metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-eth­­oxy-6-[2-(methyl­ammonio)ethyl­imino­meth­yl]phenolato}thio­cyanato­zinc(II) nitrate

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 30 December 2009; accepted 1 January 2010; online 9 January 2010)

In the title compound, [Zn(NCS)(C12H18N2O2)2]NO3, the ZnII ion is chelated by the phenolate O and imine N atoms from two zwitterionic Schiff base ligands and is also coordinated by the N atom of a thio­cyanate ligand, giving a distorted trigonal-bipyramidal geometry. Intra­molecular N—H⋯O hydrogen bonds are observed in the complex cation. The nitrate anions are linked to the complex cations through N—H⋯O hydrogen bonds.

Related literature

For related structures, see: Zhang & Wang (2007[Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652-m653.]); Adams et al. (2003[Adams, H., Cummings, L. R., Fenton, D. E. & McHugh, P. E. (2003). Inorg. Chem. Commun. 6, 19-22.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)(C12H18N2O2)2]NO3

  • Mr = 630.03

  • Monoclinic, P 21 /c

  • a = 10.601 (2) Å

  • b = 23.335 (3) Å

  • c = 13.749 (2) Å

  • β = 112.218 (3)°

  • V = 3148.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.841, Tmax = 0.856

  • 18443 measured reflections

  • 6818 independent reflections

  • 3644 reflections with I > 2σ(I)

  • Rint = 0.139

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.157

  • S = 0.91

  • 6818 reflections

  • 365 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O3 1.985 (2)
Zn1—O1 1.999 (3)
Zn1—N6 2.056 (4)
Zn1—N1 2.100 (3)
Zn1—N3 2.104 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3 0.90 1.96 2.750 (4) 145
N2—H2B⋯O4 0.90 2.39 3.078 (4) 133
N4—H4B⋯O1 0.90 1.85 2.697 (4) 157
N4—H4B⋯O2 0.90 2.42 3.027 (5) 125
N2—H2A⋯O7i 0.90 2.01 2.898 (5) 170
N2—H2A⋯O6i 0.90 2.52 3.183 (6) 131
N4—H4A⋯O5ii 0.90 2.03 2.894 (5) 160
N4—H4A⋯O7ii 0.90 2.31 3.066 (5) 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new ZnII complex. The compound consists of a mononuclear zinc(II) complex cation and a nitrate anion. The Zn atom is chelated by the phenolate O and imine N atoms from two Schiff base ligands, and is coordinated by the N atom from a thiocyanate ligand, forming a trigonal-bipyramid geometry (Fig. 1). The coordinate bond lengths (Table 1) and angles are typical and are comparable with those observed in other similar zinc(II) complexes (Zhang & Wang, 2007; Adams et al., 2003). The amine N atoms of the Schiff base ligands are protonated and take no part in the coordination to the ZnII ion.

Related literature top

For related structures, see: Zhang & Wang (2007); Adams et al. (2003).

Experimental top

3-Ethoxysalicylaldehyde (0.2 mmol, 33.2 mg) and N-methylethane-1,2-diamine (0.2 mmol, 14.8 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. To this solution was added an aqueous solution (2 ml) of ammonium thiocyanate (0.2 mmol, 15.2 mg) and an aqueous solution (3 ml) of Zn(NO3)2.6H2O (0.1 mmol, 29.0 mg) with stirring. The resulting mixture was stirred for another 10 min at room temperature. After keeping the filtrate in air for a week, colourless block-shaped crystals were formed at the bottom of the vessel.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N) and 1.5Ueq(methyl C). During the refinement, the displacement parameters of atom O6 were restrained to an approximate isotropic behaviour. The unit cell contains four solvent accessible voids each with a volume of 53 Å3. But no significant electron density is found in these voids.

Structure description top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new ZnII complex. The compound consists of a mononuclear zinc(II) complex cation and a nitrate anion. The Zn atom is chelated by the phenolate O and imine N atoms from two Schiff base ligands, and is coordinated by the N atom from a thiocyanate ligand, forming a trigonal-bipyramid geometry (Fig. 1). The coordinate bond lengths (Table 1) and angles are typical and are comparable with those observed in other similar zinc(II) complexes (Zhang & Wang, 2007; Adams et al., 2003). The amine N atoms of the Schiff base ligands are protonated and take no part in the coordination to the ZnII ion.

For related structures, see: Zhang & Wang (2007); Adams et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Bis{2-ethoxy-6-[2-(methylammonio)ethyliminomethyl]phenolato}thiocyanatozinc(II) nitrate top
Crystal data top
[Zn(NCS)(C12H18N2O2)2]NO3F(000) = 1320
Mr = 630.03Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3892 reflections
a = 10.601 (2) Åθ = 2.3–25.5°
b = 23.335 (3) ŵ = 0.90 mm1
c = 13.749 (2) ÅT = 298 K
β = 112.218 (3)°Block, colourless
V = 3148.6 (9) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6818 independent reflections
Radiation source: fine-focus sealed tube3644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
ω scanθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.841, Tmax = 0.856k = 2928
18443 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
6818 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.69 e Å3
6 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Zn(NCS)(C12H18N2O2)2]NO3V = 3148.6 (9) Å3
Mr = 630.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.601 (2) ŵ = 0.90 mm1
b = 23.335 (3) ÅT = 298 K
c = 13.749 (2) Å0.20 × 0.20 × 0.18 mm
β = 112.218 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6818 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3644 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.856Rint = 0.139
18443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.91Δρmax = 0.69 e Å3
6818 reflectionsΔρmin = 0.63 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.89814 (4)0.910567 (18)0.15980 (3)0.04957 (18)
N10.9386 (4)0.99186 (14)0.1129 (3)0.0615 (9)
N20.7214 (3)1.05264 (13)0.1565 (2)0.0540 (8)
H2A0.76861.08550.16360.065*
H2B0.77051.02880.20850.065*
N30.8674 (3)0.82940 (12)0.2138 (3)0.0520 (8)
N41.1307 (3)0.78461 (14)0.2169 (3)0.0644 (9)
H4A1.13400.76100.26950.077*
H4B1.13520.82080.24040.077*
N50.1534 (6)0.6837 (2)0.3942 (4)0.1041 (16)
N60.7831 (4)0.88758 (17)0.0075 (3)0.0770 (11)
O11.0989 (3)0.89846 (11)0.2324 (2)0.0599 (7)
O21.3351 (3)0.86419 (17)0.3710 (3)0.0830 (10)
O30.8145 (3)0.94858 (10)0.24990 (18)0.0515 (6)
O40.8062 (3)1.02305 (12)0.3908 (2)0.0574 (7)
O50.1139 (4)0.73228 (16)0.4024 (3)0.1062 (12)
O60.2187 (7)0.6552 (2)0.4726 (4)0.175 (2)
O70.1510 (4)0.66460 (16)0.3124 (3)0.1077 (13)
S10.65759 (17)0.81681 (6)0.16349 (11)0.1041 (5)
C11.1809 (5)0.9943 (2)0.2309 (4)0.0709 (13)
C21.1969 (4)0.9368 (2)0.2642 (3)0.0609 (11)
C31.3288 (5)0.9196 (3)0.3372 (4)0.0748 (14)
C41.4340 (6)0.9584 (3)0.3697 (5)0.106 (2)
H41.51960.94680.41600.128*
C51.4143 (8)1.0148 (4)0.3344 (5)0.124 (3)
H51.48681.04050.35760.149*
C61.2928 (7)1.0325 (3)0.2677 (4)0.0959 (19)
H61.28141.07040.24510.115*
C71.0547 (6)1.01704 (19)0.1556 (4)0.0741 (14)
H71.05791.05490.13530.089*
C80.8286 (5)1.0229 (2)0.0317 (4)0.0824 (15)
H8A0.80861.00400.03530.099*
H8B0.85931.06150.02610.099*
C90.7009 (5)1.02618 (19)0.0535 (3)0.0665 (12)
H9A0.63361.04830.00170.080*
H9B0.66480.98780.05160.080*
C100.5889 (4)1.0648 (2)0.1656 (4)0.0857 (15)
H10A0.53901.09220.11300.128*
H10B0.60471.08010.23410.128*
H10C0.53721.03000.15570.128*
C111.4620 (5)0.8444 (3)0.4510 (5)0.116 (2)
H11A1.48980.87050.51020.139*
H11B1.53290.84390.42250.139*
C121.4452 (7)0.7866 (3)0.4864 (6)0.146 (3)
H12A1.36610.78580.50450.219*
H12B1.52430.77670.54680.219*
H12C1.43400.75970.43100.219*
C130.8233 (3)0.86814 (17)0.3627 (3)0.0508 (9)
C140.8163 (3)0.92729 (16)0.3392 (3)0.0464 (9)
C150.8116 (3)0.96620 (18)0.4179 (3)0.0505 (10)
C160.8127 (4)0.9463 (2)0.5121 (3)0.0671 (12)
H160.81140.97210.56320.081*
C170.8156 (5)0.8877 (2)0.5319 (4)0.0801 (14)
H170.81500.87470.59570.096*
C180.8192 (4)0.8498 (2)0.4591 (4)0.0695 (12)
H180.81900.81080.47280.083*
C190.8394 (4)0.82363 (17)0.2956 (3)0.0559 (10)
H190.82810.78620.31430.067*
C200.8790 (4)0.77626 (17)0.1597 (4)0.0689 (12)
H20A0.79650.77120.09770.083*
H20B0.88660.74390.20590.083*
C210.9995 (4)0.77629 (18)0.1273 (3)0.0670 (12)
H21A1.00220.74020.09330.080*
H21B0.98810.80660.07640.080*
C221.2507 (5)0.7733 (2)0.1879 (4)0.0896 (15)
H22A1.24680.73460.16320.134*
H22B1.33310.77870.24840.134*
H22C1.24940.79930.13340.134*
C230.8179 (4)1.0643 (2)0.4712 (3)0.0668 (12)
H23A0.90291.05860.53060.080*
H23B0.74351.05940.49520.080*
C240.8139 (5)1.1231 (2)0.4286 (4)0.0909 (16)
H24A0.87931.12610.39600.136*
H24B0.83541.15040.48470.136*
H24C0.72441.13080.37750.136*
C250.7319 (5)0.85823 (19)0.0634 (4)0.0663 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0578 (3)0.0483 (3)0.0503 (3)0.0002 (2)0.0291 (2)0.0045 (2)
N10.088 (3)0.054 (2)0.067 (2)0.003 (2)0.057 (2)0.0022 (18)
N20.061 (2)0.0538 (19)0.0544 (19)0.0034 (16)0.0300 (17)0.0049 (16)
N30.0515 (19)0.0462 (18)0.060 (2)0.0018 (15)0.0231 (17)0.0066 (16)
N40.074 (2)0.057 (2)0.065 (2)0.0096 (18)0.029 (2)0.0055 (18)
N50.161 (5)0.073 (3)0.075 (3)0.019 (3)0.040 (3)0.017 (3)
N60.094 (3)0.071 (2)0.058 (2)0.009 (2)0.020 (2)0.007 (2)
O10.0493 (16)0.0565 (16)0.0770 (19)0.0063 (12)0.0276 (15)0.0131 (14)
O20.0466 (18)0.117 (3)0.082 (2)0.0016 (18)0.0202 (17)0.016 (2)
O30.0676 (17)0.0498 (15)0.0483 (14)0.0008 (13)0.0346 (13)0.0014 (12)
O40.0657 (18)0.0639 (18)0.0540 (16)0.0044 (14)0.0355 (14)0.0120 (14)
O50.152 (3)0.074 (2)0.105 (3)0.027 (2)0.063 (3)0.007 (2)
O60.280 (5)0.103 (3)0.127 (3)0.022 (3)0.057 (3)0.006 (3)
O70.158 (4)0.098 (3)0.081 (2)0.029 (2)0.061 (3)0.000 (2)
S10.1313 (13)0.0791 (9)0.0851 (9)0.0145 (8)0.0218 (9)0.0306 (8)
C10.093 (4)0.082 (3)0.064 (3)0.037 (3)0.059 (3)0.028 (3)
C20.064 (3)0.074 (3)0.063 (3)0.021 (2)0.046 (2)0.025 (2)
C30.057 (3)0.114 (4)0.068 (3)0.027 (3)0.040 (3)0.031 (3)
C40.076 (4)0.180 (7)0.077 (4)0.052 (4)0.046 (3)0.033 (4)
C50.124 (6)0.189 (8)0.086 (4)0.103 (6)0.069 (4)0.050 (5)
C60.131 (5)0.108 (4)0.081 (4)0.071 (4)0.075 (4)0.031 (3)
C70.123 (4)0.052 (3)0.086 (3)0.013 (3)0.084 (4)0.010 (3)
C80.125 (4)0.071 (3)0.077 (3)0.025 (3)0.067 (3)0.017 (3)
C90.084 (3)0.067 (3)0.052 (2)0.016 (2)0.030 (2)0.007 (2)
C100.068 (3)0.116 (4)0.081 (3)0.021 (3)0.037 (3)0.012 (3)
C110.057 (3)0.181 (7)0.100 (4)0.009 (4)0.018 (3)0.027 (5)
C120.107 (5)0.160 (7)0.141 (6)0.053 (5)0.012 (5)0.010 (6)
C130.038 (2)0.064 (3)0.054 (2)0.0025 (18)0.0217 (18)0.010 (2)
C140.0313 (19)0.062 (2)0.050 (2)0.0002 (17)0.0201 (17)0.0017 (19)
C150.036 (2)0.073 (3)0.049 (2)0.0034 (18)0.0226 (18)0.001 (2)
C160.059 (3)0.102 (4)0.046 (2)0.011 (2)0.026 (2)0.002 (2)
C170.078 (3)0.117 (4)0.057 (3)0.028 (3)0.038 (3)0.030 (3)
C180.064 (3)0.080 (3)0.072 (3)0.021 (2)0.034 (2)0.030 (3)
C190.046 (2)0.050 (2)0.069 (3)0.0051 (18)0.020 (2)0.009 (2)
C200.076 (3)0.047 (2)0.084 (3)0.008 (2)0.030 (3)0.014 (2)
C210.079 (3)0.052 (2)0.072 (3)0.003 (2)0.031 (3)0.020 (2)
C220.084 (3)0.098 (4)0.099 (4)0.014 (3)0.049 (3)0.020 (3)
C230.053 (3)0.089 (3)0.060 (3)0.002 (2)0.023 (2)0.026 (3)
C240.104 (4)0.082 (4)0.105 (4)0.024 (3)0.060 (3)0.040 (3)
C250.078 (3)0.061 (3)0.059 (3)0.018 (2)0.024 (2)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O31.985 (2)C8—C91.495 (6)
Zn1—O11.999 (3)C8—H8A0.97
Zn1—N62.056 (4)C8—H8B0.97
Zn1—N12.100 (3)C9—H9A0.97
Zn1—N32.104 (3)C9—H9B0.97
N1—C71.288 (6)C10—H10A0.96
N1—C81.465 (5)C10—H10B0.96
N2—C91.484 (5)C10—H10C0.96
N2—C101.485 (5)C11—C121.466 (8)
N2—H2A0.90C11—H11A0.97
N2—H2B0.90C11—H11B0.97
N3—C191.274 (5)C12—H12A0.96
N3—C201.475 (5)C12—H12B0.96
N4—C211.481 (5)C12—H12C0.96
N4—C221.494 (5)C13—C181.410 (6)
N4—H4A0.90C13—C141.413 (5)
N4—H4B0.90C13—C191.442 (5)
N5—O71.201 (5)C14—C151.428 (5)
N5—O51.229 (5)C15—C161.373 (5)
N5—O61.232 (6)C16—C171.392 (6)
N6—C251.147 (5)C16—H160.93
O1—C21.315 (4)C17—C181.347 (6)
O2—C31.368 (6)C17—H170.93
O2—C111.454 (6)C18—H180.93
O3—C141.318 (4)C19—H190.93
O4—C151.373 (5)C20—C211.504 (6)
O4—C231.435 (4)C20—H20A0.97
S1—C251.621 (5)C20—H20B0.97
C1—C21.407 (6)C21—H21A0.97
C1—C61.416 (6)C21—H21B0.97
C1—C71.448 (7)C22—H22A0.96
C2—C31.435 (6)C22—H22B0.96
C3—C41.373 (7)C22—H22C0.96
C4—C51.392 (9)C23—C241.486 (6)
C4—H40.93C23—H23A0.97
C5—C61.334 (9)C23—H23B0.97
C5—H50.93C24—H24A0.96
C6—H60.93C24—H24B0.96
C7—H70.93C24—H24C0.96
O3—Zn1—O1113.20 (11)N2—C10—H10B109.5
O3—Zn1—N6121.28 (14)H10A—C10—H10B109.5
O1—Zn1—N6125.52 (14)N2—C10—H10C109.5
O3—Zn1—N188.83 (11)H10A—C10—H10C109.5
O1—Zn1—N188.76 (13)H10B—C10—H10C109.5
N6—Zn1—N191.96 (15)O2—C11—C12110.4 (5)
O3—Zn1—N390.95 (11)O2—C11—H11A109.6
O1—Zn1—N388.52 (11)C12—C11—H11A109.6
N6—Zn1—N390.76 (14)O2—C11—H11B109.6
N1—Zn1—N3176.95 (14)C12—C11—H11B109.6
C7—N1—C8118.1 (4)H11A—C11—H11B108.1
C7—N1—Zn1122.9 (3)C11—C12—H12A109.5
C8—N1—Zn1119.0 (3)C11—C12—H12B109.5
C9—N2—C10111.0 (3)H12A—C12—H12B109.5
C9—N2—H2A109.4C11—C12—H12C109.5
C10—N2—H2A109.4H12A—C12—H12C109.5
C9—N2—H2B109.4H12B—C12—H12C109.5
C10—N2—H2B109.4C18—C13—C14119.6 (4)
H2A—N2—H2B108.0C18—C13—C19115.9 (4)
C19—N3—C20116.6 (3)C14—C13—C19124.5 (4)
C19—N3—Zn1121.7 (3)O3—C14—C13124.2 (3)
C20—N3—Zn1121.7 (3)O3—C14—C15118.3 (3)
C21—N4—C22112.4 (3)C13—C14—C15117.5 (4)
C21—N4—H4A109.1C16—C15—O4124.6 (4)
C22—N4—H4A109.1C16—C15—C14120.6 (4)
C21—N4—H4B109.1O4—C15—C14114.8 (3)
C22—N4—H4B109.1C15—C16—C17120.6 (4)
H4A—N4—H4B107.9C15—C16—H16119.7
O7—N5—O5122.7 (5)C17—C16—H16119.7
O7—N5—O6115.1 (5)C18—C17—C16120.3 (4)
O5—N5—O6121.1 (5)C18—C17—H17119.9
C25—N6—Zn1158.4 (4)C16—C17—H17119.9
C2—O1—Zn1128.9 (3)C17—C18—C13121.3 (4)
C3—O2—C11118.1 (4)C17—C18—H18119.4
C14—O3—Zn1124.1 (2)C13—C18—H18119.4
C15—O4—C23117.2 (3)N3—C19—C13127.7 (4)
C2—C1—C6120.2 (5)N3—C19—H19116.1
C2—C1—C7123.2 (4)C13—C19—H19116.1
C6—C1—C7116.6 (5)N3—C20—C21113.0 (3)
O1—C2—C1123.9 (4)N3—C20—H20A109.0
O1—C2—C3118.8 (4)C21—C20—H20A109.0
C1—C2—C3117.3 (4)N3—C20—H20B109.0
O2—C3—C4125.6 (6)C21—C20—H20B109.0
O2—C3—C2114.3 (4)H20A—C20—H20B107.8
C4—C3—C2120.1 (6)N4—C21—C20112.9 (4)
C3—C4—C5120.9 (6)N4—C21—H21A109.0
C3—C4—H4119.6C20—C21—H21A109.0
C5—C4—H4119.6N4—C21—H21B109.0
C6—C5—C4120.8 (6)C20—C21—H21B109.0
C6—C5—H5119.6H21A—C21—H21B107.8
C4—C5—H5119.6N4—C22—H22A109.5
C5—C6—C1120.8 (6)N4—C22—H22B109.5
C5—C6—H6119.6H22A—C22—H22B109.5
C1—C6—H6119.6N4—C22—H22C109.5
N1—C7—C1128.6 (4)H22A—C22—H22C109.5
N1—C7—H7115.7H22B—C22—H22C109.5
C1—C7—H7115.7O4—C23—C24109.5 (3)
N1—C8—C9113.2 (4)O4—C23—H23A109.8
N1—C8—H8A108.9C24—C23—H23A109.8
C9—C8—H8A108.9O4—C23—H23B109.8
N1—C8—H8B108.9C24—C23—H23B109.8
C9—C8—H8B108.9H23A—C23—H23B108.2
H8A—C8—H8B107.8C23—C24—H24A109.5
N2—C9—C8113.3 (4)C23—C24—H24B109.5
N2—C9—H9A108.9H24A—C24—H24B109.5
C8—C9—H9A108.9C23—C24—H24C109.5
N2—C9—H9B108.9H24A—C24—H24C109.5
C8—C9—H9B108.9H24B—C24—H24C109.5
H9A—C9—H9B107.7N6—C25—S1179.2 (5)
N2—C10—H10A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.901.962.750 (4)145
N2—H2B···O40.902.393.078 (4)133
N4—H4B···O10.901.852.697 (4)157
N4—H4B···O20.902.423.027 (5)125
N2—H2A···O7i0.902.012.898 (5)170
N2—H2A···O6i0.902.523.183 (6)131
N4—H4A···O5ii0.902.032.894 (5)160
N4—H4A···O7ii0.902.313.066 (5)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(NCS)(C12H18N2O2)2]NO3
Mr630.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.601 (2), 23.335 (3), 13.749 (2)
β (°) 112.218 (3)
V3)3148.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.841, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
18443, 6818, 3644
Rint0.139
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.157, 0.91
No. of reflections6818
No. of parameters365
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.63

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O31.985 (2)Zn1—N12.100 (3)
Zn1—O11.999 (3)Zn1—N32.104 (3)
Zn1—N62.056 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.901.962.750 (4)145
N2—H2B···O40.902.393.078 (4)133
N4—H4B···O10.901.852.697 (4)157
N4—H4B···O20.902.423.027 (5)125
N2—H2A···O7i0.902.012.898 (5)170
N2—H2A···O6i0.902.523.183 (6)131
N4—H4A···O5ii0.902.032.894 (5)160
N4—H4A···O7ii0.902.313.066 (5)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

References

First citationAdams, H., Cummings, L. R., Fenton, D. E. & McHugh, P. E. (2003). Inorg. Chem. Commun. 6, 19–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds