organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorimipraminium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 December 2009; accepted 7 January 2010; online 13 January 2010)

The title compound {systematic name: 3-chloro-5-[3-(dimethyl­amino)prop­yl]-10,11-dihydro-5H-dibenz[b,f]azepinium picrate}, C19H24ClN2+·C6H2N3O7, crystallizes with two independent cation–anion pairs in the asymmetric unit. The chlorimipraminium cation contains two benzene rings (one with a chloro substituent) fused to a V-shaped seven-membered azepine ring whose mean planes are separated by 61.1 (0) and 66.5 (8)° with a 3-(dimethyl­amino)propyl group extending away from the apex of this ring. In the picrate anion, the mean planes of the two o-NO2 groups in each anion are twisted by 3.7 (2)/31.9 (3) and 31.3 (1)/11.4 (0)°, respectively, with respect to the mean plane of the six-membered benzene ring. The phenolate O atoms are bent slightly away from the mean plane of the benzene ring. The mean planes of the p-NO2 groups are twisted by 6.6 (1) and 2.88°, respectively, from the mean plane of the benzene ring. The crystal packing features bifurcated N—H⋯(O,O) inter­molecular hydrogen-bond inter­action, which connects each cation–anion pair. Additional ππ ring and C—H⋯π weak inter­molecular inter­actions are also observed.

Related literature

For related structures, see: Bindya et al. (2007[Bindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546-o548.]); Hallberg et al. (1984[Hallberg, A., Hintermeister, N. M., Martin, A. R., Bates, R. B. & Ortega, R. B. (1984). Acta Cryst. C40, 2110-2112.]); Harrison, Bindya et al. (2007[Harrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.]); Hallberg et al. (1984[Hallberg, A., Hintermeister, N. M., Martin, A. R., Bates, R. B. & Ortega, R. B. (1984). Acta Cryst. C40, 2110-2112.]); Harrison, Sreevidya et al. (2007[Harrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.]); Post et al. (1975[Post, M. L., Kennard, O. & Horn, A. S. (1975). Acta Cryst. B31, 1008-1013.]); Post & Horn (1977[Post, M. L. & Horn, A. S. (1977). Acta Cryst. B33, 2590-2595.]); Swamy et al. (2007[Swamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.]); Yathirajan et al. (2007[Yathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691-o1692.]). For obessive-compulsive disorder treatment, see: Albert et al. (2002[Albert, U., Aguglia, E., Maina, G. & Bogetto, F. (2002). J. Clin. Psychiatry, 63, 1004-1009.]). For pain disorder treatment, see: Cassano et al. (1988[Cassano, G. B., Petracca, A., Perugi, G., Nisita, C., Musetti, L., Mengali, F. & McNair, D. M. (1988). J. Affect. Disord. 14, 123-127.]). For non-toxic cancer-therapeutic activity, see: Daley et al. (2005[Daley, E., Wilkie, D., Loesch, A., Hargreaves, I. P., Kendall, D. A., Pilkington, G. J. & Bates, T. E. (2005). Biochem. Biophys. Res. Commun. 328, 623-632.]). For experimental anxiety in humans, see: Guimaraes et al. (1987[Guimaraes, F. S., Zuardi, A. W. & Graeff, F. G. (1987). J. Psychopharmacol. 1, 184-192.]). For quantum mechanical calculations, see: Becke (1988[Becke, A. D. (1988). Phys. Rev. A, 38, 3098-3100.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO LLC, Holland, MI, USA, available from http://www.webmo.net.]); Frisch et al. (2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]); Lee et al. (1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]).

[Scheme 1]

Experimental

Crystal data
  • C19H24ClN2+·C6H2N3O7

  • Mr = 543.96

  • Triclinic, [P \overline 1]

  • a = 11.2252 (3) Å

  • b = 13.1514 (3) Å

  • c = 17.2787 (4) Å

  • α = 90.9414 (19)°

  • β = 91.1253 (19)°

  • γ = 100.4446 (19)°

  • V = 2507.55 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 110 K

  • 0.47 × 0.41 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.918, Tmax = 0.969

  • 32779 measured reflections

  • 16481 independent reflections

  • 10873 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 0.98

  • 16481 reflections

  • 689 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AB⋯O1D 0.93 1.85 2.7000 (13) 151
N2A—H2AB⋯O21D 0.93 2.23 2.8982 (14) 128
N2B—H2BB⋯O1C 0.93 1.92 2.6970 (13) 140
N2B—H2BB⋯O62C 0.93 2.36 3.0657 (15) 133
C12A—H12ACg7i 0.95 2.83 3.656 (4) 145
Symmetry code: (i) x, y-1, z. Cg7 is the centroid of the C1B–C6B ring.

Table 2
π-π hydrogen-bond geometry (Å)

CgCg D⋯A
Cg1⋯Cg14i 3.838 (8)
Cg7⋯Cg13ii 3.473 (5)
Cg13⋯Cg14i 3.590 (5)
Symmetry codes: (i) x, y, z; (ii) 1 − x, y, z; Cg1, Cg7, Cg13 and Cg14 are the centroids of the C1A–C6A, C1B–C6B, C1C–C6C and C1D–C6D rings.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chlorimipramine [IUPAC name: 3-chloro-5-(3-dimethylaminopropyl)-10, 11-dihydro-5H-dibenz[b,f]azepine] is a tricyclic antidepressant that was developed in the 1960's by the Swiss drug manufacturer Geigy (now known as Novartis) and has been in clinical use worldwide for decades. Chlorimipramine, a 3-chloro derivative of imipramine, is a strong, but not completely selective, serotonin reuptake inhibitor (SSRI), which like the primary active metabolite desmethylclomipramine acts preferably as a norepinephrine reuptake inhibitor. It is used in the treatment of obsessive-compulsive disorder (Albert et al., 2002) and panic disorder (Cassano et al., 1988). The effect of chlorimipramine and maprotiline on experimental anxiety in humans has been reported (Guimaraes et al., 1987). The use of chlorimipramine in humans as an effective, non-toxic cancer-therapeutic having a strong selectivity between cancer cells and normal cells on the basis of their mitochondrial function has also been discussed (Daley et al., 2005).

The crystal and molecular structure of tricyclic antidepressant imipramine hydrochloride (Post et al., 1975), chloripramine hydrochloride (Post & Horn, 1977; Hallberg et al., 1984), amitriptylinium picrate (Bindya et al., 2007), mepazinium picrate (Yathirajan et al., 2007), imipraminium picrate (Harrison, Bindya et al., 2007), nevirapinium picrate (Harrison, Sreevidya et al., 2007) and desipraminium picrate (Swamy et al., 2007) have been reported. In view of the importance of chlorimipramine and to study the hydrogen bonding patterns in the title compound, (I), C25H26ClN5O7, a crystal structure is reported.

The title compound,C25H26ClN5O7, crystallizes with two independent cation-anion pairs [C19H24ClN2+. C6H2N3O7-] in the asymmetric unit (Fig. 1). The chlorimipraminium cation contains two benzene rings (one halogenated) fused to a V-shaped, seven-membered azepine ring whose mean planes are separated by 61.1 (0)° (A) and 66.5 (8)° (B) with a 3-dimethylaminopropyl) group extending away from the apex of the bent azepine group (Torsion angles C1A—N1A—C15A—C16A = 59.19 (14)°; C1B—N1B—C15B—C16B = 165.18 (10)°). In the picrate anion, the mean planes of the two o-NO2 groups (O21D—N2D—O22D & O61D—N6D—O62D; O21C—N2C—O22C & O61C—N6C—O62C are twisted by 3.7 (2)°, 31.9 (3)° and 31.3 (1)°, 11.4 (0)°, respectively, with respect to the mean plane of the 6-membered benzene ring (Fig. 1). The phenolate oxygen atoms are bent slightly away from the mean plane of the benzene ring (Torsion angles O1D—C1D—C2D—C3D = 171.41 (12)°; O1C—C1C—C2C—C3C = -172.94 (12)°). The mean planes of the p-NO2 oxygen atoms (O41D—N4D—O42D & O41C—N4C—O42C) are twisted by 6.6 (1)° and 2.88°, respectively, from the mean plane of the benzene ring. The difference in the twist angles of the mean planes of the two o-NO2 groups and the bend in the phenolate oxygen atoms in each of the cation units can be attributed to the influence of strong bifurcated (3-center) "side" hydrogen bond intermolecular interactions with the nitrogen atom in the 3-dimethylaminopropyl group of their cation neighbors (N2A—H2AB···O1D, N2A—H2AB···O2D and N2B—H2BB···O1C, N2B—H2BB···O62C; Fig. 2, Table 1). Crystal packing is also influenced by additional weak ππ ring intermolecular interactions (Table 2, Fig. 3) and a weak C12A—H12A···Cg7 π-ring intermoleclar interaction (H12A···Cg7 = 2.83°, C12a—H12A···Cg7 = 145°, C12A···Cg7 = 3.656 (4)°; x, -1 + y, z).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the two independent cation-anion pairs (C19H24ClN2+. C6H2N3O7-) of the asymmetric unit with the GAUSSIAN03 program package (Frisch et al., 2004; Becke, 1988; Lee et al., 1988) and the 3–21 G basis set. Starting geometries were taken from X-ray refinement data. In the cation, the angle between the two benzene rings fused to the azepine ring decreases to 53.2 (9)° (A) and 55.8 (5)°, a change of -7.8 (1)° and -10.7 (3)°, respectively. In the picrate anion, the mean planes of the two o-NO2 groups (O21D—N2D—O22D & O61D—N6D—O62D; O21C—N2C—O22C & O61C—N6C—O62C become twisted by 18.2 (8)°, 6.3 (5)° and 15.5 (6)°, 13.6 (4)°, with respect to the mean plane of the 6-membered benzene ring, changes of +14.5 (6)°, -25.5 (8)° and -15.7 (5)°, +2.2 (4)°, respectively. The torsion angles of the phenolate oxygen atoms (O1D—C1D—C2D—C3D & O1C—C1C—C2C—C3C) become 175.1 (6)° and -171.6 (7)°, changes of +3.7 (5)° and -1.2 (7)° relative to the mean plane of the benzene ring. The mean planes of the p-NO2 oxygen atoms (O41D—N4D—O42D & O41C—N4C—O42C) become twisted by 0.4 (8)° and 6.2 (3)°, changes of -6.3 (1)° and +3.3 (5)°, respectively, from the mean plane of the anion benzene ring. The dihedral angle between the benzene ring of the anion and the benzene and chloro substituted benzene ring in the cation change from 70.1 (5)°, 15.0 (4)° and 67.9 (3)°, 4.3 (5)° to 35.1 (5)°, 44.8 (3)° and 36.7 (3)°, 12.0 (2)°, changes of -35.0 (0)°, +21.6 (9)°, and -23.1 (0)°, +7.6 (7)°, respectively. Examination of the partial charges from the DFT geometry optimization indicate that H2BD (0.43570) is slightly more positive than H2AB (0.424847) producing a slightly stronger proton charge associated with the N2B atom of the cation-anion pair (B & C groups).

Related literature top

For related structures, see: Bindya et al. (2007); Hallberg et al. (1984); Harrison, Bindya et al. (2007); Hallberg et al. (1984); Harrison, Sreevidya et al. (2007); Post et al. (1975); Post & Horn (1977); Swamy et al. (2007); Yathirajan et al. (2007). For related background, see: Albert et al. (2002); Cassano et al. (1988); Daley et al. (2005); Guimaraes et al. (1987). For quantum mechanics calculations, see: Becke (1988); Schmidt & Polik (2007); Frisch et al. (2004); Lee et al. (1988).

Experimental top

Clorimipramine hydrochloride (3.5 g, 0.01 mol) in 25 ml of a mixture of (1:1) acetonitrile & methanol and picric acid (4.5 g, 0.01 mol) in 25 ml of mixture of (1:1) acetonitrile & methanol were mixed and stirred in a beaker at 318 K for two hours. The mixture was kept aside for about five days at room temperature. The separated salt was filtered and dried in vacuum desiccator over phosphorous pentoxide. The crystals obtained (m.p: 393 - 395 K) were used for x-ray studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.93 Å, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.18–1.51Ueq(C,N).

Structure description top

Chlorimipramine [IUPAC name: 3-chloro-5-(3-dimethylaminopropyl)-10, 11-dihydro-5H-dibenz[b,f]azepine] is a tricyclic antidepressant that was developed in the 1960's by the Swiss drug manufacturer Geigy (now known as Novartis) and has been in clinical use worldwide for decades. Chlorimipramine, a 3-chloro derivative of imipramine, is a strong, but not completely selective, serotonin reuptake inhibitor (SSRI), which like the primary active metabolite desmethylclomipramine acts preferably as a norepinephrine reuptake inhibitor. It is used in the treatment of obsessive-compulsive disorder (Albert et al., 2002) and panic disorder (Cassano et al., 1988). The effect of chlorimipramine and maprotiline on experimental anxiety in humans has been reported (Guimaraes et al., 1987). The use of chlorimipramine in humans as an effective, non-toxic cancer-therapeutic having a strong selectivity between cancer cells and normal cells on the basis of their mitochondrial function has also been discussed (Daley et al., 2005).

The crystal and molecular structure of tricyclic antidepressant imipramine hydrochloride (Post et al., 1975), chloripramine hydrochloride (Post & Horn, 1977; Hallberg et al., 1984), amitriptylinium picrate (Bindya et al., 2007), mepazinium picrate (Yathirajan et al., 2007), imipraminium picrate (Harrison, Bindya et al., 2007), nevirapinium picrate (Harrison, Sreevidya et al., 2007) and desipraminium picrate (Swamy et al., 2007) have been reported. In view of the importance of chlorimipramine and to study the hydrogen bonding patterns in the title compound, (I), C25H26ClN5O7, a crystal structure is reported.

The title compound,C25H26ClN5O7, crystallizes with two independent cation-anion pairs [C19H24ClN2+. C6H2N3O7-] in the asymmetric unit (Fig. 1). The chlorimipraminium cation contains two benzene rings (one halogenated) fused to a V-shaped, seven-membered azepine ring whose mean planes are separated by 61.1 (0)° (A) and 66.5 (8)° (B) with a 3-dimethylaminopropyl) group extending away from the apex of the bent azepine group (Torsion angles C1A—N1A—C15A—C16A = 59.19 (14)°; C1B—N1B—C15B—C16B = 165.18 (10)°). In the picrate anion, the mean planes of the two o-NO2 groups (O21D—N2D—O22D & O61D—N6D—O62D; O21C—N2C—O22C & O61C—N6C—O62C are twisted by 3.7 (2)°, 31.9 (3)° and 31.3 (1)°, 11.4 (0)°, respectively, with respect to the mean plane of the 6-membered benzene ring (Fig. 1). The phenolate oxygen atoms are bent slightly away from the mean plane of the benzene ring (Torsion angles O1D—C1D—C2D—C3D = 171.41 (12)°; O1C—C1C—C2C—C3C = -172.94 (12)°). The mean planes of the p-NO2 oxygen atoms (O41D—N4D—O42D & O41C—N4C—O42C) are twisted by 6.6 (1)° and 2.88°, respectively, from the mean plane of the benzene ring. The difference in the twist angles of the mean planes of the two o-NO2 groups and the bend in the phenolate oxygen atoms in each of the cation units can be attributed to the influence of strong bifurcated (3-center) "side" hydrogen bond intermolecular interactions with the nitrogen atom in the 3-dimethylaminopropyl group of their cation neighbors (N2A—H2AB···O1D, N2A—H2AB···O2D and N2B—H2BB···O1C, N2B—H2BB···O62C; Fig. 2, Table 1). Crystal packing is also influenced by additional weak ππ ring intermolecular interactions (Table 2, Fig. 3) and a weak C12A—H12A···Cg7 π-ring intermoleclar interaction (H12A···Cg7 = 2.83°, C12a—H12A···Cg7 = 145°, C12A···Cg7 = 3.656 (4)°; x, -1 + y, z).

A density functional theory (DFT) geometry optimization molecular orbital calculation (Schmidt & Polik, 2007) was performed on the two independent cation-anion pairs (C19H24ClN2+. C6H2N3O7-) of the asymmetric unit with the GAUSSIAN03 program package (Frisch et al., 2004; Becke, 1988; Lee et al., 1988) and the 3–21 G basis set. Starting geometries were taken from X-ray refinement data. In the cation, the angle between the two benzene rings fused to the azepine ring decreases to 53.2 (9)° (A) and 55.8 (5)°, a change of -7.8 (1)° and -10.7 (3)°, respectively. In the picrate anion, the mean planes of the two o-NO2 groups (O21D—N2D—O22D & O61D—N6D—O62D; O21C—N2C—O22C & O61C—N6C—O62C become twisted by 18.2 (8)°, 6.3 (5)° and 15.5 (6)°, 13.6 (4)°, with respect to the mean plane of the 6-membered benzene ring, changes of +14.5 (6)°, -25.5 (8)° and -15.7 (5)°, +2.2 (4)°, respectively. The torsion angles of the phenolate oxygen atoms (O1D—C1D—C2D—C3D & O1C—C1C—C2C—C3C) become 175.1 (6)° and -171.6 (7)°, changes of +3.7 (5)° and -1.2 (7)° relative to the mean plane of the benzene ring. The mean planes of the p-NO2 oxygen atoms (O41D—N4D—O42D & O41C—N4C—O42C) become twisted by 0.4 (8)° and 6.2 (3)°, changes of -6.3 (1)° and +3.3 (5)°, respectively, from the mean plane of the anion benzene ring. The dihedral angle between the benzene ring of the anion and the benzene and chloro substituted benzene ring in the cation change from 70.1 (5)°, 15.0 (4)° and 67.9 (3)°, 4.3 (5)° to 35.1 (5)°, 44.8 (3)° and 36.7 (3)°, 12.0 (2)°, changes of -35.0 (0)°, +21.6 (9)°, and -23.1 (0)°, +7.6 (7)°, respectively. Examination of the partial charges from the DFT geometry optimization indicate that H2BD (0.43570) is slightly more positive than H2AB (0.424847) producing a slightly stronger proton charge associated with the N2B atom of the cation-anion pair (B & C groups).

For related structures, see: Bindya et al. (2007); Hallberg et al. (1984); Harrison, Bindya et al. (2007); Hallberg et al. (1984); Harrison, Sreevidya et al. (2007); Post et al. (1975); Post & Horn (1977); Swamy et al. (2007); Yathirajan et al. (2007). For related background, see: Albert et al. (2002); Cassano et al. (1988); Daley et al. (2005); Guimaraes et al. (1987). For quantum mechanics calculations, see: Becke (1988); Schmidt & Polik (2007); Frisch et al. (2004); Lee et al. (1988).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two C19H24ClN2+. C6H2N3O7- cation-anion pairs in the asymmetric unit showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate bifurcated (3-center) N2A—H2AB···O1D, N2A—H2AB···O2D and N2B—H2BB···O1C, N2B—H2BB···O62C, cation-anion hydrogen bond interactions.
[Figure 2] Fig. 2. Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate intermolecular N—H···O hydrogen bond interactions which produces a two-dimensional network of infinite O—H···O—H···O—H chains arranged along the (101) plane of the unit cell.
[Figure 3] Fig. 3. π-π interactions in the asymmetric of (I).
3-Chloro-5-[3-(dimethylamino)propyl]-10,11-dihydro-5H-dibenz[b,f]azepinium picrate top
Crystal data top
C19H24ClN2+·C6H2N3O7Z = 4
Mr = 543.96F(000) = 1136
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2252 (3) ÅCell parameters from 14780 reflections
b = 13.1514 (3) Åθ = 4.7–32.7°
c = 17.2787 (4) ŵ = 0.21 mm1
α = 90.9414 (19)°T = 110 K
β = 91.1253 (19)°Plate, yellow
γ = 100.4446 (19)°0.47 × 0.41 × 0.15 mm
V = 2507.55 (10) Å3
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
16481 independent reflections
Radiation source: Enhance (Mo) X-ray Source10873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 4.7°
φ and ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1916
Tmin = 0.918, Tmax = 0.969l = 2326
32779 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0635P)2]
where P = (Fo2 + 2Fc2)/3
16481 reflections(Δ/σ)max < 0.001
689 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C19H24ClN2+·C6H2N3O7γ = 100.4446 (19)°
Mr = 543.96V = 2507.55 (10) Å3
Triclinic, P1Z = 4
a = 11.2252 (3) ÅMo Kα radiation
b = 13.1514 (3) ŵ = 0.21 mm1
c = 17.2787 (4) ÅT = 110 K
α = 90.9414 (19)°0.47 × 0.41 × 0.15 mm
β = 91.1253 (19)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
16481 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
10873 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.969Rint = 0.023
32779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.98Δρmax = 0.53 e Å3
16481 reflectionsΔρmin = 0.48 e Å3
689 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59334 (3)0.87280 (3)0.92251 (2)0.03074 (9)
N1A0.37421 (9)0.86170 (8)0.65507 (6)0.0172 (2)
N2A0.64917 (9)0.73998 (8)0.53424 (6)0.0175 (2)
H2AB0.65260.70350.57960.021*
C1A0.39922 (10)0.81199 (9)0.72519 (7)0.0166 (2)
C2A0.47865 (10)0.86207 (10)0.78235 (7)0.0183 (2)
H2AA0.51990.93090.77550.022*
C3A0.49670 (11)0.81002 (10)0.84951 (7)0.0198 (3)
C4A0.43734 (11)0.71005 (10)0.86195 (7)0.0200 (3)
H4AA0.44980.67600.90870.024*
C5A0.35871 (11)0.66092 (10)0.80371 (8)0.0210 (3)
H5AA0.31670.59250.81140.025*
C6A0.34025 (11)0.70941 (10)0.73483 (7)0.0184 (2)
C7A0.25976 (12)0.65622 (10)0.67027 (8)0.0240 (3)
H7AA0.24040.58120.68020.029*
H7AB0.30380.66550.62110.029*
C8A0.14237 (12)0.69788 (11)0.66183 (9)0.0288 (3)
H8AA0.09720.66310.61600.035*
H8AB0.09310.67650.70770.035*
C9A0.14981 (11)0.81328 (10)0.65337 (7)0.0212 (3)
C10A0.03832 (12)0.84621 (11)0.64822 (8)0.0265 (3)
H10A0.03390.79610.65120.032*
C11A0.02888 (12)0.94905 (12)0.63898 (8)0.0273 (3)
H11A0.04840.96850.63420.033*
C12A0.13302 (12)1.02253 (11)0.63690 (8)0.0246 (3)
H12A0.12811.09340.63140.030*
C13A0.24533 (11)0.99277 (10)0.64291 (7)0.0201 (3)
H13A0.31681.04400.64200.024*
C14A0.25533 (11)0.88889 (10)0.65020 (7)0.0171 (2)
C15A0.47414 (11)0.93650 (10)0.62436 (8)0.0192 (2)
H15A0.49820.99390.66250.023*
H15B0.44620.96580.57630.023*
C16A0.58398 (11)0.88708 (10)0.60687 (7)0.0189 (2)
H16A0.65170.94100.59060.023*
H16B0.61030.85540.65430.023*
C17A0.55383 (11)0.80490 (10)0.54323 (7)0.0191 (2)
H17A0.47610.75950.55480.023*
H17B0.54290.83900.49360.023*
C18A0.77140 (11)0.80309 (11)0.52275 (8)0.0268 (3)
H18A0.79750.84480.56960.040*
H18B0.76800.84880.47880.040*
H18C0.82920.75720.51220.040*
C19A0.61616 (13)0.66325 (11)0.46961 (7)0.0249 (3)
H19A0.53680.62080.47900.037*
H19B0.67720.61880.46640.037*
H19C0.61270.69960.42080.037*
Cl20.19710 (4)0.83645 (3)0.44656 (2)0.03975 (10)
N1B0.00504 (8)0.84031 (8)0.17770 (6)0.0164 (2)
N2B0.16727 (9)0.76659 (8)0.02222 (6)0.0194 (2)
H2BB0.16000.73760.07100.023*
C1B0.00482 (11)0.79100 (9)0.25044 (7)0.0179 (2)
C2B0.08559 (11)0.82856 (10)0.30604 (7)0.0196 (2)
H2BA0.14790.88480.29410.024*
C3B0.08492 (13)0.78428 (11)0.37833 (8)0.0257 (3)
C4B0.00406 (14)0.70222 (12)0.39755 (9)0.0322 (3)
H4BA0.00460.67250.44730.039*
C5B0.09206 (13)0.66473 (11)0.34232 (9)0.0307 (3)
H5BA0.15330.60810.35520.037*
C6B0.09587 (11)0.70576 (10)0.26812 (9)0.0242 (3)
C7B0.19630 (13)0.65203 (12)0.21395 (10)0.0354 (4)
H7BA0.27430.65290.23950.043*
H7BB0.18740.57870.20860.043*
C8B0.20590 (12)0.69393 (11)0.13257 (9)0.0299 (3)
H8BA0.13310.68590.10330.036*
H8BB0.27770.65360.10500.036*
C9B0.21672 (11)0.80566 (10)0.13599 (8)0.0224 (3)
C10B0.32578 (12)0.83958 (12)0.12103 (8)0.0283 (3)
H10B0.39560.79100.10500.034*
C11B0.33334 (12)0.94331 (12)0.12930 (8)0.0286 (3)
H11B0.40790.96550.11880.034*
C12B0.23241 (12)1.01431 (11)0.15281 (7)0.0236 (3)
H12B0.23801.08520.15870.028*
C13B0.12244 (11)0.98269 (10)0.16791 (7)0.0181 (2)
H13B0.05291.03190.18330.022*
C14B0.11529 (10)0.87815 (10)0.16026 (7)0.0176 (2)
C15B0.10829 (10)0.90796 (9)0.15678 (7)0.0160 (2)
H15C0.17760.87340.16890.019*
H15D0.11870.97290.18800.019*
C16B0.10798 (11)0.93317 (10)0.07102 (7)0.0191 (2)
H16C0.04730.97790.06150.023*
H16D0.18840.97350.05860.023*
C17B0.08041 (11)0.84068 (10)0.01625 (7)0.0201 (3)
H17C0.00220.80270.02630.024*
H17D0.08040.86580.03750.024*
C18B0.29610 (11)0.81780 (11)0.01351 (8)0.0245 (3)
H18D0.34820.76550.01460.037*
H18E0.31990.86790.05610.037*
H18F0.30490.85360.03590.037*
C19B0.13262 (14)0.68120 (11)0.03663 (8)0.0293 (3)
H19D0.04880.64680.02870.044*
H19E0.18680.63100.03110.044*
H19F0.13960.70980.08870.044*
O1C0.26076 (8)0.70245 (7)0.15382 (5)0.0229 (2)
O21C0.38889 (9)0.86117 (7)0.24018 (6)0.0298 (2)
O22C0.50236 (9)0.79895 (8)0.32264 (7)0.0370 (3)
O41C0.27695 (10)0.55178 (8)0.49309 (5)0.0319 (2)
O42C0.12957 (9)0.43593 (8)0.44634 (6)0.0346 (3)
O61C0.00593 (11)0.44920 (9)0.18672 (7)0.0511 (4)
O62C0.04994 (9)0.58148 (9)0.11703 (6)0.0384 (3)
N2C0.41012 (9)0.79142 (8)0.28158 (7)0.0214 (2)
N4C0.20810 (10)0.51373 (9)0.43944 (6)0.0229 (2)
N6C0.05988 (10)0.53218 (9)0.17559 (6)0.0225 (2)
C1C0.24304 (10)0.66219 (9)0.21843 (7)0.0156 (2)
C2C0.31920 (10)0.69712 (9)0.28621 (7)0.0161 (2)
C3C0.31107 (11)0.64889 (9)0.35594 (7)0.0174 (2)
H3CA0.36600.67390.39740.021*
C4C0.22078 (11)0.56251 (9)0.36500 (7)0.0171 (2)
C5C0.14014 (10)0.52518 (10)0.30518 (7)0.0175 (2)
H5CA0.07860.46650.31260.021*
C6C0.14961 (10)0.57354 (9)0.23489 (7)0.0168 (2)
O1D0.71604 (8)0.69222 (7)0.67815 (5)0.0226 (2)
O21D0.52660 (10)0.56347 (9)0.61786 (6)0.0393 (3)
O22D0.43317 (9)0.44269 (9)0.68675 (6)0.0362 (3)
O41D0.53373 (9)0.39608 (8)0.94767 (6)0.0316 (2)
O42D0.68754 (10)0.49588 (8)1.00391 (6)0.0322 (2)
O61D0.91601 (11)0.78149 (10)0.86413 (8)0.0555 (4)
O62D0.81134 (9)0.84577 (8)0.77794 (6)0.0337 (2)
N2D0.51250 (9)0.51864 (8)0.67940 (6)0.0176 (2)
N4D0.61854 (10)0.47077 (9)0.94774 (6)0.0232 (2)
N6D0.83039 (10)0.77441 (9)0.81814 (7)0.0266 (3)
C1D0.68478 (10)0.64639 (9)0.73884 (7)0.0149 (2)
C2D0.59071 (10)0.55516 (9)0.74548 (7)0.0152 (2)
C3D0.56982 (10)0.49945 (9)0.81231 (7)0.0167 (2)
H3DA0.50830.43950.81290.020*
C4D0.63868 (11)0.53121 (10)0.87829 (7)0.0176 (2)
C5D0.72585 (11)0.62116 (10)0.87969 (7)0.0198 (3)
H5DA0.77170.64340.92560.024*
C6D0.74406 (11)0.67694 (9)0.81332 (7)0.0175 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02852 (17)0.0392 (2)0.02166 (16)0.00019 (14)0.00720 (13)0.00441 (14)
N1A0.0177 (5)0.0158 (5)0.0173 (5)0.0004 (4)0.0016 (4)0.0029 (4)
N2A0.0208 (5)0.0189 (5)0.0131 (5)0.0044 (4)0.0010 (4)0.0026 (4)
C1A0.0173 (5)0.0164 (6)0.0162 (6)0.0032 (4)0.0016 (4)0.0000 (5)
C2A0.0183 (5)0.0164 (6)0.0195 (6)0.0013 (4)0.0029 (5)0.0007 (5)
C3A0.0162 (5)0.0272 (7)0.0160 (6)0.0042 (5)0.0005 (5)0.0044 (5)
C4A0.0223 (6)0.0225 (7)0.0167 (6)0.0069 (5)0.0033 (5)0.0039 (5)
C5A0.0236 (6)0.0162 (6)0.0234 (6)0.0039 (5)0.0032 (5)0.0030 (5)
C6A0.0195 (6)0.0156 (6)0.0200 (6)0.0030 (4)0.0003 (5)0.0010 (5)
C7A0.0299 (7)0.0157 (6)0.0237 (7)0.0018 (5)0.0039 (5)0.0019 (5)
C8A0.0281 (7)0.0219 (7)0.0329 (8)0.0043 (5)0.0065 (6)0.0024 (6)
C9A0.0229 (6)0.0211 (7)0.0180 (6)0.0006 (5)0.0047 (5)0.0009 (5)
C10A0.0201 (6)0.0334 (8)0.0243 (7)0.0004 (5)0.0031 (5)0.0007 (6)
C11A0.0204 (6)0.0353 (8)0.0268 (7)0.0071 (5)0.0003 (5)0.0043 (6)
C12A0.0311 (7)0.0250 (7)0.0198 (6)0.0099 (5)0.0036 (5)0.0014 (5)
C13A0.0229 (6)0.0200 (7)0.0170 (6)0.0023 (5)0.0043 (5)0.0011 (5)
C14A0.0200 (6)0.0190 (6)0.0115 (5)0.0017 (4)0.0003 (4)0.0007 (4)
C15A0.0216 (6)0.0156 (6)0.0197 (6)0.0008 (5)0.0048 (5)0.0028 (5)
C16A0.0187 (6)0.0174 (6)0.0196 (6)0.0006 (4)0.0024 (5)0.0009 (5)
C17A0.0186 (6)0.0208 (6)0.0188 (6)0.0058 (5)0.0007 (5)0.0010 (5)
C18A0.0209 (6)0.0325 (8)0.0274 (7)0.0048 (5)0.0054 (5)0.0055 (6)
C19A0.0344 (7)0.0273 (7)0.0156 (6)0.0134 (6)0.0047 (5)0.0041 (5)
Cl20.0620 (3)0.0449 (2)0.01714 (16)0.02406 (19)0.00841 (16)0.00375 (15)
N1B0.0146 (4)0.0161 (5)0.0179 (5)0.0004 (4)0.0016 (4)0.0033 (4)
N2B0.0232 (5)0.0235 (6)0.0120 (5)0.0056 (4)0.0003 (4)0.0028 (4)
C1B0.0195 (6)0.0161 (6)0.0194 (6)0.0061 (4)0.0060 (5)0.0030 (5)
C2B0.0233 (6)0.0197 (6)0.0180 (6)0.0090 (5)0.0051 (5)0.0027 (5)
C3B0.0352 (7)0.0300 (8)0.0170 (6)0.0187 (6)0.0037 (5)0.0016 (5)
C4B0.0474 (9)0.0335 (8)0.0230 (7)0.0240 (7)0.0169 (7)0.0138 (6)
C5B0.0317 (7)0.0229 (7)0.0403 (9)0.0096 (6)0.0197 (7)0.0139 (6)
C6B0.0230 (6)0.0173 (7)0.0336 (8)0.0052 (5)0.0100 (6)0.0055 (6)
C7B0.0254 (7)0.0231 (8)0.0546 (10)0.0053 (6)0.0054 (7)0.0073 (7)
C8B0.0202 (6)0.0238 (8)0.0424 (9)0.0036 (5)0.0005 (6)0.0068 (6)
C9B0.0183 (6)0.0244 (7)0.0235 (7)0.0012 (5)0.0000 (5)0.0034 (5)
C10B0.0185 (6)0.0394 (9)0.0258 (7)0.0027 (5)0.0026 (5)0.0026 (6)
C11B0.0208 (6)0.0433 (9)0.0234 (7)0.0107 (6)0.0020 (5)0.0014 (6)
C12B0.0300 (7)0.0271 (7)0.0161 (6)0.0115 (5)0.0018 (5)0.0034 (5)
C13B0.0199 (6)0.0218 (7)0.0127 (5)0.0037 (5)0.0005 (4)0.0022 (5)
C14B0.0165 (5)0.0216 (6)0.0146 (5)0.0028 (4)0.0003 (4)0.0002 (5)
C15B0.0146 (5)0.0160 (6)0.0163 (6)0.0003 (4)0.0001 (4)0.0005 (4)
C16B0.0192 (6)0.0208 (7)0.0179 (6)0.0043 (5)0.0026 (5)0.0052 (5)
C17B0.0185 (6)0.0280 (7)0.0147 (6)0.0067 (5)0.0012 (5)0.0026 (5)
C18B0.0202 (6)0.0338 (8)0.0209 (6)0.0079 (5)0.0033 (5)0.0085 (6)
C19B0.0419 (8)0.0279 (8)0.0187 (6)0.0086 (6)0.0052 (6)0.0038 (5)
O1C0.0265 (5)0.0232 (5)0.0175 (4)0.0002 (4)0.0041 (4)0.0073 (4)
O21C0.0333 (5)0.0177 (5)0.0361 (6)0.0010 (4)0.0094 (4)0.0087 (4)
O22C0.0277 (5)0.0283 (6)0.0505 (7)0.0049 (4)0.0219 (5)0.0079 (5)
O41C0.0491 (6)0.0320 (6)0.0153 (5)0.0098 (5)0.0084 (4)0.0002 (4)
O42C0.0370 (6)0.0373 (6)0.0268 (5)0.0023 (5)0.0037 (4)0.0141 (5)
O61C0.0588 (7)0.0406 (7)0.0383 (7)0.0310 (6)0.0217 (6)0.0118 (6)
O62C0.0384 (6)0.0463 (7)0.0242 (5)0.0086 (5)0.0122 (5)0.0095 (5)
N2C0.0214 (5)0.0155 (5)0.0260 (6)0.0004 (4)0.0055 (4)0.0011 (4)
N4C0.0302 (6)0.0240 (6)0.0162 (5)0.0088 (5)0.0026 (4)0.0034 (4)
N6C0.0234 (5)0.0232 (6)0.0186 (5)0.0008 (4)0.0040 (4)0.0011 (4)
C1C0.0176 (5)0.0139 (6)0.0155 (6)0.0035 (4)0.0023 (4)0.0005 (4)
C2C0.0165 (5)0.0124 (6)0.0191 (6)0.0019 (4)0.0026 (4)0.0002 (4)
C3C0.0199 (6)0.0164 (6)0.0168 (6)0.0070 (4)0.0050 (5)0.0025 (5)
C4C0.0219 (6)0.0176 (6)0.0129 (5)0.0066 (5)0.0006 (4)0.0023 (4)
C5C0.0174 (5)0.0161 (6)0.0186 (6)0.0019 (4)0.0009 (5)0.0006 (5)
C6C0.0177 (5)0.0166 (6)0.0158 (6)0.0026 (4)0.0039 (4)0.0011 (4)
O1D0.0234 (4)0.0242 (5)0.0174 (4)0.0037 (4)0.0030 (4)0.0060 (4)
O21D0.0484 (6)0.0392 (7)0.0202 (5)0.0180 (5)0.0144 (5)0.0097 (5)
O22D0.0331 (5)0.0403 (6)0.0244 (5)0.0216 (4)0.0022 (4)0.0009 (5)
O41D0.0382 (6)0.0271 (6)0.0280 (5)0.0007 (4)0.0044 (4)0.0116 (4)
O42D0.0480 (6)0.0337 (6)0.0167 (5)0.0121 (5)0.0057 (4)0.0041 (4)
O61D0.0492 (7)0.0487 (8)0.0557 (8)0.0222 (6)0.0348 (6)0.0102 (6)
O62D0.0456 (6)0.0176 (5)0.0339 (6)0.0047 (4)0.0033 (5)0.0010 (4)
N2D0.0169 (5)0.0190 (5)0.0158 (5)0.0004 (4)0.0005 (4)0.0022 (4)
N4D0.0316 (6)0.0240 (6)0.0163 (5)0.0104 (5)0.0027 (5)0.0046 (4)
N6D0.0288 (6)0.0232 (6)0.0230 (6)0.0071 (5)0.0044 (5)0.0022 (5)
C1D0.0153 (5)0.0146 (6)0.0150 (5)0.0034 (4)0.0020 (4)0.0001 (4)
C2D0.0167 (5)0.0147 (6)0.0139 (5)0.0022 (4)0.0019 (4)0.0020 (4)
C3D0.0185 (5)0.0131 (6)0.0183 (6)0.0022 (4)0.0026 (5)0.0007 (5)
C4D0.0229 (6)0.0170 (6)0.0140 (5)0.0061 (5)0.0010 (5)0.0036 (5)
C5D0.0221 (6)0.0217 (7)0.0160 (6)0.0055 (5)0.0047 (5)0.0023 (5)
C6D0.0188 (5)0.0149 (6)0.0174 (6)0.0005 (4)0.0025 (5)0.0006 (5)
Geometric parameters (Å, º) top
Cl1—C3A1.7427 (13)C7B—C8B1.528 (2)
N1A—C1A1.4329 (15)C7B—H7BA0.9900
N1A—C14A1.4441 (15)C7B—H7BB0.9900
N1A—C15A1.4656 (15)C8B—C9B1.496 (2)
N2A—C19A1.4879 (16)C8B—H8BA0.9900
N2A—C18A1.4879 (16)C8B—H8BB0.9900
N2A—C17A1.4940 (15)C9B—C10B1.3979 (18)
N2A—H2AB0.9300C9B—C14B1.3985 (17)
C1A—C2A1.3912 (17)C10B—C11B1.387 (2)
C1A—C6A1.4050 (17)C10B—H10B0.9500
C2A—C3A1.3870 (17)C11B—C12B1.381 (2)
C2A—H2AA0.9500C11B—H11B0.9500
C3A—C4A1.3841 (18)C12B—C13B1.3935 (17)
C4A—C5A1.3950 (18)C12B—H12B0.9500
C4A—H4AA0.9500C13B—C14B1.3959 (18)
C5A—C6A1.3890 (17)C13B—H13B0.9500
C5A—H5AA0.9500C15B—C16B1.5238 (17)
C6A—C7A1.5019 (17)C15B—H15C0.9900
C7A—C8A1.5214 (19)C15B—H15D0.9900
C7A—H7AA0.9900C16B—C17B1.5117 (19)
C7A—H7AB0.9900C16B—H16C0.9900
C8A—C9A1.5145 (19)C16B—H16D0.9900
C8A—H8AA0.9900C17B—H17C0.9900
C8A—H8AB0.9900C17B—H17D0.9900
C9A—C10A1.3983 (19)C18B—H18D0.9800
C9A—C14A1.4043 (17)C18B—H18E0.9800
C10A—C11A1.387 (2)C18B—H18F0.9800
C10A—H10A0.9500C19B—H19D0.9800
C11A—C12A1.3765 (19)C19B—H19E0.9800
C11A—H11A0.9500C19B—H19F0.9800
C12A—C13A1.3887 (18)O1C—C1C1.2474 (14)
C12A—H12A0.9500O21C—N2C1.2265 (13)
C13A—C14A1.3984 (18)O22C—N2C1.2316 (13)
C13A—H13A0.9500O41C—N4C1.2343 (14)
C15A—C16A1.5273 (17)O42C—N4C1.2326 (14)
C15A—H15A0.9900O61C—N6C1.2221 (14)
C15A—H15B0.9900O62C—N6C1.2248 (14)
C16A—C17A1.5182 (18)N2C—C2C1.4606 (15)
C16A—H16A0.9900N4C—C4C1.4447 (15)
C16A—H16B0.9900N6C—C6C1.4501 (15)
C17A—H17A0.9900C1C—C2C1.4540 (16)
C17A—H17B0.9900C1C—C6C1.4558 (16)
C18A—H18A0.9800C2C—C3C1.3678 (17)
C18A—H18B0.9800C3C—C4C1.3917 (17)
C18A—H18C0.9800C3C—H3CA0.9500
C19A—H19A0.9800C4C—C5C1.3836 (16)
C19A—H19B0.9800C5C—C6C1.3773 (16)
C19A—H19C0.9800C5C—H5CA0.9500
Cl2—C3B1.7459 (15)O1D—C1D1.2429 (14)
N1B—C1B1.4240 (15)O21D—N2D1.2234 (13)
N1B—C14B1.4435 (15)O22D—N2D1.2218 (13)
N1B—C15B1.4692 (14)O41D—N4D1.2377 (14)
N2B—C18B1.4920 (16)O42D—N4D1.2323 (14)
N2B—C19B1.4950 (17)O61D—N6D1.2244 (14)
N2B—C17B1.5016 (16)O62D—N6D1.2236 (15)
N2B—H2BB0.9300N2D—C2D1.4474 (14)
C1B—C2B1.4004 (17)N4D—C4D1.4491 (15)
C1B—C6B1.4150 (17)N6D—C6D1.4602 (16)
C2B—C3B1.3864 (17)C1D—C6D1.4534 (16)
C2B—H2BA0.9500C1D—C2D1.4552 (16)
C3B—C4B1.381 (2)C2D—C3D1.3789 (16)
C4B—C5B1.379 (2)C3D—C4D1.3800 (17)
C4B—H4BA0.9500C3D—H3DA0.9500
C5B—C6B1.402 (2)C4D—C5D1.3913 (18)
C5B—H5BA0.9500C5D—C6D1.3703 (17)
C6B—C7B1.515 (2)C5D—H5DA0.9500
C1A—N1A—C14A114.64 (10)C6B—C7B—C8B118.55 (11)
C1A—N1A—C15A116.51 (10)C6B—C7B—H7BA107.7
C14A—N1A—C15A116.45 (10)C8B—C7B—H7BA107.7
C19A—N2A—C18A110.55 (10)C6B—C7B—H7BB107.7
C19A—N2A—C17A110.57 (9)C8B—C7B—H7BB107.7
C18A—N2A—C17A112.47 (10)H7BA—C7B—H7BB107.1
C19A—N2A—H2AB107.7C9B—C8B—C7B110.77 (13)
C18A—N2A—H2AB107.7C9B—C8B—H8BA109.5
C17A—N2A—H2AB107.7C7B—C8B—H8BA109.5
C2A—C1A—C6A120.33 (11)C9B—C8B—H8BB109.5
C2A—C1A—N1A122.10 (11)C7B—C8B—H8BB109.5
C6A—C1A—N1A117.57 (11)H8BA—C8B—H8BB108.1
C3A—C2A—C1A119.05 (11)C10B—C9B—C14B118.76 (13)
C3A—C2A—H2AA120.5C10B—C9B—C8B122.75 (12)
C1A—C2A—H2AA120.5C14B—C9B—C8B118.35 (11)
C4A—C3A—C2A122.16 (11)C11B—C10B—C9B120.80 (13)
C4A—C3A—Cl1118.28 (10)C11B—C10B—H10B119.6
C2A—C3A—Cl1119.53 (10)C9B—C10B—H10B119.6
C3A—C4A—C5A117.92 (11)C12B—C11B—C10B119.94 (12)
C3A—C4A—H4AA121.0C12B—C11B—H11B120.0
C5A—C4A—H4AA121.0C10B—C11B—H11B120.0
C6A—C5A—C4A121.75 (12)C11B—C12B—C13B120.47 (13)
C6A—C5A—H5AA119.1C11B—C12B—H12B119.8
C4A—C5A—H5AA119.1C13B—C12B—H12B119.8
C5A—C6A—C1A118.74 (11)C12B—C13B—C14B119.50 (12)
C5A—C6A—C7A122.46 (11)C12B—C13B—H13B120.2
C1A—C6A—C7A118.80 (11)C14B—C13B—H13B120.2
C6A—C7A—C8A112.37 (12)C13B—C14B—C9B120.51 (11)
C6A—C7A—H7AA109.1C13B—C14B—N1B122.00 (11)
C8A—C7A—H7AA109.1C9B—C14B—N1B117.48 (11)
C6A—C7A—H7AB109.1N1B—C15B—C16B111.24 (9)
C8A—C7A—H7AB109.1N1B—C15B—H15C109.4
H7AA—C7A—H7AB107.9C16B—C15B—H15C109.4
C9A—C8A—C7A118.47 (11)N1B—C15B—H15D109.4
C9A—C8A—H8AA107.7C16B—C15B—H15D109.4
C7A—C8A—H8AA107.7H15C—C15B—H15D108.0
C9A—C8A—H8AB107.7C17B—C16B—C15B115.30 (10)
C7A—C8A—H8AB107.7C17B—C16B—H16C108.4
H8AA—C8A—H8AB107.1C15B—C16B—H16C108.5
C10A—C9A—C14A117.66 (12)C17B—C16B—H16D108.5
C10A—C9A—C8A115.25 (12)C15B—C16B—H16D108.4
C14A—C9A—C8A127.09 (12)H16C—C16B—H16D107.5
C11A—C10A—C9A122.66 (13)N2B—C17B—C16B114.80 (10)
C11A—C10A—H10A118.7N2B—C17B—H17C108.6
C9A—C10A—H10A118.7C16B—C17B—H17C108.6
C12A—C11A—C10A119.06 (12)N2B—C17B—H17D108.6
C12A—C11A—H11A120.5C16B—C17B—H17D108.6
C10A—C11A—H11A120.5H17C—C17B—H17D107.5
C11A—C12A—C13A119.82 (13)N2B—C18B—H18D109.5
C11A—C12A—H12A120.1N2B—C18B—H18E109.5
C13A—C12A—H12A120.1H18D—C18B—H18E109.5
C12A—C13A—C14A121.31 (12)N2B—C18B—H18F109.5
C12A—C13A—H13A119.3H18D—C18B—H18F109.5
C14A—C13A—H13A119.3H18E—C18B—H18F109.5
C13A—C14A—C9A119.45 (11)N2B—C19B—H19D109.5
C13A—C14A—N1A119.22 (11)N2B—C19B—H19E109.5
C9A—C14A—N1A121.33 (11)H19D—C19B—H19E109.5
N1A—C15A—C16A111.90 (10)N2B—C19B—H19F109.5
N1A—C15A—H15A109.2H19D—C19B—H19F109.5
C16A—C15A—H15A109.2H19E—C19B—H19F109.5
N1A—C15A—H15B109.2O21C—N2C—O22C123.02 (10)
C16A—C15A—H15B109.2O21C—N2C—C2C118.88 (10)
H15A—C15A—H15B107.9O22C—N2C—C2C118.01 (10)
C17A—C16A—C15A110.88 (10)O42C—N4C—O41C123.09 (11)
C17A—C16A—H16A109.5O42C—N4C—C4C118.58 (11)
C15A—C16A—H16A109.5O41C—N4C—C4C118.33 (11)
C17A—C16A—H16B109.5O61C—N6C—O62C121.82 (11)
C15A—C16A—H16B109.5O61C—N6C—C6C118.33 (11)
H16A—C16A—H16B108.1O62C—N6C—C6C119.83 (10)
N2A—C17A—C16A113.17 (10)O1C—C1C—C2C122.71 (10)
N2A—C17A—H17A108.9O1C—C1C—C6C125.28 (11)
C16A—C17A—H17A108.9C2C—C1C—C6C111.96 (10)
N2A—C17A—H17B108.9C3C—C2C—C1C124.71 (11)
C16A—C17A—H17B108.9C3C—C2C—N2C116.39 (10)
H17A—C17A—H17B107.8C1C—C2C—N2C118.89 (10)
N2A—C18A—H18A109.5C2C—C3C—C4C118.73 (11)
N2A—C18A—H18B109.5C2C—C3C—H3CA120.6
H18A—C18A—H18B109.5C4C—C3C—H3CA120.6
N2A—C18A—H18C109.5C5C—C4C—C3C121.31 (11)
H18A—C18A—H18C109.5C5C—C4C—N4C119.49 (11)
H18B—C18A—H18C109.5C3C—C4C—N4C119.14 (11)
N2A—C19A—H19A109.5C6C—C5C—C4C119.64 (11)
N2A—C19A—H19B109.5C6C—C5C—H5CA120.2
H19A—C19A—H19B109.5C4C—C5C—H5CA120.2
N2A—C19A—H19C109.5C5C—C6C—N6C116.65 (10)
H19A—C19A—H19C109.5C5C—C6C—C1C123.51 (11)
H19B—C19A—H19C109.5N6C—C6C—C1C119.84 (10)
C1B—N1B—C14B113.91 (9)O22D—N2D—O21D121.40 (10)
C1B—N1B—C15B116.48 (9)O22D—N2D—C2D118.52 (10)
C14B—N1B—C15B116.06 (9)O21D—N2D—C2D120.08 (10)
C18B—N2B—C19B110.68 (11)O42D—N4D—O41D123.15 (11)
C18B—N2B—C17B112.88 (10)O42D—N4D—C4D118.23 (11)
C19B—N2B—C17B109.41 (10)O41D—N4D—C4D118.62 (11)
C18B—N2B—H2BB107.9O62D—N6D—O61D123.40 (12)
C19B—N2B—H2BB107.9O62D—N6D—C6D118.39 (11)
C17B—N2B—H2BB107.9O61D—N6D—C6D118.16 (11)
C2B—C1B—C6B119.35 (11)O1D—C1D—C6D122.60 (11)
C2B—C1B—N1B119.55 (10)O1D—C1D—C2D126.13 (11)
C6B—C1B—N1B121.08 (11)C6D—C1D—C2D111.22 (10)
C3B—C2B—C1B120.54 (12)C3D—C2D—N2D116.41 (10)
C3B—C2B—H2BA119.7C3D—C2D—C1D123.81 (10)
C1B—C2B—H2BA119.7N2D—C2D—C1D119.79 (10)
C4B—C3B—C2B121.28 (13)C2D—C3D—C4D119.71 (11)
C4B—C3B—Cl2119.96 (11)C2D—C3D—H3DA120.1
C2B—C3B—Cl2118.74 (11)C4D—C3D—H3DA120.1
C5B—C4B—C3B117.97 (13)C3D—C4D—C5D121.16 (11)
C5B—C4B—H4BA121.0C3D—C4D—N4D119.45 (11)
C3B—C4B—H4BA121.0C5D—C4D—N4D119.37 (11)
C4B—C5B—C6B123.43 (13)C6D—C5D—C4D118.51 (11)
C4B—C5B—H5BA118.3C6D—C5D—H5DA120.7
C6B—C5B—H5BA118.3C4D—C5D—H5DA120.7
C5B—C6B—C1B117.41 (13)C5D—C6D—C1D125.15 (11)
C5B—C6B—C7B116.14 (12)C5D—C6D—N6D117.09 (11)
C1B—C6B—C7B126.43 (12)C1D—C6D—N6D117.76 (10)
C14A—N1A—C1A—C2A107.63 (13)C12B—C13B—C14B—N1B177.79 (11)
C15A—N1A—C1A—C2A33.30 (16)C10B—C9B—C14B—C13B1.22 (19)
C14A—N1A—C1A—C6A72.36 (14)C8B—C9B—C14B—C13B176.97 (12)
C15A—N1A—C1A—C6A146.71 (11)C10B—C9B—C14B—N1B178.02 (11)
C6A—C1A—C2A—C3A1.34 (18)C8B—C9B—C14B—N1B2.26 (18)
N1A—C1A—C2A—C3A178.65 (11)C1B—N1B—C14B—C13B102.50 (13)
C1A—C2A—C3A—C4A0.64 (19)C15B—N1B—C14B—C13B36.93 (16)
C1A—C2A—C3A—Cl1178.58 (9)C1B—N1B—C14B—C9B76.72 (14)
C2A—C3A—C4A—C5A1.07 (18)C15B—N1B—C14B—C9B143.84 (12)
Cl1—C3A—C4A—C5A179.03 (9)C1B—N1B—C15B—C16B165.18 (10)
C3A—C4A—C5A—C6A0.48 (19)C14B—N1B—C15B—C16B56.43 (14)
C4A—C5A—C6A—C1A2.38 (19)N1B—C15B—C16B—C17B53.28 (14)
C4A—C5A—C6A—C7A177.53 (12)C18B—N2B—C17B—C16B54.25 (14)
C2A—C1A—C6A—C5A2.80 (18)C19B—N2B—C17B—C16B177.97 (11)
N1A—C1A—C6A—C5A177.19 (11)C15B—C16B—C17B—N2B59.81 (14)
C2A—C1A—C6A—C7A177.11 (11)O1C—C1C—C2C—C3C172.94 (12)
N1A—C1A—C6A—C7A2.90 (17)C6C—C1C—C2C—C3C4.51 (17)
C5A—C6A—C7A—C8A108.32 (14)O1C—C1C—C2C—N2C8.32 (18)
C1A—C6A—C7A—C8A71.77 (15)C6C—C1C—C2C—N2C174.22 (10)
C6A—C7A—C8A—C9A53.41 (17)O21C—N2C—C2C—C3C146.36 (12)
C7A—C8A—C9A—C10A178.17 (13)O22C—N2C—C2C—C3C30.17 (17)
C7A—C8A—C9A—C14A1.9 (2)O21C—N2C—C2C—C1C32.47 (17)
C14A—C9A—C10A—C11A1.1 (2)O22C—N2C—C2C—C1C151.00 (12)
C8A—C9A—C10A—C11A178.89 (13)C1C—C2C—C3C—C4C2.84 (19)
C9A—C10A—C11A—C12A1.9 (2)N2C—C2C—C3C—C4C175.92 (11)
C10A—C11A—C12A—C13A0.9 (2)C2C—C3C—C4C—C5C0.02 (18)
C11A—C12A—C13A—C14A0.7 (2)C2C—C3C—C4C—N4C177.33 (11)
C12A—C13A—C14A—C9A1.53 (19)O42C—N4C—C4C—C5C4.18 (18)
C12A—C13A—C14A—N1A179.06 (11)O41C—N4C—C4C—C5C176.14 (11)
C10A—C9A—C14A—C13A0.63 (18)O42C—N4C—C4C—C3C178.43 (11)
C8A—C9A—C14A—C13A179.43 (13)O41C—N4C—C4C—C3C1.26 (17)
C10A—C9A—C14A—N1A179.98 (12)C3C—C4C—C5C—C6C0.60 (18)
C8A—C9A—C14A—N1A0.0 (2)N4C—C4C—C5C—C6C177.94 (11)
C1A—N1A—C14A—C13A119.29 (12)C4C—C5C—C6C—N6C178.20 (11)
C15A—N1A—C14A—C13A21.67 (16)C4C—C5C—C6C—C1C1.51 (19)
C1A—N1A—C14A—C9A60.10 (15)O61C—N6C—C6C—C5C10.99 (18)
C15A—N1A—C14A—C9A158.94 (11)O62C—N6C—C6C—C5C167.41 (12)
C1A—N1A—C15A—C16A59.19 (14)O61C—N6C—C6C—C1C169.29 (13)
C14A—N1A—C15A—C16A160.59 (10)O62C—N6C—C6C—C1C12.31 (18)
N1A—C15A—C16A—C17A63.99 (13)O1C—C1C—C6C—C5C173.58 (12)
C19A—N2A—C17A—C16A178.29 (10)C2C—C1C—C6C—C5C3.79 (17)
C18A—N2A—C17A—C16A54.17 (13)O1C—C1C—C6C—N6C6.71 (19)
C15A—C16A—C17A—N2A168.79 (10)C2C—C1C—C6C—N6C175.92 (10)
C14B—N1B—C1B—C2B122.02 (12)O22D—N2D—C2D—C3D0.77 (16)
C15B—N1B—C1B—C2B17.24 (16)O21D—N2D—C2D—C3D179.14 (12)
C14B—N1B—C1B—C6B56.77 (16)O22D—N2D—C2D—C1D179.04 (11)
C15B—N1B—C1B—C6B163.97 (11)O21D—N2D—C2D—C1D1.04 (17)
C6B—C1B—C2B—C3B1.29 (18)O1D—C1D—C2D—C3D171.41 (12)
N1B—C1B—C2B—C3B177.51 (11)C6D—C1D—C2D—C3D6.16 (16)
C1B—C2B—C3B—C4B0.2 (2)O1D—C1D—C2D—N2D8.79 (18)
C1B—C2B—C3B—Cl2178.11 (9)C6D—C1D—C2D—N2D173.63 (10)
C2B—C3B—C4B—C5B0.6 (2)N2D—C2D—C3D—C4D178.30 (11)
Cl2—C3B—C4B—C5B178.84 (10)C1D—C2D—C3D—C4D1.50 (18)
C3B—C4B—C5B—C6B0.2 (2)C2D—C3D—C4D—C5D2.70 (18)
C4B—C5B—C6B—C1B0.9 (2)C2D—C3D—C4D—N4D178.33 (11)
C4B—C5B—C6B—C7B177.65 (13)O42D—N4D—C4D—C3D174.21 (11)
C2B—C1B—C6B—C5B1.62 (18)O41D—N4D—C4D—C3D5.20 (17)
N1B—C1B—C6B—C5B177.17 (11)O42D—N4D—C4D—C5D6.80 (17)
C2B—C1B—C6B—C7B176.77 (13)O41D—N4D—C4D—C5D173.79 (12)
N1B—C1B—C6B—C7B4.4 (2)C3D—C4D—C5D—C6D1.40 (19)
C5B—C6B—C7B—C8B179.37 (13)N4D—C4D—C5D—C6D179.63 (11)
C1B—C6B—C7B—C8B2.2 (2)C4D—C5D—C6D—C1D4.27 (19)
C6B—C7B—C8B—C9B56.27 (17)C4D—C5D—C6D—N6D176.05 (11)
C7B—C8B—C9B—C10B105.22 (15)O1D—C1D—C6D—C5D170.03 (12)
C7B—C8B—C9B—C14B70.35 (16)C2D—C1D—C6D—C5D7.64 (17)
C14B—C9B—C10B—C11B0.6 (2)O1D—C1D—C6D—N6D9.64 (18)
C8B—C9B—C10B—C11B176.18 (14)C2D—C1D—C6D—N6D172.68 (10)
C9B—C10B—C11B—C12B0.2 (2)O62D—N6D—C6D—C5D146.57 (13)
C10B—C11B—C12B—C13B0.4 (2)O61D—N6D—C6D—C5D31.08 (19)
C11B—C12B—C13B—C14B0.99 (19)O62D—N6D—C6D—C1D33.73 (18)
C12B—C13B—C14B—C9B1.41 (19)O61D—N6D—C6D—C1D148.62 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···O1D0.931.852.7000 (13)151
N2A—H2AB···O21D0.932.232.8982 (14)128
N2B—H2BB···O1C0.931.922.6970 (13)140
N2B—H2BB···O62C0.932.363.0657 (15)133
C12A—H12A···Cg7i0.952.833.656 (4)145
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H24ClN2+·C6H2N3O7
Mr543.96
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)11.2252 (3), 13.1514 (3), 17.2787 (4)
α, β, γ (°)90.9414 (19), 91.1253 (19), 100.4446 (19)
V3)2507.55 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.47 × 0.41 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.918, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
32779, 16481, 10873
Rint0.023
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 0.98
No. of reflections16481
No. of parameters689
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.48

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···O1D0.931.852.7000 (13)150.6
N2A—H2AB···O21D0.932.232.8982 (14)128.4
N2B—H2BB···O1C0.931.922.6970 (13)139.6
N2B—H2BB···O62C0.932.363.0657 (15)133.0
C12A—H12A···Cg7i0.952.833.656 (4)145
Symmetry code: (i) x, y1, z.
π-π hydrogen-bond geometry (Å) top
Cg···CgD···A
Cg1···Cg14i3.838 (8)
Cg7···Cg13ii3.473 (5)
Cg13···Cg14i3.590 (5)
Symmetry codes: (i) x, y, z; (ii) 1-x, y, z; Cg1, Cg7, Cg13, Cg14 are the centroids of the C1A–C6A, C1B–C6B, C1C–C6C and C1D–C6D rings.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAlbert, U., Aguglia, E., Maina, G. & Bogetto, F. (2002). J. Clin. Psychiatry, 63, 1004–1009.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBecke, A. D. (1988). Phys. Rev. A, 38, 3098–3100.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBindya, S., Wong, W.-T., Ashok, M. A., Yathirajan, H. S. & Rathore, R. S. (2007). Acta Cryst. C63, o546–o548.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCassano, G. B., Petracca, A., Perugi, G., Nisita, C., Musetti, L., Mengali, F. & McNair, D. M. (1988). J. Affect. Disord. 14, 123–127.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDaley, E., Wilkie, D., Loesch, A., Hargreaves, I. P., Kendall, D. A., Pilkington, G. J. & Bates, T. E. (2005). Biochem. Biophys. Res. Commun. 328, 623–632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGuimaraes, F. S., Zuardi, A. W. & Graeff, F. G. (1987). J. Psychopharmacol. 1, 184–192.  CrossRef CAS PubMed Google Scholar
First citationHallberg, A., Hintermeister, N. M., Martin, A. R., Bates, R. B. & Ortega, R. B. (1984). Acta Cryst. C40, 2110–2112.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Bindya, S., Ashok, M. A., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPost, M. L. & Horn, A. S. (1977). Acta Cryst. B33, 2590–2595.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975). Acta Cryst. B31, 1008–1013.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO LLC, Holland, MI, USA, available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, M. T., Ashok, M. A., Yathirajan, H. S., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o4919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Ashok, M. A., Narayana Achar, B. & Bolte, M. (2007). Acta Cryst. E63, o1691–o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds