organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-(2-chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 January 2010; accepted 12 January 2010; online 16 January 2010)

In the title compound, C8H5Br3ClNO, the conformation of the N—H bond is syn to the 2-chloro substituent in the benzene ring. There are no classical inter­molecular hydrogen bonds, but intra­molecular N—H⋯Br and N—H⋯Cl contacts occur.

Related literature

For preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For background to our studies on the effect of the ring and the side-chain substituents on the crystal structures of N-aromatic amides, see: Gowda et al. (2007[Gowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.], 2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242.]). For the conformations of other amides, see: Brown (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5Br3ClNO

  • Mr = 406.31

  • Orthorhombic, P n a 21

  • a = 9.1947 (6) Å

  • b = 12.9645 (7) Å

  • c = 9.5213 (6) Å

  • V = 1134.98 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.86 mm−1

  • T = 299 K

  • 0.40 × 0.40 × 0.34 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.098, Tmax = 0.120

  • 4524 measured reflections

  • 1645 independent reflections

  • 1491 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.066

  • S = 1.07

  • 1645 reflections

  • 131 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 416 Friedel pairs

  • Flack parameter: 0.049 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br1 0.85 (3) 2.78 (8) 3.155 (6) 109 (6)
N1—H1N⋯Cl1 0.85 (3) 2.59 (7) 2.961 (5) 107 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of the ring and the side chain substituents on the crystal structures of N-aromatic amides (Gowda et al., 2007, 2009), in the present work, the structure of N-(2-chlorophenyl)2,2,2-tribromoacetamide (I) has been determined (Fig.1). The conformation of the N—H bond is syn to the 2-chloro substituent in the benzene ring, similar to that observed in N-(2-chlorophenyl)acetamide and N-(2-chlorophenyl)2,2,2-trichloroacetamide (Gowda et al., 2007), but contrary to the anti conformation observed between the N—H bond and the 3-methyl group in N-(3-methylphenyl)2,2,2-tribromoacetamide (Gowda et al., 2009). Further, the conformation of the N—H bond in the structure is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide (Gowda et al., 2009) and other amides (Brown, 1966; Gowda et al., 2007, 2009). The structure shows simultaneous N—H···Br and N—H···Cl intramolecular H-bonding. The packing diagram of the molecules is shown in Fig. 2.

Related literature top

For preparation of the title compound, see: Gowda et al. (2003). For background to our studies on the effect of the ring and the side-chain substituents on the crystal structures of N-aromatic amides, see: Gowda et al. (2007, 2009). For the conformations of other amides, see: Brown (1966).

Experimental top

The title compound was prepared from 2-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (3) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and the H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds shown as dashed lines.
2,2,2-Tribromo-N-(2-chlorophenyl)acetamide top
Crystal data top
C8H5Br3ClNOF(000) = 760
Mr = 406.31Dx = 2.378 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3507 reflections
a = 9.1947 (6) Åθ = 2.7–27.8°
b = 12.9645 (7) ŵ = 10.86 mm1
c = 9.5213 (6) ÅT = 299 K
V = 1134.98 (12) Å3Rod, colourless
Z = 40.40 × 0.40 × 0.34 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1645 independent reflections
Radiation source: fine-focus sealed tube1491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Rotation method data acquisition using ω and ϕ scans.θmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.098, Tmax = 0.120k = 1615
4524 measured reflectionsl = 116
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.2795P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max = 0.004
S = 1.07Δρmax = 0.77 e Å3
1645 reflectionsΔρmin = 0.56 e Å3
131 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0072 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 416 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.049 (18)
Crystal data top
C8H5Br3ClNOV = 1134.98 (12) Å3
Mr = 406.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.1947 (6) ŵ = 10.86 mm1
b = 12.9645 (7) ÅT = 299 K
c = 9.5213 (6) Å0.40 × 0.40 × 0.34 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1645 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1491 reflections with I > 2σ(I)
Tmin = 0.098, Tmax = 0.120Rint = 0.022
4524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.77 e Å3
S = 1.07Δρmin = 0.56 e Å3
1645 reflectionsAbsolute structure: Flack (1983), 416 Friedel pairs
131 parametersAbsolute structure parameter: 0.049 (18)
2 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56049 (8)0.28366 (5)1.15778 (8)0.0510 (2)
Br20.43394 (7)0.06152 (5)1.19542 (7)0.0483 (2)
Br30.70743 (6)0.09279 (5)1.00260 (9)0.0474 (2)
Cl10.5017 (2)0.46215 (12)0.7770 (2)0.0536 (5)
O10.3140 (5)0.1287 (4)0.9233 (5)0.0521 (13)
N10.4832 (5)0.2390 (4)0.8407 (6)0.0366 (12)
H1N0.554 (5)0.277 (4)0.866 (9)0.044*
C10.4101 (6)0.2689 (4)0.7164 (7)0.0311 (12)
C20.4114 (6)0.3709 (4)0.6763 (7)0.0360 (14)
C30.3435 (8)0.4026 (5)0.5526 (7)0.0475 (17)
H30.34760.47120.52440.057*
C40.2701 (8)0.3305 (6)0.4724 (8)0.0573 (19)
H40.22350.35060.39010.069*
C50.2660 (9)0.2308 (6)0.5136 (9)0.063 (2)
H50.21520.18290.45980.076*
C60.3362 (8)0.1987 (5)0.6347 (7)0.0471 (17)
H60.33350.12960.66070.057*
C70.4282 (6)0.1716 (4)0.9346 (6)0.0278 (12)
C80.5253 (6)0.1542 (4)1.0638 (7)0.0288 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0744 (5)0.0373 (3)0.0411 (4)0.0059 (3)0.0169 (4)0.0036 (3)
Br20.0476 (4)0.0509 (4)0.0464 (4)0.0058 (3)0.0000 (3)0.0248 (3)
Br30.0328 (3)0.0471 (4)0.0623 (5)0.0097 (3)0.0018 (3)0.0139 (4)
Cl10.0620 (10)0.0384 (8)0.0604 (12)0.0142 (8)0.0155 (9)0.0153 (8)
O10.047 (3)0.067 (3)0.043 (3)0.025 (2)0.009 (2)0.011 (3)
N10.040 (3)0.035 (3)0.035 (3)0.007 (2)0.008 (2)0.013 (3)
C10.035 (3)0.032 (3)0.026 (3)0.008 (2)0.000 (2)0.004 (2)
C20.032 (3)0.036 (3)0.040 (4)0.004 (2)0.004 (3)0.004 (3)
C30.057 (4)0.052 (4)0.033 (4)0.018 (3)0.004 (3)0.018 (3)
C40.074 (5)0.070 (5)0.028 (4)0.010 (4)0.017 (4)0.012 (4)
C50.092 (5)0.065 (5)0.033 (4)0.011 (4)0.020 (4)0.016 (4)
C60.068 (4)0.039 (3)0.034 (4)0.011 (3)0.005 (4)0.002 (3)
C70.028 (3)0.027 (3)0.029 (3)0.002 (2)0.000 (2)0.000 (2)
C80.032 (3)0.027 (3)0.027 (3)0.001 (2)0.001 (2)0.008 (2)
Geometric parameters (Å, º) top
Br1—C81.929 (6)C2—C31.395 (9)
Br2—C81.929 (6)C3—C41.383 (10)
Br3—C81.944 (6)C3—H30.9300
Cl1—C21.735 (7)C4—C51.351 (11)
O1—C71.193 (6)C4—H40.9300
N1—C71.349 (7)C5—C61.385 (10)
N1—C11.415 (8)C5—H50.9300
N1—H1N0.85 (3)C6—H60.9300
C1—C61.377 (9)C7—C81.537 (8)
C1—C21.376 (8)
C7—N1—C1123.6 (5)C4—C5—C6121.1 (7)
C7—N1—H1N118 (6)C4—C5—H5119.5
C1—N1—H1N116 (5)C6—C5—H5119.5
C6—C1—C2118.8 (6)C1—C6—C5120.1 (6)
C6—C1—N1121.7 (5)C1—C6—H6119.9
C2—C1—N1119.4 (6)C5—C6—H6119.9
C1—C2—C3120.9 (6)O1—C7—N1124.9 (6)
C1—C2—Cl1120.4 (5)O1—C7—C8121.0 (5)
C3—C2—Cl1118.7 (5)N1—C7—C8114.1 (4)
C4—C3—C2119.0 (6)C7—C8—Br1110.0 (4)
C4—C3—H3120.5C7—C8—Br2111.0 (4)
C2—C3—H3120.5Br1—C8—Br2108.3 (3)
C5—C4—C3120.0 (6)C7—C8—Br3108.7 (4)
C5—C4—H4120.0Br1—C8—Br3110.5 (3)
C3—C4—H4120.0Br2—C8—Br3108.3 (3)
C7—N1—C1—C641.6 (9)N1—C1—C6—C5179.9 (6)
C7—N1—C1—C2137.9 (6)C4—C5—C6—C10.9 (12)
C6—C1—C2—C32.1 (9)C1—N1—C7—O11.1 (9)
N1—C1—C2—C3178.4 (6)C1—N1—C7—C8177.9 (5)
C6—C1—C2—Cl1179.4 (5)O1—C7—C8—Br1121.3 (5)
N1—C1—C2—Cl10.1 (8)N1—C7—C8—Br157.7 (6)
C1—C2—C3—C42.2 (10)O1—C7—C8—Br21.5 (7)
Cl1—C2—C3—C4179.4 (5)N1—C7—C8—Br2177.5 (4)
C2—C3—C4—C50.7 (11)O1—C7—C8—Br3117.5 (5)
C3—C4—C5—C60.9 (12)N1—C7—C8—Br363.4 (5)
C2—C1—C6—C50.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.85 (3)2.78 (8)3.155 (6)109 (6)
N1—H1N···Cl10.85 (3)2.59 (7)2.961 (5)107 (5)

Experimental details

Crystal data
Chemical formulaC8H5Br3ClNO
Mr406.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)299
a, b, c (Å)9.1947 (6), 12.9645 (7), 9.5213 (6)
V3)1134.98 (12)
Z4
Radiation typeMo Kα
µ (mm1)10.86
Crystal size (mm)0.40 × 0.40 × 0.34
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.098, 0.120
No. of measured, independent and
observed [I > 2σ(I)] reflections
4524, 1645, 1491
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.07
No. of reflections1645
No. of parameters131
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.56
Absolute structureFlack (1983), 416 Friedel pairs
Absolute structure parameter0.049 (18)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.85 (3)2.78 (8)3.155 (6)109 (6)
N1—H1N···Cl10.85 (3)2.59 (7)2.961 (5)107 (5)
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2007). Acta Cryst. E63, o3267.  Web of Science CSD CrossRef IUCr Journals
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds