organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-amino-7,7-di­methyl-2′,5-dioxo­spiro­[5,6,7,8-tetra­hydro-4H-chromene-4,3′(2′H)-1H-indole]-3-carboxyl­ate

aDepartment of Chemistry, Xuzhou Medical College, Xuzhou 221004, People's Republic of China
*Correspondence e-mail: songleizhu@126.com

(Received 11 December 2009; accepted 30 December 2009; online 9 January 2010)

In the mol­ecule of the title compound, C21H22N2O5, the indole system and the spiro-pyran ring are almost planar [maximum deviations of 0.0447 (17) and 0.0781 (17) Å, respectively]; the dihedral angle between them is 84.6 (3)°. The remaining six-membered ring adopts a twisted conformation. Intra­molecular N—H⋯O hydrogen bonds occur. In the crystal structure, intera­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For the indole nucleus, see: da Silva et al., (2001[Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273-324.]). For the anti­bacterial and fungicidal activities of indoles, see: Joshi & Chand (1982[Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1-12.]). Spiro­oxindole ring systems are found in a number of alkaloids, see: Abdel-Rahman et al. (2004[Abdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483-2488.]). For our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007[Zhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365-9372.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22N2O5

  • Mr = 382.41

  • Monoclinic, P 21 /n

  • a = 8.4298 (14) Å

  • b = 11.6791 (17) Å

  • c = 19.024 (3) Å

  • β = 99.136 (4)°

  • V = 1849.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 153 K

  • 0.50 × 0.35 × 0.12 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.814, Tmax = 0.988

  • 17728 measured reflections

  • 3374 independent reflections

  • 2944 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.107

  • S = 1.15

  • 3374 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.88 2.03 2.658 (2) 128
N1—H1B⋯O3i 0.88 1.92 2.794 (2) 175
N2—H2⋯O2ii 0.88 2.04 2.8435 (19) 152
C16—H16⋯O4iii 0.95 2.54 3.448 (2) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole nucleus is the well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our programme devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile (or ethyl 2-cyanoacetate) and enaminones . We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the indole ring A (C3/C12/N2/C13-C18) and the spiro pyran ring B (O1/C1-C5), are planar. The dihedral angle between them is 84.6 (3)°. Ring C (C1/C2/C6-C9) adopts twisted conformation, with C7 and C8 deviating the C1/C2/C6/C9 plane by 0.1525 (18) and -0.4751 (18)Å, respectively. And the C1/C2/C6/C9 plane is oriented at a dihedral angle of 6.2 (2)° with the fused pyran ring B.

In the crystal structure, intermolecular and intramolecular N-H···O hydrogen bonds (N1-H1A···O4, N1-H1B···O3, N2-H2···O2. ) (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For the indole nucleus, see: da Silva et al., (2001). For the antibacterial and fungicidal activities of indoles, see: Joshi & Chand,(1982). Spirooxindole ring systems are found in a number of alkaloids, see: Abdel-Rahman et al. (2004). for our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Compound (I) was prepared by one-pot reaction of isatin (2 mmol), ethyl 2-cyanoacetate (2 mmol) and 5,5-dimethylcyclohexane- 1,3-dione (2 mmol) in water (10 ml). The reaction was catalyzed by TEBAC (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 5 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from ethanol solution by slow evaporation at room temperature (yield; 80%, m.p. 518-519 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3364, 3241, 3187, 2955, 1690, 1613, 1520, 1474, 1304, 1227, 1165, 1057, 926, 748, 609, 556. 1H NMR (400 MHz, CDCl3): 7.48 (br s, 1H, NH), 7.14 (t, J = 7.2 Hz, 1H, ArH), 6,88-6.94 (m, 2H, ArH), 6.80 (t, J = 8.4 Hz, 1H, ArH), 6.49 (br s, 2H, NH2), 3.90-3.95 (m, 2H, CH2), 2.51-2.54 (m, 2H, CH2), 2.11-2.24 (m, 2H, CH2), 1.28 (t, J = 7.6 Hz, 3H, CH3), 1.10 (s, 3H, CH3), 1.01(s, 3H, CH3).

Refinement top

H atoms were positioned geometrically, with N-H = 0.88 Å (for NH) and C-H = 0.95 and 0.98 Å for aromatic and methyl H, respectivly and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

The indole nucleus is the well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our programme devoted to the preparation of heterocyclic compounds involving indole derivatives (Zhu et al., 2007), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile (or ethyl 2-cyanoacetate) and enaminones . We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1), the indole ring A (C3/C12/N2/C13-C18) and the spiro pyran ring B (O1/C1-C5), are planar. The dihedral angle between them is 84.6 (3)°. Ring C (C1/C2/C6-C9) adopts twisted conformation, with C7 and C8 deviating the C1/C2/C6/C9 plane by 0.1525 (18) and -0.4751 (18)Å, respectively. And the C1/C2/C6/C9 plane is oriented at a dihedral angle of 6.2 (2)° with the fused pyran ring B.

In the crystal structure, intermolecular and intramolecular N-H···O hydrogen bonds (N1-H1A···O4, N1-H1B···O3, N2-H2···O2. ) (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

For the indole nucleus, see: da Silva et al., (2001). For the antibacterial and fungicidal activities of indoles, see: Joshi & Chand,(1982). Spirooxindole ring systems are found in a number of alkaloids, see: Abdel-Rahman et al. (2004). for our work on the preparation of heterocyclic compounds involving indole derivatives, see: Zhu et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Ethyl 2-amino-7,7-dimethyl-2',5-dioxospiro[5,6,7,8- tetrahydro-4H-chromene-4,3'(2'H)-1H-indole]-3-carboxylate top
Crystal data top
C21H22N2O5F(000) = 808
Mr = 382.41Dx = 1.374 Mg m3
Monoclinic, P21/nMelting point = 518–519 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71070 Å
a = 8.4298 (14) ÅCell parameters from 6298 reflections
b = 11.6791 (17) Åθ = 3.0–25.3°
c = 19.024 (3) ŵ = 0.10 mm1
β = 99.136 (4)°T = 153 K
V = 1849.2 (5) Å3Block, colorless
Z = 40.50 × 0.35 × 0.12 mm
Data collection top
Rigaku Mercury
diffractometer
3374 independent reflections
Radiation source: fine-focus sealed tube2944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1413
Tmin = 0.814, Tmax = 0.988l = 2222
17728 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.040P)2 + 0.757P]
where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H22N2O5V = 1849.2 (5) Å3
Mr = 382.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4298 (14) ŵ = 0.10 mm1
b = 11.6791 (17) ÅT = 153 K
c = 19.024 (3) Å0.50 × 0.35 × 0.12 mm
β = 99.136 (4)°
Data collection top
Rigaku Mercury
diffractometer
3374 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2944 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.988Rint = 0.041
17728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.15Δρmax = 0.20 e Å3
3374 reflectionsΔρmin = 0.23 e Å3
257 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58254 (15)0.33374 (11)0.25244 (6)0.0258 (3)
O20.34545 (16)0.04523 (12)0.09660 (7)0.0315 (3)
O30.76243 (15)0.05137 (11)0.13053 (7)0.0271 (3)
O40.93311 (15)0.42547 (11)0.12924 (7)0.0276 (3)
O50.84779 (15)0.28028 (12)0.05510 (7)0.0290 (3)
N10.7795 (2)0.45339 (14)0.23971 (9)0.0323 (4)
H1A0.85610.48250.21870.039*
H1B0.76030.48220.28030.039*
N20.62096 (18)0.09772 (13)0.02113 (8)0.0220 (3)
H20.65060.03960.00320.026*
C10.4876 (2)0.24020 (15)0.23304 (9)0.0213 (4)
C20.4815 (2)0.18729 (15)0.17020 (9)0.0200 (4)
C30.5860 (2)0.22220 (15)0.11542 (9)0.0200 (4)
C40.7072 (2)0.31183 (15)0.14793 (9)0.0209 (4)
C50.6927 (2)0.36589 (16)0.21015 (9)0.0229 (4)
C60.3686 (2)0.09070 (16)0.15531 (10)0.0226 (4)
C70.2872 (2)0.04575 (16)0.21471 (10)0.0255 (4)
H7A0.35770.01250.24150.031*
H7B0.18640.00700.19360.031*
C80.2471 (2)0.13669 (16)0.26702 (9)0.0231 (4)
C90.3984 (2)0.20711 (17)0.29162 (10)0.0256 (4)
H9A0.36790.27750.31520.031*
H9B0.47100.16240.32750.031*
C100.1122 (2)0.21397 (18)0.23047 (11)0.0316 (5)
H10A0.14940.25580.19150.047*
H10B0.08180.26860.26510.047*
H10C0.01890.16700.21140.047*
C110.1937 (2)0.07742 (18)0.33125 (10)0.0309 (5)
H11A0.09510.03390.31550.046*
H11B0.17340.13520.36610.046*
H11C0.27840.02530.35320.046*
C120.6698 (2)0.11300 (15)0.09176 (9)0.0213 (4)
C130.5176 (2)0.18514 (15)0.00876 (9)0.0215 (4)
C140.4506 (2)0.20069 (17)0.07895 (10)0.0279 (5)
H140.46780.14710.11450.033*
C150.3570 (2)0.29760 (18)0.09573 (11)0.0324 (5)
H150.30840.31030.14370.039*
C160.3332 (2)0.37610 (18)0.04389 (11)0.0319 (5)
H160.27050.44270.05670.038*
C170.4006 (2)0.35815 (16)0.02711 (10)0.0261 (4)
H170.38390.41160.06290.031*
C180.4919 (2)0.26158 (15)0.04424 (9)0.0206 (4)
C190.8378 (2)0.34677 (16)0.11166 (9)0.0226 (4)
C200.9853 (2)0.29242 (19)0.01860 (11)0.0353 (5)
H20A1.08270.31170.05290.042*
H20B0.96610.35400.01750.042*
C211.0062 (3)0.1792 (2)0.01643 (12)0.0434 (6)
H21A1.02440.11910.01990.065*
H21B1.09860.18330.04170.065*
H21C0.90910.16150.05030.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0258 (7)0.0279 (7)0.0249 (7)0.0071 (6)0.0076 (5)0.0071 (6)
O20.0358 (8)0.0318 (8)0.0291 (8)0.0101 (6)0.0120 (6)0.0115 (6)
O30.0269 (7)0.0275 (7)0.0271 (7)0.0066 (6)0.0047 (6)0.0049 (6)
O40.0237 (7)0.0265 (7)0.0321 (7)0.0066 (6)0.0031 (6)0.0005 (6)
O50.0266 (7)0.0351 (8)0.0275 (7)0.0099 (6)0.0117 (6)0.0045 (6)
N10.0331 (10)0.0342 (10)0.0308 (9)0.0124 (8)0.0087 (7)0.0130 (8)
N20.0249 (8)0.0209 (8)0.0213 (8)0.0001 (7)0.0074 (6)0.0028 (6)
C10.0190 (9)0.0216 (10)0.0230 (9)0.0001 (7)0.0024 (7)0.0002 (8)
C20.0192 (9)0.0202 (10)0.0212 (9)0.0000 (7)0.0049 (7)0.0006 (7)
C30.0193 (9)0.0198 (9)0.0211 (9)0.0006 (7)0.0040 (7)0.0015 (7)
C40.0197 (9)0.0204 (10)0.0223 (9)0.0003 (7)0.0020 (7)0.0006 (7)
C50.0202 (9)0.0247 (10)0.0235 (10)0.0015 (8)0.0024 (8)0.0001 (8)
C60.0214 (9)0.0205 (10)0.0266 (10)0.0026 (8)0.0061 (8)0.0024 (8)
C70.0255 (10)0.0232 (10)0.0291 (10)0.0012 (8)0.0082 (8)0.0007 (8)
C80.0212 (9)0.0241 (10)0.0253 (10)0.0019 (8)0.0072 (8)0.0026 (8)
C90.0261 (10)0.0285 (11)0.0229 (10)0.0035 (8)0.0066 (8)0.0001 (8)
C100.0237 (10)0.0332 (12)0.0383 (12)0.0061 (9)0.0062 (9)0.0047 (9)
C110.0317 (11)0.0330 (12)0.0308 (11)0.0012 (9)0.0134 (9)0.0045 (9)
C120.0207 (9)0.0203 (10)0.0242 (10)0.0039 (8)0.0073 (8)0.0009 (8)
C130.0189 (9)0.0239 (10)0.0220 (9)0.0050 (8)0.0047 (7)0.0005 (8)
C140.0280 (10)0.0342 (11)0.0218 (10)0.0088 (9)0.0051 (8)0.0005 (8)
C150.0267 (11)0.0413 (13)0.0270 (11)0.0059 (9)0.0021 (8)0.0092 (9)
C160.0238 (10)0.0308 (11)0.0391 (12)0.0014 (9)0.0005 (9)0.0122 (9)
C170.0212 (10)0.0239 (10)0.0333 (11)0.0017 (8)0.0045 (8)0.0001 (8)
C180.0175 (9)0.0209 (10)0.0235 (9)0.0042 (7)0.0039 (7)0.0006 (7)
C190.0212 (9)0.0235 (10)0.0219 (9)0.0001 (8)0.0003 (7)0.0032 (8)
C200.0305 (11)0.0459 (13)0.0333 (11)0.0100 (10)0.0167 (9)0.0016 (10)
C210.0393 (13)0.0514 (15)0.0449 (13)0.0047 (11)0.0229 (11)0.0058 (11)
Geometric parameters (Å, º) top
O1—C11.370 (2)C8—C101.530 (3)
O1—C51.374 (2)C8—C111.533 (3)
O2—C61.224 (2)C9—H9A0.9900
O3—C121.220 (2)C9—H9B0.9900
O4—C191.232 (2)C10—H10A0.9800
O5—C191.340 (2)C10—H10B0.9800
O5—C201.450 (2)C10—H10C0.9800
N1—C51.328 (2)C11—H11A0.9800
N1—H1A0.8800C11—H11B0.9800
N1—H1B0.8800C11—H11C0.9800
N2—C121.353 (2)C13—C141.377 (3)
N2—C131.403 (2)C13—C181.389 (3)
N2—H20.8800C14—C151.387 (3)
C1—C21.339 (2)C14—H140.9500
C1—C91.491 (3)C15—C161.384 (3)
C2—C61.474 (3)C15—H150.9500
C2—C31.523 (2)C16—C171.396 (3)
C3—C41.524 (2)C16—H160.9500
C3—C181.528 (2)C17—C181.375 (3)
C3—C121.559 (3)C17—H170.9500
C4—C51.364 (3)C20—C211.503 (3)
C4—C191.448 (3)C20—H20A0.9900
C6—C71.507 (3)C20—H20B0.9900
C7—C81.530 (3)C21—H21A0.9800
C7—H7A0.9900C21—H21B0.9800
C7—H7B0.9900C21—H21C0.9800
C8—C91.527 (3)
C1—O1—C5118.72 (14)C8—C10—H10B109.5
C19—O5—C20119.01 (15)H10A—C10—H10B109.5
C5—N1—H1A120.0C8—C10—H10C109.5
C5—N1—H1B120.0H10A—C10—H10C109.5
H1A—N1—H1B120.0H10B—C10—H10C109.5
C12—N2—C13112.20 (15)C8—C11—H11A109.5
C12—N2—H2123.9C8—C11—H11B109.5
C13—N2—H2123.9H11A—C11—H11B109.5
C2—C1—O1123.13 (16)C8—C11—H11C109.5
C2—C1—C9126.52 (17)H11A—C11—H11C109.5
O1—C1—C9110.34 (15)H11B—C11—H11C109.5
C1—C2—C6117.18 (16)O3—C12—N2125.94 (17)
C1—C2—C3122.87 (16)O3—C12—C3125.73 (16)
C6—C2—C3119.95 (15)N2—C12—C3108.32 (15)
C2—C3—C4109.24 (14)C14—C13—C18122.13 (18)
C2—C3—C18114.32 (14)C14—C13—N2128.45 (17)
C4—C3—C18111.93 (14)C18—C13—N2109.39 (15)
C2—C3—C12108.45 (14)C13—C14—C15117.47 (18)
C4—C3—C12111.94 (14)C13—C14—H14121.3
C18—C3—C12100.71 (14)C15—C14—H14121.3
C5—C4—C19117.57 (16)C16—C15—C14121.19 (18)
C5—C4—C3121.57 (16)C16—C15—H15119.4
C19—C4—C3120.78 (15)C14—C15—H15119.4
N1—C5—C4127.17 (17)C15—C16—C17120.47 (19)
N1—C5—O1109.90 (15)C15—C16—H16119.8
C4—C5—O1122.93 (16)C17—C16—H16119.8
O2—C6—C2120.78 (16)C18—C17—C16118.64 (18)
O2—C6—C7120.50 (17)C18—C17—H17120.7
C2—C6—C7118.66 (16)C16—C17—H17120.7
C6—C7—C8114.84 (16)C17—C18—C13120.07 (17)
C6—C7—H7A108.6C17—C18—C3130.49 (17)
C8—C7—H7A108.6C13—C18—C3109.33 (15)
C6—C7—H7B108.6O4—C19—O5121.92 (17)
C8—C7—H7B108.6O4—C19—C4126.41 (17)
H7A—C7—H7B107.5O5—C19—C4111.66 (15)
C9—C8—C7108.25 (15)O5—C20—C21106.56 (16)
C9—C8—C10110.24 (16)O5—C20—H20A110.4
C7—C8—C10109.82 (16)C21—C20—H20A110.4
C9—C8—C11109.61 (15)O5—C20—H20B110.4
C7—C8—C11109.16 (15)C21—C20—H20B110.4
C10—C8—C11109.72 (15)H20A—C20—H20B108.6
C1—C9—C8113.97 (15)C20—C21—H21A109.5
C1—C9—H9A108.8C20—C21—H21B109.5
C8—C9—H9A108.8H21A—C21—H21B109.5
C1—C9—H9B108.8C20—C21—H21C109.5
C8—C9—H9B108.8H21A—C21—H21C109.5
H9A—C9—H9B107.7H21B—C21—H21C109.5
C8—C10—H10A109.5
C5—O1—C1—C29.1 (3)C10—C8—C9—C176.1 (2)
C5—O1—C1—C9169.84 (15)C11—C8—C9—C1163.06 (16)
O1—C1—C2—C6177.43 (15)C13—N2—C12—O3178.32 (17)
C9—C1—C2—C63.8 (3)C13—N2—C12—C32.29 (19)
O1—C1—C2—C33.2 (3)C2—C3—C12—O361.1 (2)
C9—C1—C2—C3175.58 (17)C4—C3—C12—O359.5 (2)
C1—C2—C3—C47.4 (2)C18—C3—C12—O3178.58 (17)
C6—C2—C3—C4171.98 (15)C2—C3—C12—N2118.30 (15)
C1—C2—C3—C18118.89 (19)C4—C3—C12—N2121.10 (16)
C6—C2—C3—C1861.7 (2)C18—C3—C12—N22.03 (17)
C1—C2—C3—C12129.65 (18)C12—N2—C13—C14176.80 (18)
C6—C2—C3—C1249.7 (2)C12—N2—C13—C181.6 (2)
C2—C3—C4—C513.0 (2)C18—C13—C14—C151.0 (3)
C18—C3—C4—C5114.60 (19)N2—C13—C14—C15177.16 (17)
C12—C3—C4—C5133.18 (18)C13—C14—C15—C160.6 (3)
C2—C3—C4—C19170.14 (16)C14—C15—C16—C171.3 (3)
C18—C3—C4—C1962.2 (2)C15—C16—C17—C180.5 (3)
C12—C3—C4—C1950.0 (2)C16—C17—C18—C131.1 (3)
C19—C4—C5—N14.7 (3)C16—C17—C18—C3176.77 (18)
C3—C4—C5—N1172.18 (17)C14—C13—C18—C171.8 (3)
C19—C4—C5—O1174.29 (16)N2—C13—C18—C17176.64 (16)
C3—C4—C5—O18.8 (3)C14—C13—C18—C3178.38 (16)
C1—O1—C5—N1176.23 (15)N2—C13—C18—C30.1 (2)
C1—O1—C5—C42.9 (3)C2—C3—C18—C1769.0 (2)
C1—C2—C6—O2173.11 (17)C4—C3—C18—C1755.8 (2)
C3—C2—C6—O27.5 (3)C12—C3—C18—C17174.93 (18)
C1—C2—C6—C79.4 (2)C2—C3—C18—C13114.90 (17)
C3—C2—C6—C7170.05 (16)C4—C3—C18—C13120.22 (16)
O2—C6—C7—C8147.85 (17)C12—C3—C18—C131.13 (18)
C2—C6—C7—C834.6 (2)C20—O5—C19—O47.4 (3)
C6—C7—C8—C950.6 (2)C20—O5—C19—C4171.23 (16)
C6—C7—C8—C1069.8 (2)C5—C4—C19—O44.3 (3)
C6—C7—C8—C11169.86 (16)C3—C4—C19—O4172.61 (17)
C2—C1—C9—C823.1 (3)C5—C4—C19—O5174.22 (16)
O1—C1—C9—C8158.03 (15)C3—C4—C19—O58.8 (2)
C7—C8—C9—C144.1 (2)C19—O5—C20—C21154.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.882.032.658 (2)128
N1—H1B···O3i0.881.922.794 (2)175
N2—H2···O2ii0.882.042.8435 (19)152
C16—H16···O4iii0.952.543.448 (2)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H22N2O5
Mr382.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)8.4298 (14), 11.6791 (17), 19.024 (3)
β (°) 99.136 (4)
V3)1849.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.35 × 0.12
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.814, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
17728, 3374, 2944
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.107, 1.15
No. of reflections3374
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.882.032.658 (2)127.6
N1—H1B···O3i0.881.922.794 (2)174.8
N2—H2···O2ii0.882.042.8435 (19)151.5
C16—H16···O4iii0.952.543.448 (2)159.2
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

This work was partially supported by the Natural Science Foundation of Higher Education Institutions of Jiangsu Province (grant No. 09KJB150012), the Special Presidential Foundation of Xuzhou Medical College (grant No. 09KJZ19) and the Open Foundation of the Key Laboratory of Cancer Biotherapy of Xuzhou Medical College (grant No. C0901).

References

First citationAbdel-Rahman, A. H., Keshk, E. M., Hanna, M. A. & El-Bady, Sh. M. (2004). Bioorg. Med. Chem. 12, 2483–2488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationJoshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12.  CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, 273–324.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, S. L., Ji, S. J. & Zhang, Y. (2007). Tetrahedron, 63, 9365–9372.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds