organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o221-o222

2-[3-(Methyl­di­phenyl­silyl)prop­yl]isoindoline-1,3-dione

aDepartment of Chemistry, University of Wisconsin–Madison, 1101 University Ave, Madison, Wisconsin 53706, USA
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 24 November 2009; accepted 15 December 2009; online 24 December 2009)

In the title compound, C24H23NO2Si, the dihedral angle between the planes of the phenyl rings attached to the Si atom is 80.78 (10)°. In the crystal, the mol­ecules form sheets lying perpendicular to [101] via C—H⋯O inter­actions. These sheets are stacked and linked in a three-dimensional framework by additional C—H⋯O inter­actions in the [10[\overline{1}]] direction.

Related literature

For literature related to drug design see: Bains & Tacke (2003[Bains, W. & Tacke, R. (2003). Curr. Opin. Drug Discov. Devel. 6, 526-543.]); Gately & West (2007[Gately, S. & West, R. (2007). Drug Dev. Res. 68, 156-163.]); Guzei et al. (2010a[Guzei, I. A., Spencer, L. C. & Zakai, U. I. (2010a). Acta Cryst. E66, o219-o220.],b[Guzei, I. A., Spencer, L. C. & Zakai, U. I. (2010b). Acta Cryst. E66, o223-o224.]); Lee et al. (1996[Lee, Y. J., Ling, R., Mariano, P. S., Yoon, U. C., Kim, D. U. & Oh, S. W. (1996). J. Org. Chem. 61, 3304-3314.]); Tsuge et al. (1985[Tsuge, O., Tanaka, J. & Kanemasa, S. (1985). Bull. Chem. Soc. Jpn, 58, 1991-1999.]); Yoon et al. (1991[Yoon, U. C., Cho, S. J., Oh, J. H., Lee, J. G., Kang, K. T. & Mariano, P. S. (1991). Bull. Korean Chem. Soc. 12, 241-243.]); Zakai et al. (2010[Zakai, U. I., Bikzhanova, G. A., Staveness, D. & West, R. (2010). Appl. Organomet. Chem. In the press.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23NO2Si

  • Mr = 385.52

  • Monoclinic, C 2/c

  • a = 19.277 (3) Å

  • b = 13.238 (2) Å

  • c = 19.272 (3) Å

  • β = 116.987 (6)°

  • V = 4382.5 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 300 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART X2S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.964

  • 15551 measured reflections

  • 4470 independent reflections

  • 2693 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.175

  • S = 1.02

  • 4470 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.63 3.366 (4) 137
C14—H14A⋯O1ii 0.97 2.63 3.582 (3) 169
C19—H19⋯O2iii 0.93 2.51 3.310 (3) 144
C22—H22⋯O1iv 0.93 2.32 3.200 (3) 157
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 and GIS (Bruker, 2009[Bruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL, OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, modiCIFer (Guzei, 2007[Guzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Sila phthalimides have been used in photocyclization reactions (Yoon et al., 1991), as protecting groups stabilizing reactive intermediates (Tsuge et al., 1985), and as reactants that undergo intramolecular hydrogen-abstraction (Lee et al., 1996). In our laboratory the title compound C24H23NO2Si (I) was isolated as an intermediate in the synthesis of the respective sila amine. It is a congener of 2-(((4-methoxyphenyl)dimethylsilyl)methyl)isoindoline-1,3-dione (Guzei et al., 2010a) and 2-(2-(trimethylsilyl)ethyl)isoindoline-1,3-dione (Guzei et al., 2010b) recently reported by us. These sila amines were subsequently coupled with a selection of pharmaceutical agents containing a carboxylic acid, including indomethacin and N-acetyl L-cysteine (Zakai et al., 2010) as part of our continuing efforts at drug repurposing (Gately & West, 2007) using silicon chemistry (Bains & Tacke, 2003).

In the structure of (I) the bond distances and angles are typical as confirmed by the Mogul structural check (Bruno et al., 2002). The average Si—C distance of 1.870 (3) Å for compound (I) is statistically similar to the 1.88 (2) Å average of 41 measurements for 10 related compounds in the Cambridge Structural Database (CSD; Version 1.11, September 2009 release; Allen, 2002). The Si atom exhibits a slightly imperfect tetrahedral geometry with angles ranging from 108.56 (10)° to 110.53 (12)°. The phthalate entity is expectedly planar within 0.0085 Å. The two phenyl groups exhibit a windmill-like geometry about the central silicon atom. The planes of the two phenyl groups form an angle of 80.78 (10)°. For 33 compounds in the CSD that have a central silicon atom with a methyl group, two phenyl groups and another arbitrary group attached, the planes between the two phenyl groups averaged 73 (9)°, similar to that of (I).

Each oxygen atom participates in two C—H···O interactions (Table 1) which help form the three-dimensional structure of (I). These weak interactions involving O2 form sheets of (I) perpendicular to [1 0 1]. These sheets are stacked and linked in the three-dimensional framework by the interactions involving O1 in the [1 0 1] direction.

Related literature top

For literature related to drug design see: Bains & Tacke (2003); Gately & West (2007); Guzei et al. (2010a,b); Lee et al. (1996); Tsuge et al. (1985); Yoon et al. (1991); Zakai et al. (2010). For a description of the Cambridge Structural Database, see: Allen (2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002).

Experimental top

The protocol described by Tsuge and co-workers (Tsuge et al., 1985) was adopted. The required amount of potassium phthalimide (7.42 g, 40 mmol, 1.1 equiv) was placed into a 250 ml round-bottom flask, which was then sealed and flushed with nitrogen three times. Dry DMF (56 ml) was syringed into the flask followed by the addition of chloropropyldiphenylmethylsilane (10 g, 36.46 mmol, 1 equiv.) The reaction was heated at 60°C for 6 h. The resulting mixture was allowed to cool to room temperature. This slurry was poured onto a minimal quantity of water and extracted 3–5 times with diethyl ether. The organic extracts were subsequently collected, dried with magnesium sulfate, and filtered. The filtrate was mixed with silica gel and evaporated under reduced pressure to afford a powder of silica gel. This powder was then loaded onto a dry-packed silica gel column and eluted using a gradient column. The fractions of interest were usually drawn out using a 8:2 hexane:ethyl acetate mixture. The fractions were then combined to afford the title compound. Further recrystallization from dichloromethane afforded large lusterous white crystals (12.47 g, 32.35 mmol, 89% yield) for X-ray crystallography. Manipulation of air and moisture sensitive compounds was performed using standard high-vacuum line techniques. All solvents and reagents were obtained from Aldrich. Chloropropyldiphenylmethylsilane was purchased from Gelest. 1H NMR spectra were obtained on a Varian Unity 500 spectrometer, 13C {H} NMR spectra were obtained on a Varian 500 spectrometer operating at 125 MHz, 29Si {H} NMR spectra were obtained on a Varian Unity spectrometer operating at 99 MHz. Mass spectra were determined on a Waters (Micromass) AutoSpec mass spectrometer. Melting points were determined on a Mel-Temp Laboratory Device. mp 57–58° C; 1H NMR (500 MHz, CDCl3) δ 0.52 (s, 3H, Me), 1.08 (m, 2H, CH2), 1.73 (m, 2H, CH2), 3.67 (t, J=7.3 Hz, 2H, CH2), 7.33 (m, 6H, ArH), 7.47 (dd, J=7.4, 1.5 Hz, 4H, ArH), 7.68 (dd, J=5.5, 3.0 Hz, 2H, ArH), 7.80 (dd, J=5.4, 3.1 Hz, 2H, ArH); 13C NMR (125 MHz, CDCl3) δ -4.6 (SiCH3), 11.5 (CH2), 23.2 (CH2), 40.9 (CH2), 123.1 (CH), 127.9 (CH), 129.2 (CH), 132.1 (CH), 133.8 (CH), 134.4 (CH), 136.6 (CH), 168.4 (CO); 29Si NMR (99 MHz, CDCl3) δ -7.62 (SiMePh2); MS (EI+) m/z (rel. intensity %) 385 (M+, 5), 370 (M—Me, 21), 308 (100), 266 (70), 197 (96), 160 (62): HRMS (EI+): calcd. for C24H23NO2Si (M+) 385.1493, found (M—Me)+ 370. 1258.

Refinement top

All H-atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 times Ueq(bearing atom). The data were collected at room temperature on a Bruker SMART X2S diffractometer in the automated mode and manually processed thereafter.

Computing details top

Data collection: GIS (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), modiCIFer (Guzei, 2007) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level.
2-[3-(Methyldiphenylsilyl)propyl]isoindoline-1,3-dione top
Crystal data top
C24H23NO2SiF(000) = 1632
Mr = 385.52Dx = 1.169 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3839 reflections
a = 19.277 (3) Åθ = 2.4–22.8°
b = 13.238 (2) ŵ = 0.13 mm1
c = 19.272 (3) ÅT = 300 K
β = 116.987 (6)°Block, colourless
V = 4382.5 (12) Å30.30 × 0.30 × 0.30 mm
Z = 8
Data collection top
Bruker SMART X2S
diffractometer
4470 independent reflections
Radiation source: micro-focus sealed tube2693 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.051
ω scansθmax = 26.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2321
Tmin = 0.964, Tmax = 0.964k = 1616
15551 measured reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.102P)2]
where P = (Fo2 + 2Fc2)/3
4470 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
0 constraints
Crystal data top
C24H23NO2SiV = 4382.5 (12) Å3
Mr = 385.52Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.277 (3) ŵ = 0.13 mm1
b = 13.238 (2) ÅT = 300 K
c = 19.272 (3) Å0.30 × 0.30 × 0.30 mm
β = 116.987 (6)°
Data collection top
Bruker SMART X2S
diffractometer
4470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2693 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.964Rint = 0.051
15551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
4470 reflectionsΔρmin = 0.22 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.49123 (4)0.69714 (5)0.07188 (4)0.0625 (2)
O10.22870 (10)0.74572 (11)0.13602 (10)0.0738 (5)
O20.28657 (14)0.41221 (13)0.16823 (14)0.1108 (8)
N10.26255 (10)0.57953 (12)0.13731 (11)0.0566 (5)
C10.52300 (14)0.67920 (17)0.00584 (15)0.0653 (6)
C20.47118 (17)0.6588 (2)0.08206 (16)0.0812 (8)
H20.41860.65200.09560.097*
C30.4956 (2)0.6483 (2)0.13887 (18)0.0995 (10)
H30.45930.63510.19000.119*
C40.5722 (2)0.6569 (2)0.1209 (2)0.0993 (10)
H40.58810.64960.15960.119*
C50.6249 (2)0.6761 (2)0.0473 (2)0.0980 (10)
H50.67730.68160.03490.118*
C60.60125 (16)0.6874 (2)0.01005 (19)0.0855 (8)
H60.63840.70100.06080.103*
C70.47864 (13)0.8354 (2)0.08261 (14)0.0651 (6)
C80.5175 (2)0.8887 (3)0.15175 (19)0.1228 (12)
H80.55050.85410.19670.147*
C90.5085 (3)0.9920 (4)0.1554 (3)0.1427 (17)
H90.53621.02560.20250.171*
C100.4601 (2)1.0448 (3)0.0918 (3)0.1084 (12)
H100.45341.11390.090500.130*
C110.42195 (19)0.9959 (2)0.0240 (2)0.1046 (10)
H110.38881.03130.02050.126*
C120.43174 (16)0.8933 (2)0.01984 (18)0.0872 (8)
H120.40500.86170.02820.105*
C130.56729 (17)0.6463 (3)0.16613 (16)0.1021 (10)
H13A0.61510.68230.18080.153*
H13B0.57530.57580.16030.153*
H13C0.55060.65450.20570.153*
C140.39646 (13)0.63048 (18)0.04274 (12)0.0603 (6)
H14A0.35680.66340.00300.072*
H14B0.40140.56160.02840.072*
C150.36934 (13)0.62798 (19)0.10561 (13)0.0630 (6)
H15A0.40530.58730.14890.076*
H15B0.37040.69600.12470.076*
C160.28795 (13)0.58526 (18)0.07650 (14)0.0635 (6)
H16A0.25180.62730.03440.076*
H16B0.28650.51810.05570.076*
C170.23600 (12)0.66153 (16)0.16301 (13)0.0539 (5)
C180.21922 (11)0.62472 (16)0.22621 (13)0.0542 (5)
C190.19309 (15)0.67446 (19)0.27256 (16)0.0721 (7)
H190.18100.74290.26580.086*
C200.18555 (18)0.6191 (2)0.32939 (17)0.0896 (8)
H200.16810.65080.36160.108*
C210.2033 (2)0.5187 (3)0.33913 (19)0.0996 (10)
H210.19740.48310.37770.120*
C220.22994 (18)0.4688 (2)0.29304 (19)0.0908 (9)
H220.24240.40050.30020.109*
C230.23748 (13)0.52346 (17)0.23615 (15)0.0636 (6)
C240.26513 (14)0.49367 (18)0.17894 (16)0.0691 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0530 (4)0.0846 (5)0.0515 (4)0.0067 (3)0.0251 (3)0.0098 (3)
O10.0954 (13)0.0496 (10)0.0769 (11)0.0033 (8)0.0396 (10)0.0045 (8)
O20.158 (2)0.0577 (11)0.180 (2)0.0346 (11)0.1325 (19)0.0264 (12)
N10.0634 (11)0.0494 (10)0.0682 (11)0.0020 (8)0.0397 (10)0.0031 (9)
C10.0648 (15)0.0681 (15)0.0721 (16)0.0150 (11)0.0390 (13)0.0143 (12)
C20.0806 (18)0.105 (2)0.0716 (17)0.0091 (15)0.0464 (15)0.0002 (15)
C30.124 (3)0.115 (2)0.078 (2)0.015 (2)0.062 (2)0.0006 (17)
C40.128 (3)0.096 (2)0.118 (3)0.030 (2)0.095 (3)0.017 (2)
C50.089 (2)0.101 (2)0.137 (3)0.0220 (17)0.079 (2)0.024 (2)
C60.0721 (18)0.106 (2)0.094 (2)0.0130 (14)0.0510 (16)0.0172 (16)
C70.0525 (13)0.0877 (17)0.0616 (14)0.0116 (11)0.0314 (12)0.0121 (12)
C80.155 (3)0.119 (3)0.073 (2)0.012 (2)0.033 (2)0.0198 (19)
C90.204 (5)0.115 (3)0.110 (3)0.040 (3)0.072 (3)0.056 (3)
C100.114 (3)0.086 (2)0.155 (4)0.017 (2)0.087 (3)0.035 (2)
C110.082 (2)0.079 (2)0.132 (3)0.0013 (16)0.031 (2)0.014 (2)
C120.0730 (17)0.0759 (19)0.088 (2)0.0038 (14)0.0153 (15)0.0160 (15)
C130.0762 (19)0.147 (3)0.0691 (18)0.0160 (18)0.0204 (16)0.0311 (18)
C140.0647 (14)0.0678 (14)0.0523 (12)0.0030 (11)0.0300 (11)0.0069 (10)
C150.0629 (14)0.0735 (15)0.0577 (13)0.0023 (11)0.0318 (12)0.0032 (11)
C160.0670 (15)0.0629 (14)0.0661 (15)0.0037 (11)0.0349 (13)0.0027 (11)
C170.0511 (12)0.0451 (12)0.0595 (13)0.0003 (9)0.0198 (10)0.0006 (10)
C180.0479 (12)0.0533 (12)0.0636 (13)0.0007 (9)0.0272 (11)0.0002 (10)
C190.0773 (17)0.0658 (15)0.0805 (17)0.0008 (12)0.0422 (15)0.0088 (13)
C200.101 (2)0.101 (2)0.090 (2)0.0022 (17)0.0634 (18)0.0063 (17)
C210.117 (3)0.112 (3)0.101 (2)0.0117 (19)0.077 (2)0.0269 (19)
C220.104 (2)0.0776 (18)0.121 (2)0.0234 (15)0.078 (2)0.0353 (17)
C230.0628 (14)0.0561 (13)0.0859 (16)0.0079 (10)0.0461 (13)0.0131 (12)
C240.0741 (16)0.0513 (14)0.1020 (19)0.0119 (11)0.0577 (15)0.0121 (12)
Geometric parameters (Å, º) top
Si1—C131.867 (3)C10—H100.9300
Si1—C71.870 (3)C11—C121.378 (4)
Si1—C141.871 (2)C11—H110.9300
Si1—C11.873 (3)C12—H120.9300
O1—C171.211 (2)C13—H13A0.9600
O2—C241.206 (3)C13—H13B0.9600
N1—C241.379 (3)C13—H13C0.9600
N1—C171.384 (3)C14—C151.522 (3)
N1—C161.463 (3)C14—H14A0.9700
C1—C21.377 (4)C14—H14B0.9700
C1—C61.401 (4)C15—C161.516 (3)
C2—C31.381 (4)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.360 (4)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
C4—C51.342 (5)C17—C181.478 (3)
C4—H40.9300C18—C191.376 (3)
C5—C61.382 (4)C18—C231.377 (3)
C5—H50.9300C19—C201.379 (4)
C6—H60.9300C19—H190.9300
C7—C121.369 (4)C20—C211.364 (4)
C7—C81.389 (4)C20—H200.9300
C8—C91.384 (5)C21—C221.379 (4)
C8—H80.9300C21—H210.9300
C9—C101.351 (5)C22—C231.375 (3)
C9—H90.9300C22—H220.9300
C10—C111.340 (5)C23—C241.479 (3)
C13—Si1—C7109.25 (14)H13A—C13—H13B109.5
C13—Si1—C14110.53 (12)Si1—C13—H13C109.5
C7—Si1—C14109.68 (11)H13A—C13—H13C109.5
C13—Si1—C1109.56 (13)H13B—C13—H13C109.5
C7—Si1—C1108.56 (10)C15—C14—Si1114.37 (15)
C14—Si1—C1109.22 (11)C15—C14—H14A108.7
C24—N1—C17111.09 (19)Si1—C14—H14A108.7
C24—N1—C16124.89 (18)C15—C14—H14B108.7
C17—N1—C16123.95 (18)Si1—C14—H14B108.7
C2—C1—C6115.9 (2)H14A—C14—H14B107.6
C2—C1—Si1122.39 (19)C16—C15—C14112.66 (18)
C6—C1—Si1121.7 (2)C16—C15—H15A109.1
C1—C2—C3121.5 (3)C14—C15—H15A109.1
C1—C2—H2119.3C16—C15—H15B109.1
C3—C2—H2119.3C14—C15—H15B109.1
C4—C3—C2120.8 (3)H15A—C15—H15B107.8
C4—C3—H3119.6N1—C16—C15112.92 (18)
C2—C3—H3119.6N1—C16—H16A109.0
C5—C4—C3119.8 (3)C15—C16—H16A109.0
C5—C4—H4120.1N1—C16—H16B109.0
C3—C4—H4120.1C15—C16—H16B109.0
C4—C5—C6120.1 (3)H16A—C16—H16B107.8
C4—C5—H5120.0O1—C17—N1123.9 (2)
C6—C5—H5120.0O1—C17—C18129.1 (2)
C5—C6—C1122.0 (3)N1—C17—C18106.93 (18)
C5—C6—H6119.0C19—C18—C23121.4 (2)
C1—C6—H6119.0C19—C18—C17131.2 (2)
C12—C7—C8114.6 (3)C23—C18—C17107.33 (19)
C12—C7—Si1121.12 (19)C18—C19—C20117.6 (2)
C8—C7—Si1124.2 (2)C18—C19—H19121.2
C9—C8—C7121.7 (4)C20—C19—H19121.2
C9—C8—H8119.2C21—C20—C19121.1 (3)
C7—C8—H8119.2C21—C20—H20119.5
C10—C9—C8121.0 (3)C19—C20—H20119.5
C10—C9—H9119.5C20—C21—C22121.4 (3)
C8—C9—H9119.5C20—C21—H21119.3
C11—C10—C9118.9 (4)C22—C21—H21119.3
C11—C10—H10116.0C23—C22—C21117.8 (3)
C9—C10—H10125.0C23—C22—H22121.1
C10—C11—C12120.2 (4)C21—C22—H22121.1
C10—C11—H11119.9C22—C23—C18120.7 (2)
C12—C11—H11119.9C22—C23—C24131.1 (2)
C7—C12—C11123.6 (3)C18—C23—C24108.15 (19)
C7—C12—H12118.2O2—C24—N1124.2 (2)
C11—C12—H12118.2O2—C24—C23129.3 (2)
Si1—C13—H13A109.5N1—C24—C23106.49 (19)
Si1—C13—H13B109.5
C13—Si1—C1—C2145.6 (2)Si1—C14—C15—C16172.75 (17)
C7—Si1—C1—C295.1 (2)C24—N1—C16—C1598.5 (3)
C14—Si1—C1—C224.4 (2)C17—N1—C16—C1578.4 (3)
C13—Si1—C1—C635.4 (3)C14—C15—C16—N1178.08 (18)
C7—Si1—C1—C683.8 (2)C24—N1—C17—O1179.8 (2)
C14—Si1—C1—C6156.6 (2)C16—N1—C17—O12.5 (3)
C6—C1—C2—C30.6 (4)C24—N1—C17—C180.7 (2)
Si1—C1—C2—C3178.4 (2)C16—N1—C17—C18177.91 (18)
C1—C2—C3—C40.6 (5)O1—C17—C18—C191.8 (4)
C2—C3—C4—C50.1 (5)N1—C17—C18—C19178.6 (2)
C3—C4—C5—C60.4 (5)O1—C17—C18—C23179.6 (2)
C4—C5—C6—C10.3 (4)N1—C17—C18—C230.9 (2)
C2—C1—C6—C50.2 (4)C23—C18—C19—C200.2 (4)
Si1—C1—C6—C5178.8 (2)C17—C18—C19—C20177.7 (2)
C13—Si1—C7—C12173.6 (2)C18—C19—C20—C210.1 (4)
C14—Si1—C7—C1265.2 (2)C19—C20—C21—C220.4 (5)
C1—Si1—C7—C1254.1 (2)C20—C21—C22—C230.5 (5)
C13—Si1—C7—C83.2 (3)C21—C22—C23—C180.3 (4)
C14—Si1—C7—C8118.1 (3)C21—C22—C23—C24178.8 (3)
C1—Si1—C7—C8122.6 (3)C19—C18—C23—C220.1 (4)
C12—C7—C8—C90.1 (5)C17—C18—C23—C22178.1 (2)
Si1—C7—C8—C9177.1 (3)C19—C18—C23—C24178.8 (2)
C7—C8—C9—C101.2 (7)C17—C18—C23—C240.8 (2)
C8—C9—C10—C111.6 (7)C17—N1—C24—O2179.6 (3)
C9—C10—C11—C120.6 (6)C16—N1—C24—O22.4 (4)
C8—C7—C12—C111.2 (4)C17—N1—C24—C230.2 (3)
Si1—C7—C12—C11178.2 (2)C16—N1—C24—C23177.42 (18)
C10—C11—C12—C70.9 (5)C22—C23—C24—O21.4 (5)
C13—Si1—C14—C1552.0 (2)C18—C23—C24—O2179.9 (3)
C7—Si1—C14—C1568.50 (19)C22—C23—C24—N1178.4 (3)
C1—Si1—C14—C15172.63 (15)C18—C23—C24—N10.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.633.366 (4)137
C14—H14A···O1ii0.972.633.582 (3)169
C19—H19···O2iii0.932.513.310 (3)144
C22—H22···O1iv0.932.323.200 (3)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H23NO2Si
Mr385.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)300
a, b, c (Å)19.277 (3), 13.238 (2), 19.272 (3)
β (°) 116.987 (6)
V3)4382.5 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART X2S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
15551, 4470, 2693
Rint0.051
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.175, 1.02
No. of reflections4470
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: GIS (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008), modiCIFer (Guzei, 2007) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.633.366 (4)137
C14—H14A···O1ii0.972.633.582 (3)169
C19—H19···O2iii0.932.513.310 (3)144
C22—H22···O1iv0.932.323.200 (3)157
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank Dr N. J. Hill (UW-Madison) for acquiring the data and Professor R. West (UW-Madison) for his support. We gratefully acknowledge Bruker sponsorship of this publication and also acknowledge grants NIH 1 S10 RRO 8389–01 and NSF CHE-9629688 for providing NMR spectrometers, and grant NSF CHE-9304546 for providing the mass spectrometer for this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBains, W. & Tacke, R. (2003). Curr. Opin. Drug Discov. Devel. 6, 526–543.  Web of Science PubMed CAS Google Scholar
First citationBruker (2009). APEX2, GIS, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGately, S. & West, R. (2007). Drug Dev. Res. 68, 156–163.  Web of Science CrossRef CAS Google Scholar
First citationGuzei, I. A. (2007). In-house Crystallographic Programs: FCF_filter, INSerter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin–Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Spencer, L. C. & Zakai, U. I. (2010a). Acta Cryst. E66, o219–o220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A., Spencer, L. C. & Zakai, U. I. (2010b). Acta Cryst. E66, o223–o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, Y. J., Ling, R., Mariano, P. S., Yoon, U. C., Kim, D. U. & Oh, S. W. (1996). J. Org. Chem. 61, 3304–3314.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuge, O., Tanaka, J. & Kanemasa, S. (1985). Bull. Chem. Soc. Jpn, 58, 1991–1999.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYoon, U. C., Cho, S. J., Oh, J. H., Lee, J. G., Kang, K. T. & Mariano, P. S. (1991). Bull. Korean Chem. Soc. 12, 241–243.  CAS Google Scholar
First citationZakai, U. I., Bikzhanova, G. A., Staveness, D. & West, R. (2010). Appl. Organomet. Chem. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o221-o222
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds