120.0351 (14)0.0385 (13)0.0377 (14)0.0056 (13)0.0015 (12)0.0033 (12)
C130.0341 (14)0.0352 (13)0.0416 (14)0.0020 (12)0.0035 (12)0.0000 (11)
C140.0420 (15)0.0344 (13)0.0367 (14)0.0035 (13)0.0011 (12)0.0015 (11)
C150.0388 (14)0.0365 (14)0.0393 (14)0.0007 (12)0.0034 (13)0.0003 (12)
C160.060 (2)0.072 (2)0.0499 (18)0.016 (2)0.0025 (17)0.0142 (16)
C170.086 (3)0.085 (3)0.0346 (16)0.017 (2)0.0006 (19)0.0049 (16)
C180.063 (2)0.074 (2)0.0347 (14)0.017 (2)0.0046 (16)0.0016 (15)
Geometric parameters (Å, º) top
O1—C151.238 (3)C9—C101.393 (4)
N1—C41.363 (3)C9—H90.9500
N1—C171.448 (4)C10—C111.385 (4)
N1—C161.448 (4)C10—C181.510 (4)
C1—C61.396 (4)C11—C121.388 (4)
C1—C21.400 (4)C11—H110.9500
C1—C131.445 (4)C12—H120.9500
C2—C31.380 (4)C13—C141.340 (4)
C2—H20.9500C13—H130.9500
C3—C41.405 (4)C14—C151.466 (4)
C3—H30.9500C14—H140.9500
C4—C51.410 (4)C16—H16A0.9800
C5—C61.374 (4)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—H60.9500C17—H17A0.9800
C7—C121.393 (4)C17—H17B0.9800
C7—C81.396 (4)C17—H17C0.9800
C7—C151.488 (4)C18—H18A0.9800
C8—C91.372 (4)C18—H18B0.9800
C8—H80.9500C18—H18C0.9800
C4—N1—C17121.4 (3)C10—C11—C12121.1 (3)
C4—N1—C16121.8 (2)C10—C11—H11119.4
C17—N1—C16116.8 (2)C12—C11—H11119.4
C6—C1—C2116.4 (2)C11—C12—C7120.5 (3)
C6—C1—C13120.0 (2)C11—C12—H12119.7
C2—C1—C13123.6 (2)C7—C12—H12119.7
C3—C2—C1121.8 (2)C14—C13—C1128.8 (2)
C3—C2—H2119.1C14—C13—H13115.6
C1—C2—H2119.1C1—C13—H13115.6
C2—C3—C4121.3 (2)C13—C14—C15121.3 (2)
C2—C3—H3119.3C13—C14—H14119.4
C4—C3—H3119.3C15—C14—H14119.4
N1—C4—C3122.2 (2)O1—C15—C14121.9 (2)
N1—C4—C5120.7 (2)O1—C15—C7119.1 (2)
C3—C4—C5117.1 (2)C14—C15—C7118.9 (2)
C6—C5—C4120.5 (2)N1—C16—H16A109.5
C6—C5—H5119.8N1—C16—H16B109.5
C4—C5—H5119.8H16A—C16—H16B109.5
C5—C6—C1122.9 (3)N1—C16—H16C109.5
C5—C6—H6118.6H16A—C16—H16C109.5
C1—C6—H6118.6H16B—C16—H16C109.5
C12—C7—C8118.1 (2)N1—C17—H17A109.5
C12—C7—C15122.3 (2)N1—C17—H17B109.5
C8—C7—C15119.5 (2)H17A—C17—H17B109.5
C9—C8—C7120.9 (2)N1—C17—H17C109.5
C9—C8—H8119.6H17A—C17—H17C109.5
C7—C8—H8119.6H17B—C17—H17C109.5
C8—C9—C10121.3 (3)C10—C18—H18A109.5
C8—C9—H9119.4C10—C18—H18B109.5
C10—C9—H9119.4H18A—C18—H18B109.5
C11—C10—C9118.0 (3)C10—C18—H18C109.5
C11—C10—C18121.0 (3)H18A—C18—H18C109.5
C9—C10—C18121.1 (3)H18B—C18—H18C109.5
C6—C1—C2—C31.1 (4)C8—C9—C10—C112.7 (4)
C13—C1—C2—C3175.8 (3)C8—C9—C10—C18176.7 (3)
C1—C2—C3—C40.1 (4)C9—C10—C11—C121.0 (4)
C17—N1—C4—C3179.3 (3)C18—C10—C11—C12178.4 (3)
C16—N1—C4—C33.0 (4)C10—C11—C12—C71.4 (4)
C17—N1—C4—C50.5 (4)C8—C7—C12—C112.0 (4)
C16—N1—C4—C5178.3 (3)C15—C7—C12—C11176.2 (3)
C2—C3—C4—N1179.5 (3)C6—C1—C13—C14178.7 (3)
C2—C3—C4—C51.7 (4)C2—C1—C13—C144.6 (5)
N1—C4—C5—C6179.0 (3)C1—C13—C14—C15173.8 (3)
C3—C4—C5—C62.2 (4)C13—C14—C15—O19.7 (5)
C4—C5—C6—C11.1 (4)C13—C14—C15—C7173.7 (3)
C2—C1—C6—C50.6 (4)C12—C7—C15—O1151.9 (3)
C13—C1—C6—C5176.4 (3)C8—C7—C15—O126.3 (4)
C12—C7—C8—C90.3 (4)C12—C7—C15—C1431.4 (4)
C15—C7—C8—C9178.0 (3)C8—C7—C15—C14150.4 (3)
C7—C8—C9—C102.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.952.943.697 (3)138
C9—H9···Cg2ii0.952.933.712 (3)141
C16—H16B···Cg2iii0.982.703.643 (3)161
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x1/2, y+3/2, z+1; (iii) x+5/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H19NO
Mr265.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)193
a, b, c (Å)7.276 (2), 11.567 (3), 17.642 (5)
V3)1484.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.59 × 0.35 × 0.18
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16704, 1958, 1846
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.136, 1.31
No. of reflections1958
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CrystalClear (Rigaku, 1999), CrystalStructure (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLEASE PROVIDE.

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cg1i0.952.943.697 (3)138
C9—H9···Cg2ii0.952.933.712 (3)141
C16—H16B···Cg2iii0.982.703.643 (3)161
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x1/2, y+3/2, z+1; (iii) x+5/2, y+2, z+1/2.
 

Acknowledgements

The authors are grateful to Binzhou Medical University for financial support (grant No. BY2007KJ57).

References

First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIndira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLunardi, F., Guzela, M., Rodrigues, A. T., Correa, R., Eger-Mangrich, I., Steindel, M., Grisard, E. C., Assreuy, J., Calixto, J. B. & Santos, A. R. S. (2003). Antimicrob. Agents Chemother. 47, 1449–1451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationModzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491–3495.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationRavindra, H. J., Harrison, W. T., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2009). J. Cryst. Growth, 311, 310–315.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, S.-P., Kuang, D.-Z., Feng, Y.-L., Li, W. & Chen, Z.-M. (2008). Acta Cryst. E64, o1123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, W., Wang, L. & Zhang, D.-C. (2006). J. Chem. Crystallogr. 36, 195–198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds