metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(1,10-phenanthroline-κ2N,N′)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 1 December 2009; accepted 1 December 2009; online 4 December 2009)

In the title complex, [PdBr2(C12H8N2)], the PdII ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two bromide ions. The complex displays numerous inter­molecular ππ inter­actions between adjacent six-membered rings, the shortest centroid–centroid distance being 3.680 (4) Å. The nearly planar [maximum deviation 0.143 (2) Å] mol­ecules stack in columns parallel to (101) with a Pd⋯Pd distance of 4.8466 (9) Å.

Related literature

For the syntheses of [PdX2(phen)] complexes (phen = 1,10-phenanthroline; X = Cl, Br, I or SCN), see: Cheng et al. (1977[Cheng, C. P., Plankey, B., Rund, J. V. & Brown, T. L. (1977). J. Am. Chem. Soc. 99, 8413-8417.]). For the crystal structure of yellow [PtCl2(phen)] which is isotypic to the title complex, see: Grzesiak & Matzger (2007[Grzesiak, A. L. & Matzger, A. J. (2007). Inorg. Chem. 46, 453-457.]). For the crystal structures of related Pd-bipy complexes, [PdX2(bipy)] (bipy = 2,2′-bipyridine; X = Cl, Br or I), see: Maekawa et al. (1991[Maekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521-522.]); Smeets et al. (1997[Smeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045-1047.]); Ha (2009[Ha, K. (2009). Acta Cryst. E65, m1588.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr2(C12H8N2)]

  • Mr = 446.42

  • Monoclinic, P 21 /c

  • a = 9.9099 (6) Å

  • b = 17.4897 (10) Å

  • c = 7.2598 (4) Å

  • β = 109.106 (1)°

  • V = 1188.96 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.26 mm−1

  • T = 200 K

  • 0.22 × 0.06 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.420, Tmax = 0.719

  • 8695 measured reflections

  • 2933 independent reflections

  • 1729 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.091

  • S = 1.00

  • 2933 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.54 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—N1 2.059 (6)
Pd1—N2 2.048 (6)
Pd1—Br1 2.4095 (9)
Pd1—Br2 2.4016 (10)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PdBr2(phen)] (where phen is 1,10-phenanthroline, C12H8N2), is isomorphous with the yellow form of [PtCl2(phen)], whereas the orange form of [PtCl2(phen)] crystallized in the orthorhombic space group Pca21 (Grzesiak & Matzger, 2007).

In the title complex, the Pd2+ ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the chelating 1,10-phenanthroline ligand and two bromide ions (Fig. 1). The main contribution to the distortion is the tight N1—Pd1—N2 chelate angle [81.5 (2)°], which results in non-linear trans arrangement [<N1—Pd1—Br1 = 175.29 (19)° and <N2—Pd1—Br2 = 175.30 (15)°]. The Pd1—N and Pd1—Br bond lengths are almost equal, respectively [Pd1—N: 2.059 (6) and 2.048 (6) Å; Pd1—Br 2.4095 (9) and 2.4016 (10) Å]. The complex displays numerous intermolecular π-π interactions between adjacent six-membered rings, with a shortest centroid-centroid distance of 3.680 (4) Å and the dihedral angle between the ring planes is 5.0 (4)°. The nearly planar [PdBr2(phen)] molecules stack columnarly parallel to the (101) plane with a Pd···Pd distance of 4.8466 (9) Å (Fig. 2).

Related literature top

For the syntheses of [PdX2(phen)] complexes (phen = 1,10-phenanthroline; X = Cl, Br, I or SCN), see: Cheng et al. (1977). For the crystal structure of yellow [PtCl2(phen)] which is isotypic to the title complex, see: Grzesiak & Matzger (2007). For the crystal structures of related Pd-bipy complexes, [PdX2(bipy)] (bipy = 2,2'-bipyridine; X = Cl, Br or I), see: Maekawa et al. (1991); Smeets et al. (1997); Ha (2009).

Experimental top

To a solution of K2PdBr4 (0.2033 g, 0.403 mmol) in H2O (20 ml) was added 1,10-phenanthroline (0.0727 g, 0.403 mmol) and refluxed for 3 h. The precipitate obtained was separated by filtration, washed with water and acetone, and dried at 70 °C, to give a yellow powder (0.1420 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an ethanol solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title complex.
Dibromido(1,10-phenanthroline-κ2N,N')palladium(II) top
Crystal data top
[PdBr2(C12H8N2)]F(000) = 840
Mr = 446.42Dx = 2.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1837 reflections
a = 9.9099 (6) Åθ = 2.3–28.2°
b = 17.4897 (10) ŵ = 8.26 mm1
c = 7.2598 (4) ÅT = 200 K
β = 109.106 (1)°Needle, yellow
V = 1188.96 (12) Å30.22 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2933 independent reflections
Radiation source: fine-focus sealed tube1729 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1312
Tmin = 0.420, Tmax = 0.719k = 2323
8695 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0152P)2]
where P = (Fo2 + 2Fc2)/3
2933 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 1.54 e Å3
Crystal data top
[PdBr2(C12H8N2)]V = 1188.96 (12) Å3
Mr = 446.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9099 (6) ŵ = 8.26 mm1
b = 17.4897 (10) ÅT = 200 K
c = 7.2598 (4) Å0.22 × 0.06 × 0.04 mm
β = 109.106 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2933 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1729 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.719Rint = 0.082
8695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.00Δρmax = 1.37 e Å3
2933 reflectionsΔρmin = 1.54 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.70926 (6)0.34181 (3)0.10593 (9)0.02059 (16)
Br10.74510 (9)0.47817 (4)0.08022 (13)0.0299 (2)
Br20.46176 (9)0.36087 (5)0.29008 (13)0.0352 (2)
N10.6966 (7)0.2243 (3)0.1180 (9)0.0251 (15)
N20.9155 (6)0.3173 (3)0.0591 (8)0.0172 (13)
C10.5885 (8)0.1797 (4)0.2101 (11)0.0285 (19)
H10.50120.20270.28590.034*
C20.5963 (10)0.1002 (4)0.2012 (12)0.036 (2)
H20.51690.06980.27230.043*
C30.7203 (9)0.0668 (4)0.0885 (12)0.033 (2)
H30.72570.01270.07870.040*
C40.8411 (9)0.1110 (4)0.0142 (12)0.0251 (19)
C50.9779 (9)0.0822 (4)0.1358 (12)0.032 (2)
H50.99120.02860.15540.039*
C61.0848 (9)0.1291 (4)0.2199 (11)0.0277 (19)
H61.17400.10790.29540.033*
C71.0718 (8)0.2103 (4)0.2022 (11)0.0217 (17)
C81.1806 (8)0.2624 (4)0.2872 (11)0.0249 (18)
H81.27180.24490.36640.030*
C91.1558 (8)0.3383 (4)0.2568 (12)0.0297 (19)
H91.22980.37390.31520.036*
C101.0228 (8)0.3643 (4)0.1406 (11)0.0226 (18)
H101.00850.41770.11900.027*
C110.9395 (7)0.2402 (4)0.0878 (10)0.0167 (16)
C120.8238 (8)0.1901 (4)0.0051 (10)0.0188 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0183 (3)0.0196 (3)0.0226 (3)0.0008 (3)0.0051 (2)0.0000 (3)
Br10.0289 (5)0.0197 (4)0.0388 (5)0.0016 (4)0.0078 (4)0.0009 (4)
Br20.0193 (4)0.0391 (5)0.0408 (6)0.0006 (4)0.0013 (4)0.0039 (4)
N10.026 (4)0.026 (3)0.026 (4)0.005 (3)0.012 (3)0.001 (3)
N20.014 (3)0.016 (3)0.018 (3)0.003 (3)0.001 (3)0.001 (3)
C10.015 (4)0.039 (5)0.027 (5)0.007 (4)0.001 (3)0.005 (4)
C20.046 (6)0.032 (5)0.029 (5)0.014 (5)0.011 (4)0.008 (4)
C30.053 (6)0.021 (4)0.034 (5)0.010 (4)0.024 (5)0.008 (4)
C40.038 (5)0.014 (4)0.030 (5)0.009 (4)0.020 (4)0.003 (3)
C50.047 (6)0.015 (4)0.042 (6)0.013 (4)0.025 (5)0.011 (4)
C60.032 (5)0.028 (4)0.026 (5)0.007 (4)0.012 (4)0.011 (4)
C70.023 (4)0.025 (4)0.022 (4)0.008 (4)0.014 (4)0.004 (4)
C80.014 (4)0.033 (5)0.024 (5)0.005 (4)0.001 (3)0.004 (4)
C90.025 (5)0.025 (4)0.036 (5)0.000 (4)0.006 (4)0.002 (4)
C100.024 (5)0.019 (4)0.026 (5)0.005 (3)0.009 (4)0.004 (3)
C110.012 (4)0.025 (4)0.016 (4)0.004 (3)0.009 (3)0.000 (3)
C120.020 (4)0.018 (4)0.018 (4)0.000 (3)0.007 (3)0.001 (3)
Geometric parameters (Å, º) top
Pd1—N12.059 (6)C4—C121.395 (9)
Pd1—N22.048 (6)C4—C51.445 (11)
Pd1—Br12.4095 (9)C5—C61.321 (10)
Pd1—Br22.4016 (10)C5—H50.9500
N1—C11.317 (9)C6—C71.428 (9)
N1—C121.394 (9)C6—H60.9500
N2—C101.321 (8)C7—C81.392 (10)
N2—C111.373 (8)C7—C111.404 (10)
C1—C21.392 (10)C8—C91.355 (9)
C1—H10.9500C8—H80.9500
C2—C31.365 (11)C9—C101.388 (10)
C2—H20.9500C9—H90.9500
C3—C41.414 (11)C10—H100.9500
C3—H30.9500C11—C121.426 (9)
N2—Pd1—N181.5 (2)C6—C5—C4121.0 (7)
N2—Pd1—Br2175.30 (15)C6—C5—H5119.5
N1—Pd1—Br294.47 (19)C4—C5—H5119.5
N2—Pd1—Br193.91 (15)C5—C6—C7122.8 (8)
N1—Pd1—Br1175.29 (19)C5—C6—H6118.6
Br2—Pd1—Br190.20 (3)C7—C6—H6118.6
C1—N1—C12118.2 (6)C8—C7—C11117.1 (6)
C1—N1—Pd1129.9 (6)C8—C7—C6125.3 (7)
C12—N1—Pd1111.9 (5)C11—C7—C6117.6 (8)
C10—N2—C11118.0 (6)C9—C8—C7119.8 (7)
C10—N2—Pd1129.4 (5)C9—C8—H8120.1
C11—N2—Pd1112.6 (4)C7—C8—H8120.1
N1—C1—C2123.0 (8)C8—C9—C10120.4 (8)
N1—C1—H1118.5C8—C9—H9119.8
C2—C1—H1118.5C10—C9—H9119.8
C3—C2—C1118.7 (8)N2—C10—C9122.2 (7)
C3—C2—H2120.6N2—C10—H10118.9
C1—C2—H2120.6C9—C10—H10118.9
C2—C3—C4121.5 (7)N2—C11—C7122.5 (7)
C2—C3—H3119.3N2—C11—C12117.3 (6)
C4—C3—H3119.3C7—C11—C12120.1 (7)
C12—C4—C3115.7 (8)N1—C12—C4122.8 (7)
C12—C4—C5117.9 (7)N1—C12—C11116.6 (6)
C3—C4—C5126.4 (7)C4—C12—C11120.6 (7)
N2—Pd1—N1—C1178.2 (7)Pd1—N2—C10—C9176.9 (5)
Br2—Pd1—N1—C14.2 (6)C8—C9—C10—N21.3 (11)
N2—Pd1—N1—C123.5 (5)C10—N2—C11—C71.2 (9)
Br2—Pd1—N1—C12174.1 (4)Pd1—N2—C11—C7177.7 (5)
N1—Pd1—N2—C10177.9 (6)C10—N2—C11—C12178.5 (6)
Br1—Pd1—N2—C101.2 (6)Pd1—N2—C11—C122.6 (7)
N1—Pd1—N2—C113.4 (5)C8—C7—C11—N20.2 (10)
Br1—Pd1—N2—C11177.5 (4)C6—C7—C11—N2179.3 (6)
C12—N1—C1—C20.7 (11)C8—C7—C11—C12179.5 (6)
Pd1—N1—C1—C2178.9 (5)C6—C7—C11—C120.3 (10)
N1—C1—C2—C31.6 (12)C1—N1—C12—C40.0 (10)
C1—C2—C3—C41.7 (12)Pd1—N1—C12—C4178.5 (5)
C2—C3—C4—C121.0 (11)C1—N1—C12—C11178.3 (6)
C2—C3—C4—C5179.3 (7)Pd1—N1—C12—C113.2 (7)
C12—C4—C5—C62.5 (11)C3—C4—C12—N10.1 (10)
C3—C4—C5—C6177.8 (7)C5—C4—C12—N1179.8 (6)
C4—C5—C6—C72.0 (11)C3—C4—C12—C11178.3 (6)
C5—C6—C7—C8179.9 (7)C5—C4—C12—C112.0 (10)
C5—C6—C7—C110.9 (11)N2—C11—C12—N10.4 (9)
C11—C7—C8—C90.3 (10)C7—C11—C12—N1179.2 (6)
C6—C7—C8—C9178.8 (7)N2—C11—C12—C4178.7 (6)
C7—C8—C9—C100.3 (11)C7—C11—C12—C40.9 (10)
C11—N2—C10—C91.8 (10)

Experimental details

Crystal data
Chemical formula[PdBr2(C12H8N2)]
Mr446.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.9099 (6), 17.4897 (10), 7.2598 (4)
β (°) 109.106 (1)
V3)1188.96 (12)
Z4
Radiation typeMo Kα
µ (mm1)8.26
Crystal size (mm)0.22 × 0.06 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.420, 0.719
No. of measured, independent and
observed [I > 2σ(I)] reflections
8695, 2933, 1729
Rint0.082
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.091, 1.00
No. of reflections2933
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.54

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pd1—N12.059 (6)Pd1—Br12.4095 (9)
Pd1—N22.048 (6)Pd1—Br22.4016 (10)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0094056).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, C. P., Plankey, B., Rund, J. V. & Brown, T. L. (1977). J. Am. Chem. Soc. 99, 8413–8417.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrzesiak, A. L. & Matzger, A. J. (2007). Inorg. Chem. 46, 453–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHa, K. (2009). Acta Cryst. E65, m1588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521–522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmeets, W. J. J., Spek, A. L., Hoare, J. L., Canty, A. J., Hovestad, N. & van Koten, G. (1997). Acta Cryst. C53, 1045–1047.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds