organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Butyl­quinine tetra­fluoro­borate

aLaboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (01UR1201), Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, Tunisia, bInstitut de Chimie des Substances Naturelles-CNRS, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France, and cChopinrode 8, 2717 BK Zoetermeer, The Netherlands
*Correspondence e-mail: bechirbenhassine@yahoo.fr

(Received 9 December 2009; accepted 21 December 2009; online 9 January 2010)

In the title salt (2S,4S,8R)-1-butyl-2-[(R)-(hydr­oxy)(6-methoxy­quinolin-4-yl)meth­yl]-8-vinyl­quinuclidin-1-ium tetra­fluoro­borate, C24H33N2O2+·BF4, the butyl substituent at the 1-position is in an equatorial conformation with respect to the unsubstituted six-membered ring and the four butyl C atoms are almost coplanar with the ring N and vinyl C atoms (r.m.s. deviation = 0.046 Å). In the crystal, the cations are linked by O—H⋯N hydrogen bonds. The F atoms of the tetra­fluoro­borate group are disordered over two sets of site with an occupancy raitio of 0.552 (8):0.448 (8).

Related literature

For the crystal structures of similar 1-butyl­quinine tetra­fluoro­borate derivatives, see: Dijkstra et al. (1989[Dijkstra, G. D. H., Kellogg, R. M., Wynberg, H., Svendsen, J. S., Marko, I. & Sharpless, K. B. (1989). J. Am. Chem. Soc. 111, 8069-8076.]); Samas et al. (2005[Samas, B., Blackburn, A. C. & Kreuchauf, K. C. (2005). Acta Cryst. E61, o3983-o3984.]). For applications of quinine salts, see: Thierry et al. (2001[Thierry, B., Plaquevent, J.-C. & Cahard, D. (2001). Tetrahedron Asymmetry, 12, 983-986.], 2003[Thierry, B., Plaquevent, J.-C. & Cahard, D. (2003). Tetrahedron Asymmetry, 14, 1671-1677.]). For graph-set notation, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431-507. New York: VCH.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C24H33N2O2+·BF4

  • Mr = 468.33

  • Orthorhombic, P 21 21 21

  • a = 8.041 (8) Å

  • b = 12.597 (12) Å

  • c = 22.91 (2) Å

  • V = 2321 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 120 K

  • 0.60 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa-APEX DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.982

  • 25415 measured reflections

  • 3968 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.156

  • S = 1.06

  • 3968 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N2i 0.84 1.95 2.787 (4) 174
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalBuilder (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The overall utility of asymmetric catalysts can be compared by examining three main criteria: 1) the variety of reactions that the catalyst can promote, 2) the availability of both enantiomeric antipodes of the catalyst at a reasonable price, and 3) the stability of the catalyst. Alkaloids and quaternary ammonium salt fulfill all of these criteria. They make them one of the most useful catalysts to date. Alkaloids can be transformed to quaternary ammonium salt in one or two steps. Chiral 1-butylquinine cation was reacted with BF4- leading to a new salt. The latter could serve as a chiral catalyst for different asymmetric reactions.

The X-ray structure shows that the boron atom presents statistically two types of tetrahedral environments: E1 and E2 with occupancy rates of 55.2% and 44.8%, respectively. The first environment (E1), which consists of F1A, F2A, F3A and F4, is strongly distorted as indicated by the B—F bond lengths varying from 1.324 (5) and 1.468 (5) Å and F—B—F scattering from 99.9 (8) and 123.3 (8)°. The second environment (E2), which consists of F1B, F2B, F3B and F4, is also very distorted as revealed by the B—F distance ranging from 1.298 (5) and 1.437 (5) Å and the F—B—F angles included between 95.5 (7) and 120.3 (8)°.

Regarding the cation, the quinine skeleton displays atomic parameters, which are comparable to those of the forty-two derivatives already deposited at the Cambridge Structural Database (Version 5.30, September 2009 update), Allen, 2002, Mogul, Version 1.1.3; Bruno et al., 2004). It commonly adopts the open conformation III described in solution by Dijkstra et al.,1989, and in which the butyl-substituted quinuclidine nitrogen, N1, turns away from the quinoline ring and is oriented in the same direction as the methoxy oxygen. The torsion angles, which best characterized the overall shape, C12—C11—C10—O1 and, O1—C10 —C1— C2, are -22.6 (4)° and 45.8 (3)°, respectively. The butyl substituent at N1 is in equatorial conformation with respect to the six-membered ring C3/C7—N1 and the four butyl atoms are almost coplanar with N1—C20/C23 (r.m.s. deviation of 0.046 Å), and parallel to the [001] direction.

In the crystal structure, molecules are mainly linked by intermolecular O—H···N hydrogen bonds into helical chains running along a crystallographic 21 axis at y=1/4 position in the a-axis direction with graph-set notation C(7) (Bernstein et al. (1994). The stability of the chains also benefits from the tilted superimposition of adjacent quinolin moieties with dihedral angle of 36.2 (4)° and shortest centroid distance of 4.162 (5) Å.

Related literature top

For the crystal structures of similar 1-butylquinine tetrafluoroborate derivatives, see: Dijkstra et al. (1989); Samas et al. (2005). For applications of quinine salts, see: Thierry et al. (2001, 2003). For graph-set notation, see: Bernstein et al. (1994). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Quinine and 1-bromobutane (1.1 equiv) were dissolved in acetonitrile and refluxed overnight. The reaction mixture was concentrated and 1-butylquinine bromide was purified to 95% being washed with ethyl acetate. The desired 1-Butylquinine tetrafluoroborate,[BQ]BF4, was then produced by anion exchange with NaBF4 (1.2 equiv) in biphasic CH2Cl2/H2O mixture. The reaction mixture was stirred for a further 24 h. The mixture was then extracted with CH2Cl2 and the organic phase was dried over MgSO4. The solvent evaporation method was used to grow [BQ]BF4 crystals in dichloromethane at room temperature. The product is a colorless single-crystal which is air stable (m.p.197- 199 °C).

Refinement top

All H atoms attached to C or O atoms were placed in calculated positions (C—H = 0.95–1.00 Å; O—H = 0.84 Å (hydroxyl)) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Caromatic or vinyl) or Uiso(H) =1.5Ueq(Cothers, O). 3007 Friedel opposites were merged

Structure description top

The overall utility of asymmetric catalysts can be compared by examining three main criteria: 1) the variety of reactions that the catalyst can promote, 2) the availability of both enantiomeric antipodes of the catalyst at a reasonable price, and 3) the stability of the catalyst. Alkaloids and quaternary ammonium salt fulfill all of these criteria. They make them one of the most useful catalysts to date. Alkaloids can be transformed to quaternary ammonium salt in one or two steps. Chiral 1-butylquinine cation was reacted with BF4- leading to a new salt. The latter could serve as a chiral catalyst for different asymmetric reactions.

The X-ray structure shows that the boron atom presents statistically two types of tetrahedral environments: E1 and E2 with occupancy rates of 55.2% and 44.8%, respectively. The first environment (E1), which consists of F1A, F2A, F3A and F4, is strongly distorted as indicated by the B—F bond lengths varying from 1.324 (5) and 1.468 (5) Å and F—B—F scattering from 99.9 (8) and 123.3 (8)°. The second environment (E2), which consists of F1B, F2B, F3B and F4, is also very distorted as revealed by the B—F distance ranging from 1.298 (5) and 1.437 (5) Å and the F—B—F angles included between 95.5 (7) and 120.3 (8)°.

Regarding the cation, the quinine skeleton displays atomic parameters, which are comparable to those of the forty-two derivatives already deposited at the Cambridge Structural Database (Version 5.30, September 2009 update), Allen, 2002, Mogul, Version 1.1.3; Bruno et al., 2004). It commonly adopts the open conformation III described in solution by Dijkstra et al.,1989, and in which the butyl-substituted quinuclidine nitrogen, N1, turns away from the quinoline ring and is oriented in the same direction as the methoxy oxygen. The torsion angles, which best characterized the overall shape, C12—C11—C10—O1 and, O1—C10 —C1— C2, are -22.6 (4)° and 45.8 (3)°, respectively. The butyl substituent at N1 is in equatorial conformation with respect to the six-membered ring C3/C7—N1 and the four butyl atoms are almost coplanar with N1—C20/C23 (r.m.s. deviation of 0.046 Å), and parallel to the [001] direction.

In the crystal structure, molecules are mainly linked by intermolecular O—H···N hydrogen bonds into helical chains running along a crystallographic 21 axis at y=1/4 position in the a-axis direction with graph-set notation C(7) (Bernstein et al. (1994). The stability of the chains also benefits from the tilted superimposition of adjacent quinolin moieties with dihedral angle of 36.2 (4)° and shortest centroid distance of 4.162 (5) Å.

For the crystal structures of similar 1-butylquinine tetrafluoroborate derivatives, see: Dijkstra et al. (1989); Samas et al. (2005). For applications of quinine salts, see: Thierry et al. (2001, 2003). For graph-set notation, see: Bernstein et al. (1994). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CrystalBuilder (Welter, 2006); molecular graphics: PLATON (Spek, 2009) and Mercury (Bruno et al., 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram drawing of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed along the a axis.
(2S,4S,8R)-1-butyl-2-[(R)-(hydroxy)(6- methoxyquinolin-4-yl)methyl]-8-vinylquinuclidin-1-ium tetrafluoroborate top
Crystal data top
C24H33N2O2+·BF4Dx = 1.340 Mg m3
Mr = 468.33Melting point: 198 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 312 reflections
a = 8.041 (8) Åθ = 2.4–23.5°
b = 12.597 (12) ŵ = 0.11 mm1
c = 22.91 (2) ÅT = 120 K
V = 2321 (4) Å3Block, colourless
Z = 40.60 × 0.20 × 0.15 mm
F(000) = 992
Data collection top
Bruker Kappa-APEX DUO
diffractometer
3968 independent reflections
Radiation source: sealed tube2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 8.3333 pixels mm-1θmax = 30.5°, θmin = 1.8°
φ and ω scansh = 611
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.885, Tmax = 0.982l = 3232
25415 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: difference Fourier map
wR(F2) = 0.156H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0531P)2 + 2.384P]
where P = (Fo2 + 2Fc2)/3
3968 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.38 e Å3
0 constraints
Crystal data top
C24H33N2O2+·BF4V = 2321 (4) Å3
Mr = 468.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.041 (8) ŵ = 0.11 mm1
b = 12.597 (12) ÅT = 120 K
c = 22.91 (2) Å0.60 × 0.20 × 0.15 mm
Data collection top
Bruker Kappa-APEX DUO
diffractometer
3968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2957 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.982Rint = 0.072
25415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
3968 reflectionsΔρmin = 0.38 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C230.6730 (6)0.0069 (3)0.38114 (15)0.0356 (10)
H23A0.61590.06180.38250.053*
H23B0.62740.05370.41130.053*
H23C0.79220.00370.38800.053*
O10.4684 (3)0.02693 (17)0.06488 (9)0.0199 (5)
H1O0.38090.05820.05460.030*
O20.7800 (4)0.42741 (19)0.21386 (10)0.0322 (7)
C91.1983 (7)0.2286 (4)0.0729 (2)0.0533 (13)
H9A1.14730.29660.07250.064*
H9B1.30720.21970.05770.064*
C220.6473 (6)0.0576 (3)0.32091 (13)0.0287 (8)
H22A0.52720.07010.31430.034*
H22B0.70480.12710.31950.034*
N20.6884 (4)0.3676 (2)0.02267 (11)0.0217 (6)
C100.5780 (4)0.1006 (2)0.09150 (12)0.0158 (6)
H100.52700.12710.12850.019*
N10.7366 (4)0.0274 (2)0.16071 (10)0.0166 (5)
C240.7511 (5)0.3433 (3)0.25445 (13)0.0256 (8)
H24A0.64050.31290.24770.038*
H24B0.75730.37110.29430.038*
H24C0.83570.28810.24920.038*
C170.7533 (5)0.4053 (2)0.15683 (14)0.0228 (7)
C160.6980 (5)0.3092 (2)0.13639 (13)0.0189 (6)
H160.67650.25310.16310.023*
C150.6724 (4)0.2928 (2)0.07579 (12)0.0162 (6)
C110.6174 (4)0.1949 (2)0.05190 (12)0.0167 (6)
C10.7426 (4)0.0434 (2)0.10566 (11)0.0153 (6)
H10.82810.09950.11290.018*
C20.8059 (5)0.0253 (3)0.05386 (13)0.0205 (7)
H2A0.73040.01680.02010.025*
H2B0.91810.00120.04200.025*
C30.8128 (5)0.1425 (2)0.07171 (14)0.0220 (7)
H30.84130.18730.03710.026*
C60.9446 (4)0.1570 (2)0.11938 (13)0.0198 (7)
H60.93250.23000.13590.024*
C81.1178 (5)0.1465 (3)0.09467 (14)0.0263 (8)
H81.17030.07890.09480.032*
C210.7152 (5)0.0141 (3)0.27310 (13)0.0249 (8)
H21A0.65340.08210.27280.030*
H21B0.83390.02980.28070.030*
C200.6969 (5)0.0408 (2)0.21390 (12)0.0200 (7)
H20A0.58110.06670.21020.024*
H20B0.77080.10370.21340.024*
C180.7836 (5)0.4904 (3)0.11797 (16)0.0280 (8)
H180.82100.55680.13250.034*
C190.7590 (5)0.4769 (2)0.05954 (15)0.0236 (7)
H190.77890.53440.03370.028*
C140.7041 (4)0.3780 (2)0.03679 (13)0.0186 (6)
C130.6389 (5)0.2759 (3)0.04317 (13)0.0221 (7)
H130.62830.26850.08430.027*
C120.6002 (4)0.1872 (3)0.00788 (12)0.0195 (7)
H120.56270.12290.02520.023*
C40.6443 (5)0.1761 (3)0.09637 (16)0.0286 (8)
H4A0.64400.25350.10390.034*
H4B0.55550.16020.06780.034*
C50.6115 (5)0.1157 (3)0.15346 (14)0.0231 (7)
H5A0.49770.08570.15290.028*
H5B0.61950.16520.18690.028*
C70.9085 (4)0.0766 (2)0.16817 (13)0.0183 (6)
H7A0.91480.11270.20650.022*
H7B0.99380.02000.16750.022*
B10.2102 (6)0.1749 (3)0.21354 (18)0.0298 (10)
F40.2425 (5)0.0825 (2)0.18461 (12)0.0708 (11)
F1A0.3521 (8)0.2072 (5)0.2369 (4)0.078 (3)0.552 (8)
F2A0.1287 (7)0.2640 (4)0.18703 (19)0.0410 (15)0.552 (8)
F3A0.0935 (13)0.1528 (5)0.2613 (3)0.085 (3)0.552 (8)
F1B0.3276 (11)0.2428 (5)0.1845 (4)0.066 (3)0.448 (8)
F2B0.0631 (9)0.1900 (7)0.1900 (3)0.056 (3)0.448 (8)
F3B0.2247 (13)0.1795 (5)0.2699 (3)0.049 (2)0.448 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C230.045 (3)0.045 (2)0.0171 (15)0.006 (2)0.0005 (16)0.0078 (14)
O10.0225 (14)0.0132 (10)0.0241 (11)0.0040 (10)0.0072 (10)0.0040 (8)
O20.0489 (19)0.0218 (12)0.0258 (12)0.0070 (12)0.0034 (12)0.0064 (9)
C90.034 (3)0.069 (3)0.058 (3)0.004 (3)0.003 (2)0.028 (3)
C220.039 (2)0.0311 (18)0.0162 (14)0.0057 (17)0.0041 (14)0.0043 (12)
N20.0248 (17)0.0199 (13)0.0202 (12)0.0009 (12)0.0044 (11)0.0079 (10)
C100.0197 (18)0.0124 (13)0.0151 (12)0.0009 (12)0.0003 (12)0.0043 (10)
N10.0216 (16)0.0138 (11)0.0144 (11)0.0030 (11)0.0001 (10)0.0030 (9)
C240.027 (2)0.0300 (18)0.0200 (14)0.0028 (15)0.0006 (14)0.0055 (12)
C170.029 (2)0.0153 (14)0.0237 (15)0.0020 (14)0.0013 (14)0.0024 (11)
C160.0259 (19)0.0134 (13)0.0175 (13)0.0022 (13)0.0005 (12)0.0025 (10)
C150.0202 (18)0.0123 (13)0.0159 (13)0.0011 (12)0.0007 (12)0.0029 (10)
C110.0194 (18)0.0142 (14)0.0166 (13)0.0017 (13)0.0007 (12)0.0032 (10)
C10.0217 (18)0.0132 (13)0.0111 (11)0.0020 (12)0.0001 (11)0.0037 (9)
C20.0266 (19)0.0202 (14)0.0148 (13)0.0042 (14)0.0012 (12)0.0007 (11)
C30.027 (2)0.0144 (14)0.0244 (15)0.0011 (14)0.0011 (14)0.0042 (11)
C60.0255 (19)0.0110 (13)0.0228 (14)0.0019 (12)0.0020 (14)0.0001 (11)
C80.028 (2)0.0289 (17)0.0221 (15)0.0003 (16)0.0015 (14)0.0016 (13)
C210.035 (2)0.0229 (16)0.0172 (14)0.0070 (15)0.0005 (14)0.0069 (11)
C200.0296 (19)0.0160 (14)0.0144 (12)0.0069 (13)0.0020 (13)0.0019 (10)
C180.037 (2)0.0119 (14)0.0348 (18)0.0024 (14)0.0053 (17)0.0017 (12)
C190.028 (2)0.0117 (14)0.0311 (16)0.0004 (14)0.0078 (15)0.0041 (11)
C140.0201 (18)0.0139 (13)0.0218 (14)0.0017 (13)0.0041 (12)0.0053 (10)
C130.025 (2)0.0260 (16)0.0153 (13)0.0010 (14)0.0009 (13)0.0078 (12)
C120.0227 (19)0.0191 (14)0.0167 (13)0.0005 (13)0.0007 (12)0.0022 (11)
C40.031 (2)0.0164 (15)0.0379 (19)0.0060 (14)0.0064 (16)0.0028 (13)
C50.027 (2)0.0158 (14)0.0269 (15)0.0038 (14)0.0017 (14)0.0062 (12)
C70.0183 (18)0.0165 (14)0.0201 (14)0.0031 (13)0.0019 (12)0.0018 (11)
B10.041 (3)0.0181 (17)0.0301 (19)0.0058 (18)0.0086 (19)0.0032 (14)
F40.108 (3)0.0438 (15)0.0606 (17)0.0434 (18)0.0418 (18)0.0335 (13)
F1A0.046 (4)0.046 (3)0.142 (8)0.018 (3)0.054 (5)0.054 (5)
F2A0.059 (4)0.025 (2)0.039 (2)0.007 (2)0.009 (2)0.0031 (17)
F3A0.120 (8)0.058 (4)0.077 (5)0.052 (5)0.068 (5)0.036 (3)
F1B0.069 (6)0.022 (3)0.106 (7)0.026 (3)0.051 (5)0.020 (3)
F2B0.037 (4)0.084 (7)0.046 (3)0.027 (4)0.006 (3)0.008 (4)
F3B0.077 (7)0.043 (3)0.026 (3)0.014 (4)0.013 (3)0.015 (2)
Geometric parameters (Å, º) top
C23—C221.535 (5)C1—C21.555 (4)
C23—H23A0.9800C1—H11.0000
C23—H23B0.9800C2—C31.533 (5)
C23—H23C0.9800C2—H2A0.9900
O1—C101.417 (4)C2—H2B0.9900
O1—H1O0.8400C3—C41.528 (6)
O2—C171.353 (4)C3—C61.533 (5)
O2—C241.429 (4)C3—H31.0000
C9—C81.317 (6)C6—C81.509 (5)
C9—H9A0.9500C6—C71.536 (4)
C9—H9B0.9500C6—H61.0000
C22—C211.522 (5)C8—H80.9500
C22—H22A0.9900C21—C201.530 (4)
C22—H22B0.9900C21—H21A0.9900
N2—C131.310 (5)C21—H21B0.9900
N2—C141.374 (4)C20—H20A0.9900
C10—C111.528 (4)C20—H20B0.9900
C10—C11.541 (5)C18—C191.364 (5)
C10—H101.0000C18—H180.9500
N1—C51.509 (4)C19—C141.421 (5)
N1—C71.524 (4)C19—H190.9500
N1—C201.525 (4)C13—C121.414 (4)
N1—C11.545 (4)C13—H130.9500
C24—H24A0.9800C12—H120.9500
C24—H24B0.9800C4—C51.536 (5)
C24—H24C0.9800C4—H4A0.9900
C17—C161.372 (4)C4—H4B0.9900
C17—C181.415 (5)C5—H5A0.9900
C16—C151.419 (4)C5—H5B0.9900
C16—H160.9500C7—H7A0.9900
C15—C141.419 (4)C7—H7B0.9900
C15—C111.421 (4)B1—F41.364 (5)
C11—C121.380 (4)
C17—O2—C24116.7 (3)C8—C6—C7112.9 (3)
C8—C9—H9A120.0C3—C6—C7108.0 (3)
C8—C9—H9B120.0C8—C6—H6108.2
H9A—C9—H9B120.0C3—C6—H6108.2
C21—C22—C23110.6 (3)C7—C6—H6108.2
C21—C22—H22A109.5C9—C8—C6121.8 (4)
C23—C22—H22A109.5C9—C8—H8119.1
C21—C22—H22B109.5C6—C8—H8119.1
C23—C22—H22B109.5C22—C21—C20109.6 (3)
H22A—C22—H22B108.1C22—C21—H21A109.8
C13—N2—C14117.8 (3)C20—C21—H21A109.8
O1—C10—C11112.5 (2)C22—C21—H21B109.8
O1—C10—C1108.6 (2)C20—C21—H21B109.8
C11—C10—C1108.1 (3)H21A—C21—H21B108.2
O1—C10—H10109.2N1—C20—C21115.7 (2)
C11—C10—H10109.2N1—C20—H20A108.4
C1—C10—H10109.2C21—C20—H20A108.4
C5—N1—C7108.5 (2)N1—C20—H20B108.4
C5—N1—C20111.3 (3)C21—C20—H20B108.4
C7—N1—C20109.2 (2)H20A—C20—H20B107.4
C5—N1—C1110.9 (2)C19—C18—C17119.9 (3)
C7—N1—C1107.4 (2)C19—C18—H18120.1
C20—N1—C1109.5 (2)C17—C18—H18120.1
O2—C17—C16124.3 (3)C18—C19—C14121.0 (3)
O2—C17—C18115.1 (3)C18—C19—H19119.5
C16—C17—C18120.6 (3)C14—C19—H19119.5
C17—C16—C15120.6 (3)N2—C14—C15122.4 (3)
C17—C16—H16119.7N2—C14—C19118.4 (3)
C15—C16—H16119.7C15—C14—C19119.2 (3)
C16—C15—C14118.7 (3)N2—C13—C12124.0 (3)
C16—C15—C11123.3 (3)N2—C13—H13118.0
C14—C15—C11118.0 (3)C12—C13—H13118.0
C12—C11—C15118.3 (3)C11—C12—C13119.4 (3)
C12—C11—C10120.9 (3)C11—C12—H12120.3
C15—C11—C10120.7 (3)C13—C12—H12120.3
C10—C1—N1114.5 (3)C3—C4—C5109.3 (3)
C10—C1—C2112.4 (2)C3—C4—H4A109.8
N1—C1—C2108.2 (2)C5—C4—H4A109.8
C10—C1—H1107.1C3—C4—H4B109.8
N1—C1—H1107.1C5—C4—H4B109.8
C2—C1—H1107.1H4A—C4—H4B108.3
C3—C2—C1110.2 (3)N1—C5—C4110.2 (3)
C3—C2—H2A109.6N1—C5—H5A109.6
C1—C2—H2A109.6C4—C5—H5A109.6
C3—C2—H2B109.6N1—C5—H5B109.6
C1—C2—H2B109.6C4—C5—H5B109.6
H2A—C2—H2B108.1H5A—C5—H5B108.1
C4—C3—C6108.5 (3)N1—C7—C6111.0 (3)
C4—C3—C2109.4 (3)N1—C7—H7A109.4
C6—C3—C2109.3 (3)C6—C7—H7A109.4
C4—C3—H3109.9N1—C7—H7B109.4
C6—C3—H3109.9C6—C7—H7B109.4
C2—C3—H3109.9H7A—C7—H7B108.0
C8—C6—C3111.1 (3)
C24—O2—C17—C161.4 (6)C7—C6—C8—C9150.3 (4)
C24—O2—C17—C18179.9 (3)C23—C22—C21—C20176.9 (3)
O2—C17—C16—C15179.7 (4)C5—N1—C20—C2166.9 (4)
C18—C17—C16—C151.0 (6)C7—N1—C20—C2152.9 (4)
C17—C16—C15—C140.4 (5)C1—N1—C20—C21170.2 (3)
C17—C16—C15—C11179.2 (3)C22—C21—C20—N1171.6 (3)
C16—C15—C11—C12178.6 (3)O2—C17—C18—C19179.4 (4)
C14—C15—C11—C121.0 (5)C16—C17—C18—C190.5 (6)
C16—C15—C11—C101.5 (5)C17—C18—C19—C140.4 (6)
C14—C15—C11—C10178.9 (3)C13—N2—C14—C151.4 (5)
O1—C10—C11—C1222.6 (4)C13—N2—C14—C19179.5 (3)
C1—C10—C11—C1297.2 (4)C16—C15—C14—N2177.6 (3)
O1—C10—C11—C15157.3 (3)C11—C15—C14—N22.1 (5)
C1—C10—C11—C1582.9 (4)C16—C15—C14—C190.5 (5)
O1—C10—C1—N178.1 (3)C11—C15—C14—C19179.9 (3)
C11—C10—C1—N1159.6 (2)C18—C19—C14—N2177.2 (4)
O1—C10—C1—C245.8 (3)C18—C19—C14—C150.9 (6)
C11—C10—C1—C276.4 (3)C14—N2—C13—C120.2 (6)
C5—N1—C1—C1062.0 (3)C15—C11—C12—C130.5 (5)
C7—N1—C1—C10179.7 (2)C10—C11—C12—C13179.6 (3)
C20—N1—C1—C1061.2 (3)N2—C13—C12—C111.2 (6)
C5—N1—C1—C264.1 (3)C6—C3—C4—C553.4 (3)
C7—N1—C1—C254.2 (3)C2—C3—C4—C565.7 (3)
C20—N1—C1—C2172.7 (3)C7—N1—C5—C465.4 (3)
C10—C1—C2—C3117.9 (3)C20—N1—C5—C4174.4 (3)
N1—C1—C2—C39.5 (4)C1—N1—C5—C452.2 (3)
C1—C2—C3—C453.0 (4)C3—C4—C5—N111.5 (4)
C1—C2—C3—C665.7 (4)C5—N1—C7—C651.3 (3)
C4—C3—C6—C8168.6 (3)C20—N1—C7—C6172.8 (2)
C2—C3—C6—C872.2 (3)C1—N1—C7—C668.5 (3)
C4—C3—C6—C767.0 (3)C8—C6—C7—N1136.1 (3)
C2—C3—C6—C752.2 (4)C3—C6—C7—N112.8 (3)
C3—C6—C8—C988.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i0.841.952.787 (4)174
Symmetry code: (i) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC24H33N2O2+·BF4
Mr468.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)8.041 (8), 12.597 (12), 22.91 (2)
V3)2321 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa-APEX DUO
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.885, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
25415, 3968, 2957
Rint0.072
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.156, 1.06
No. of reflections3968
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CrystalBuilder (Welter, 2006), PLATON (Spek, 2009) and Mercury (Bruno et al., 2004), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N2i0.841.952.787 (4)173.9
Symmetry code: (i) x1/2, y+1/2, z.
 

Acknowledgements

The authors thank the DGRSRT (Direction Générale de la Recherche Scientifique et de la Rénovation Technologique) of the Tunisian Ministry of Higher Education and Scientific Research and Technology for financial support of this research.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 431–507. New York: VCH.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDijkstra, G. D. H., Kellogg, R. M., Wynberg, H., Svendsen, J. S., Marko, I. & Sharpless, K. B. (1989). J. Am. Chem. Soc. 111, 8069–8076.  CSD CrossRef CAS Web of Science Google Scholar
First citationSamas, B., Blackburn, A. C. & Kreuchauf, K. C. (2005). Acta Cryst. E61, o3983–o3984.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThierry, B., Plaquevent, J.-C. & Cahard, D. (2001). Tetrahedron Asymmetry, 12, 983–986.  Web of Science CrossRef CAS Google Scholar
First citationThierry, B., Plaquevent, J.-C. & Cahard, D. (2003). Tetrahedron Asymmetry, 14, 1671–1677.  Web of Science CrossRef CAS Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds