organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl ent-15α-bromo-16-oxo­beyeran-19-oate

aSchool of Chemistry and Chemical Engineering, Institute of Pharmaceutical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: junq.chen@yahoo.com.cn

(Received 2 January 2010; accepted 18 January 2010; online 23 January 2010)

The title compound, C23H35BrO3, synthesized by esterification and bromination of isosteviol, comprises a fused four-ring system. Two of the six-membered rings adopt a regular chair conformation, whereas the remaining six-membered ring is an unsymmetrical distorted chair. The stereochemistry at the two six-membered ring junctions is trans, while the five-membered ring adopts an envelope conformation.

Related literature

For the pharmacological activity of isosteviol, see: Liu et al. (2001[Liu, J. C., Kao, P. F., Hsieh, M. H., Chen, Y. J. & Chan, P. (2001). Acta Cardiol. Sin. 17, 133-140.]); Mizushina et al. (2005[Mizushina, Y., Akihis, T., Ukiya, M., Hamasaki, Y., Murakami-Nakai, C., Kuriyama, I., Takeuchi, T., Sugawara, F. & Yoshid, H. (2005). Life Sci. 77, 2127-2140.]); Wong et al. (2004[Wong, K. L., Chan, P., Yang, H. Y., Hsu, F. L., Liu, I. M., Cheng, Y. W. & Cheng, J. T. (2004). Life Sci. 74, 2379-2387.]); Xu et al. (2007[Xu, D. Y., Li, Y. F., Wang, J. P., Davey, A. K., Zhang, S. J. & Evans, A. M. (2007). Life Sci. 80, 269-274.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of isosteviol derivates via esterification and bromination, see: Cai et al. (2009[Cai, J., Zhou, W., Chen, J. Q., Sun, M. & Ji, M. (2009). J. Chem. Crystallogr. 39, 108-111.]); Shi (2010[Shi, H. (2010). Acta Cryst. E66, o154.]); Wu et al. (2009[Wu, Y., Yang, J. H., Dai, G. F., Liu, C. J., Tian, G. Q., Ma, W. Y. & Tao, J. C. (2009). Bioorg. Med. Chem. 17, 1464-1473.]).

[Scheme 1]

Experimental

Crystal data
  • C23H35BrO3

  • Mr = 439.42

  • Orthorhombic, P 21 21 21

  • a = 11.203 (3) Å

  • b = 11.800 (3) Å

  • c = 16.988 (5) Å

  • V = 2245.8 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 298 K

  • 0.50 × 0.45 × 0.41 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.458, Tmax = 0.518

  • 11796 measured reflections

  • 3944 independent reflections

  • 2383 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 0.96

  • 3944 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1687 Friedel pairs

  • Flack parameter: −0.024 (13)

Table 1
The puckering parameters (Å, °) for the six and five membered rings in compound I.

Puckering parameters Ring A Ring B Ring C Ring D
Q 0.540 (5) 0.563 (4) 0.641 (5) 0.441 (5)
θ 180.0 (5) 171.9 (4) 19.3 (4)  
φ 314 (67) 98 (3) 243.1 (14) 134.2 (7)
Ring A atoms C1–C5/C15, B C5–C6/C12–C15, C C6–C9/C12/C16 and D C9–C12/C16.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isosteviol is a tetracyclic diterpenoid with a beyerane skeleton, which has good pharmacological activity against broad spectrum significant diseases including ischemia-reperfusion injury, hypertension, and cancer (Wong et al., 2004; Liu, et al., 2001; Xu, et al., 2007; Mizushina et al., 2005). The title compound was obtained by esterification and bromination of isosteviol, respectively. The molecule structure of (I) contains a fused four-ring system A/B/C/D (Fig. 1). The A/B ring and B/C junction are trans-fused, and C/D is cis-fused. Rings A and B adopt chair conformations and ring C is in a distorted chair conformation, with puckering amplitude Q = 0.641 (5) Å, θ= 19.3 (4)° and φ= 243.1 (14)° (Cremer & Pople, 1975). The distortion may be attributed to the narrowing of the C9—C16—C12 bond angle to 103.8 (4)°. The five-membered ring D adopts an envelope conformation with atom C16 displaced from the C9/C10/C11/C12 plane by 0.281 (5) Å. The C17—C1—C2—C3 torsion angle of -73.8 (5)° describes the β-orientation of the isopropyl ester group with respect to the ent-kaurane nucleus.

Related literature top

For the pharmacological activity of isosteviol, see: Liu et al. (2001); Mizushina et al. (2005); Wong et al. (2004); Xu et al. (2007). For ring conformations, see: Cremer & Pople (1975). For the synthesis of isosteviol derivates via esterification and bromination, see: Cai et al. (2009); Shi (2010); Wu et al. (2009).

Experimental top

Isosteviol was obtained by hydrolysis of stevioside with 10% sulfuric acid at 95 °C for 7 h and recrystallization from ethanol gave colorless crystals of isosteviol in 80% yield. Isosteviol (5 g, 16 mmol), K2CO3 (3.3 g, 32 mmol) and 2-bromopropane (2 ml, 21 mmol) were dissolved in 100 ml acetonitrile. After reflux of the above mixture for 5.5 h, the resulting mixture was cooled to room temperature, and then distilled to one third volume under reduced pressure. The residue was poured into ice water, and the resulting precipitates were collected by filtration. The crude product was purified by recrystallization with ethanol to afford isopropyl ent-16-oxobeyeran-19-oate (5.4 g, 95%).

Isopropyl ent-16-oxobeyeran-19-oate (3.6 g, 10 mmol) and N-bromosuccinimide (5.3 g, 30 mmol) were dissolved in 50 ml tetrachloromethane. After reflux of the above mixture for 11.5 h, the resulting mixture was cooled to room temperature, and then distilled under reduced pressure. The residue was purified by column chromatography on silica (petroleum ether/ethyl acetate = 60:1, v/v) to give the title compound (4.0 g, 91%). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of ethanol solution at room temperature. m.p. 396–397 K; 1H NMR(500 MHz, CDCl3), δH p.p.m.: 0.79(s, 3H), 1.10(s, 3H), 1.19(s, 3H), 1.24–1.26(q, 6H), 1.09–2.21(m, 18H), 4.51–4.52(d, 1H, J=2.63 Hz), 4.96–5.01(m, 1H); 13C NMR(75 MHz, CDCl3), δC p.p.m.: 13.84, 18.91, 19.99, 20.70, 20.85, 21.63, 21.70, 28.86, 37.84, 37.89, 38.48, 38.85, 39.50, 43.01, 43.72, 48.35, 50.06, 56.01, 56.10, 57.20, 67.38, 176.46, 215.73; MS (ESI): [M+H]+ 439.2, [M+K]+ 477.1; IR(KBr): ν 2954.56, 1743.42, 1716.42 cm-1; Anal. calcd for C23H35BrO3 (%): C 62.87, H 8.03, Found: C 62.81, H 7.89.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C–H distances in the range 0.96–0.98 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Structure description top

Isosteviol is a tetracyclic diterpenoid with a beyerane skeleton, which has good pharmacological activity against broad spectrum significant diseases including ischemia-reperfusion injury, hypertension, and cancer (Wong et al., 2004; Liu, et al., 2001; Xu, et al., 2007; Mizushina et al., 2005). The title compound was obtained by esterification and bromination of isosteviol, respectively. The molecule structure of (I) contains a fused four-ring system A/B/C/D (Fig. 1). The A/B ring and B/C junction are trans-fused, and C/D is cis-fused. Rings A and B adopt chair conformations and ring C is in a distorted chair conformation, with puckering amplitude Q = 0.641 (5) Å, θ= 19.3 (4)° and φ= 243.1 (14)° (Cremer & Pople, 1975). The distortion may be attributed to the narrowing of the C9—C16—C12 bond angle to 103.8 (4)°. The five-membered ring D adopts an envelope conformation with atom C16 displaced from the C9/C10/C11/C12 plane by 0.281 (5) Å. The C17—C1—C2—C3 torsion angle of -73.8 (5)° describes the β-orientation of the isopropyl ester group with respect to the ent-kaurane nucleus.

For the pharmacological activity of isosteviol, see: Liu et al. (2001); Mizushina et al. (2005); Wong et al. (2004); Xu et al. (2007). For ring conformations, see: Cremer & Pople (1975). For the synthesis of isosteviol derivates via esterification and bromination, see: Cai et al. (2009); Shi (2010); Wu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Isopropyl ent-15α-bromo-16-oxobeyeran-19-oate top
Crystal data top
C23H35BrO3Dx = 1.300 Mg m3
Mr = 439.42Melting point = 396–397 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2087 reflections
a = 11.203 (3) Åθ = 2.2–17.6°
b = 11.800 (3) ŵ = 1.85 mm1
c = 16.988 (5) ÅT = 298 K
V = 2245.8 (11) Å3Block, colourless
Z = 40.50 × 0.45 × 0.41 mm
F(000) = 928
Data collection top
Bruker SMART CCD area-detector
diffractometer
3944 independent reflections
Radiation source: fine-focus sealed tube2383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1312
Tmin = 0.458, Tmax = 0.518k = 914
11796 measured reflectionsl = 2019
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0375P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 0.96Δρmax = 0.40 e Å3
3944 reflectionsΔρmin = 0.26 e Å3
245 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0190 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1687 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.024 (13)
Crystal data top
C23H35BrO3V = 2245.8 (11) Å3
Mr = 439.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.203 (3) ŵ = 1.85 mm1
b = 11.800 (3) ÅT = 298 K
c = 16.988 (5) Å0.50 × 0.45 × 0.41 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3944 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2383 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.518Rint = 0.093
11796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.40 e Å3
S = 0.96Δρmin = 0.26 e Å3
3944 reflectionsAbsolute structure: Flack (1983), 1687 Friedel pairs
245 parametersAbsolute structure parameter: 0.024 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68536 (6)0.37853 (5)0.23962 (3)0.0740 (3)
O10.8434 (3)0.8337 (3)0.2930 (2)0.0733 (12)
O20.9186 (4)0.9167 (3)0.3975 (2)0.0694 (12)
O30.7310 (4)0.2287 (3)0.3988 (3)0.0794 (13)
C10.7080 (4)0.8666 (4)0.3967 (2)0.0385 (12)
C20.7046 (5)0.9117 (4)0.4811 (3)0.0498 (14)
H2A0.74660.98360.48280.060*
H2B0.62210.92600.49540.060*
C30.7588 (5)0.8336 (4)0.5414 (3)0.0541 (15)
H3A0.74740.86550.59350.065*
H3B0.84390.82730.53200.065*
C40.7018 (5)0.7149 (4)0.5382 (2)0.0459 (13)
H4A0.74340.66560.57480.055*
H4B0.61940.72030.55530.055*
C50.7051 (4)0.6609 (3)0.4559 (2)0.0323 (11)
C60.6208 (4)0.5550 (3)0.4581 (3)0.0320 (11)
H60.54460.58480.47740.038*
C70.6560 (5)0.4652 (4)0.5190 (3)0.0475 (14)
H7A0.73690.44040.50830.057*
H7B0.65520.49950.57090.057*
C80.5740 (5)0.3617 (4)0.5195 (3)0.0526 (14)
H8A0.50030.38110.54640.063*
H8B0.61210.30120.54890.063*
C90.5444 (5)0.3191 (4)0.4363 (3)0.0486 (14)
C100.6638 (5)0.3074 (4)0.3954 (3)0.0487 (14)
C110.6880 (5)0.4191 (4)0.3513 (2)0.0381 (12)
H110.76640.44930.36590.046*
C120.5894 (4)0.5006 (3)0.3769 (2)0.0307 (11)
C130.5508 (4)0.5921 (4)0.3191 (3)0.0375 (12)
H13A0.54340.55880.26710.045*
H13B0.47280.62010.33440.045*
C140.6371 (4)0.6909 (4)0.3149 (2)0.0354 (12)
H14A0.60730.74660.27780.042*
H14B0.71390.66430.29610.042*
C150.6524 (4)0.7460 (3)0.3957 (2)0.0318 (11)
H150.57040.75800.41400.038*
C160.4857 (4)0.4155 (4)0.3910 (3)0.0433 (14)
H16A0.42230.45000.42160.052*
H16B0.45300.38880.34150.052*
C170.8350 (5)0.8739 (4)0.3649 (3)0.0427 (12)
C180.6337 (5)0.9479 (4)0.3449 (3)0.0606 (17)
H18A0.55180.94630.36160.091*
H18B0.63860.92430.29090.091*
H18C0.66431.02350.34990.091*
C190.8353 (4)0.6305 (4)0.4370 (3)0.0418 (12)
H19A0.83960.59770.38540.063*
H19B0.86420.57700.47510.063*
H19C0.88340.69770.43880.063*
C200.4736 (5)0.2087 (4)0.4388 (4)0.0731 (19)
H20A0.39940.22110.46570.110*
H20B0.51890.15200.46620.110*
H20C0.45800.18350.38610.110*
C210.9562 (6)0.8432 (6)0.2497 (4)0.088 (2)
H211.01430.88720.28010.105*
C221.0009 (6)0.7247 (7)0.2372 (5)0.110 (3)
H22A1.01970.69110.28720.166*
H22B1.07120.72650.20500.166*
H22C0.94030.68060.21160.166*
C230.9293 (9)0.9009 (7)0.1744 (4)0.131 (3)
H23A0.90200.97660.18480.197*
H23B0.86820.85980.14690.197*
H23C1.00010.90390.14260.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0767 (4)0.0953 (5)0.0501 (4)0.0172 (4)0.0068 (3)0.0263 (3)
O10.068 (3)0.097 (3)0.055 (2)0.043 (2)0.011 (2)0.0233 (19)
O20.047 (3)0.091 (3)0.070 (3)0.024 (2)0.014 (2)0.016 (2)
O30.080 (3)0.040 (2)0.118 (4)0.021 (2)0.023 (3)0.001 (2)
C10.038 (3)0.035 (3)0.043 (3)0.001 (2)0.009 (2)0.006 (2)
C20.049 (4)0.041 (3)0.059 (3)0.005 (2)0.006 (3)0.017 (2)
C30.062 (4)0.062 (4)0.038 (3)0.010 (3)0.004 (3)0.020 (3)
C40.052 (4)0.050 (3)0.036 (3)0.004 (3)0.005 (3)0.004 (2)
C50.028 (3)0.038 (3)0.031 (2)0.006 (2)0.005 (2)0.0012 (19)
C60.028 (3)0.033 (3)0.035 (3)0.009 (2)0.004 (2)0.002 (2)
C70.063 (4)0.044 (3)0.035 (3)0.011 (3)0.005 (3)0.003 (2)
C80.067 (4)0.040 (3)0.051 (3)0.001 (3)0.013 (3)0.010 (3)
C90.053 (4)0.033 (3)0.060 (4)0.012 (3)0.017 (3)0.004 (3)
C100.057 (4)0.033 (3)0.056 (3)0.008 (3)0.007 (3)0.007 (3)
C110.037 (3)0.043 (3)0.034 (3)0.002 (2)0.004 (3)0.006 (2)
C120.028 (3)0.027 (3)0.038 (3)0.001 (2)0.004 (2)0.002 (2)
C130.036 (3)0.041 (3)0.036 (3)0.004 (2)0.006 (2)0.004 (2)
C140.037 (3)0.036 (3)0.033 (3)0.000 (2)0.007 (2)0.004 (2)
C150.024 (3)0.033 (3)0.037 (3)0.002 (2)0.008 (2)0.007 (2)
C160.033 (3)0.038 (3)0.058 (3)0.006 (2)0.011 (2)0.007 (3)
C170.053 (4)0.033 (3)0.042 (3)0.011 (3)0.010 (3)0.000 (2)
C180.063 (4)0.040 (3)0.079 (4)0.004 (3)0.030 (3)0.007 (3)
C190.027 (3)0.046 (3)0.051 (3)0.001 (3)0.007 (2)0.006 (2)
C200.081 (5)0.043 (4)0.095 (5)0.014 (3)0.025 (4)0.004 (3)
C210.072 (4)0.121 (6)0.070 (5)0.053 (4)0.033 (4)0.027 (5)
C220.078 (5)0.155 (8)0.097 (6)0.012 (5)0.032 (4)0.005 (6)
C230.186 (10)0.113 (7)0.094 (6)0.046 (6)0.064 (6)0.004 (5)
Geometric parameters (Å, º) top
Br1—C111.957 (4)C10—C111.539 (6)
O1—C171.314 (5)C11—C121.528 (6)
O1—C211.467 (6)C11—H110.9800
O2—C171.199 (5)C12—C131.522 (6)
O3—C101.197 (6)C12—C161.554 (6)
C1—C171.524 (6)C13—C141.515 (6)
C1—C21.529 (6)C13—H13A0.9700
C1—C181.546 (6)C13—H13B0.9700
C1—C151.554 (6)C14—C151.528 (6)
C2—C31.506 (7)C14—H14A0.9700
C2—H2A0.9700C14—H14B0.9700
C2—H2B0.9700C15—H150.9800
C3—C41.541 (6)C16—H16A0.9700
C3—H3A0.9700C16—H16B0.9700
C3—H3B0.9700C18—H18A0.9600
C4—C51.536 (6)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
C4—H4B0.9700C19—H19A0.9600
C5—C191.536 (6)C19—H19B0.9600
C5—C151.551 (6)C19—H19C0.9600
C5—C61.567 (6)C20—H20A0.9600
C6—C71.532 (6)C20—H20B0.9600
C6—C121.562 (6)C20—H20C0.9600
C6—H60.9800C21—C231.481 (10)
C7—C81.528 (6)C21—C221.500 (9)
C7—H7A0.9700C21—H210.9800
C7—H7B0.9700C22—H22A0.9600
C8—C91.537 (7)C22—H22B0.9600
C8—H8A0.9700C22—H22C0.9600
C8—H8B0.9700C23—H23A0.9600
C9—C101.514 (7)C23—H23B0.9600
C9—C161.523 (7)C23—H23C0.9600
C9—C201.526 (7)
C17—O1—C21120.0 (4)C13—C12—C6110.0 (3)
C17—C1—C2109.6 (4)C11—C12—C6110.3 (4)
C17—C1—C18105.4 (4)C16—C12—C6107.3 (4)
C2—C1—C18107.7 (4)C14—C13—C12113.3 (4)
C17—C1—C15115.0 (4)C14—C13—H13A108.9
C2—C1—C15108.6 (4)C12—C13—H13A108.9
C18—C1—C15110.2 (4)C14—C13—H13B108.9
C3—C2—C1114.5 (4)C12—C13—H13B108.9
C3—C2—H2A108.6H13A—C13—H13B107.7
C1—C2—H2A108.6C13—C14—C15110.9 (4)
C3—C2—H2B108.6C13—C14—H14A109.4
C1—C2—H2B108.6C15—C14—H14A109.4
H2A—C2—H2B107.6C13—C14—H14B109.4
C2—C3—C4111.4 (4)C15—C14—H14B109.4
C2—C3—H3A109.3H14A—C14—H14B108.0
C4—C3—H3A109.3C14—C15—C5111.1 (3)
C2—C3—H3B109.3C14—C15—C1116.4 (4)
C4—C3—H3B109.3C5—C15—C1115.7 (3)
H3A—C3—H3B108.0C14—C15—H15103.9
C5—C4—C3113.6 (4)C5—C15—H15103.9
C5—C4—H4A108.8C1—C15—H15103.9
C3—C4—H4A108.8C9—C16—C12103.8 (4)
C5—C4—H4B108.8C9—C16—H16A111.0
C3—C4—H4B108.8C12—C16—H16A111.0
H4A—C4—H4B107.7C9—C16—H16B111.0
C4—C5—C19108.0 (4)C12—C16—H16B111.0
C4—C5—C15108.8 (3)H16A—C16—H16B109.0
C19—C5—C15112.0 (4)O2—C17—O1121.7 (5)
C4—C5—C6107.2 (4)O2—C17—C1126.1 (4)
C19—C5—C6113.0 (3)O1—C17—C1112.1 (4)
C15—C5—C6107.6 (3)C1—C18—H18A109.5
C7—C6—C12111.7 (3)C1—C18—H18B109.5
C7—C6—C5114.4 (4)H18A—C18—H18B109.5
C12—C6—C5116.3 (3)C1—C18—H18C109.5
C7—C6—H6104.3H18A—C18—H18C109.5
C12—C6—H6104.3H18B—C18—H18C109.5
C5—C6—H6104.3C5—C19—H19A109.5
C8—C7—C6113.7 (4)C5—C19—H19B109.5
C8—C7—H7A108.8H19A—C19—H19B109.5
C6—C7—H7A108.8C5—C19—H19C109.5
C8—C7—H7B108.8H19A—C19—H19C109.5
C6—C7—H7B108.8H19B—C19—H19C109.5
H7A—C7—H7B107.7C9—C20—H20A109.5
C7—C8—C9112.7 (4)C9—C20—H20B109.5
C7—C8—H8A109.1H20A—C20—H20B109.5
C9—C8—H8A109.1C9—C20—H20C109.5
C7—C8—H8B109.1H20A—C20—H20C109.5
C9—C8—H8B109.1H20B—C20—H20C109.5
H8A—C8—H8B107.8O1—C21—C23107.0 (6)
C10—C9—C16102.5 (4)O1—C21—C22106.7 (5)
C10—C9—C20113.2 (4)C23—C21—C22112.0 (6)
C16—C9—C20115.3 (5)O1—C21—H21110.3
C10—C9—C8105.2 (4)C23—C21—H21110.3
C16—C9—C8108.3 (4)C22—C21—H21110.3
C20—C9—C8111.5 (5)C21—C22—H22A109.5
O3—C10—C9127.2 (5)C21—C22—H22B109.5
O3—C10—C11125.2 (5)H22A—C22—H22B109.5
C9—C10—C11107.6 (4)C21—C22—H22C109.5
C12—C11—C10105.9 (4)H22A—C22—H22C109.5
C12—C11—Br1114.7 (3)H22B—C22—H22C109.5
C10—C11—Br1105.1 (3)C21—C23—H23A109.5
C12—C11—H11110.3C21—C23—H23B109.5
C10—C11—H11110.3H23A—C23—H23B109.5
Br1—C11—H11110.3C21—C23—H23C109.5
C13—C12—C11117.9 (4)H23A—C23—H23C109.5
C13—C12—C16110.2 (4)H23B—C23—H23C109.5
C11—C12—C16100.2 (3)

Experimental details

Crystal data
Chemical formulaC23H35BrO3
Mr439.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)11.203 (3), 11.800 (3), 16.988 (5)
V3)2245.8 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.50 × 0.45 × 0.41
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.458, 0.518
No. of measured, independent and
observed [I > 2σ(I)] reflections
11796, 3944, 2383
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 0.96
No. of reflections3944
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.26
Absolute structureFlack (1983), 1687 Friedel pairs
Absolute structure parameter0.024 (13)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

The puckering parameters (Å, ° ) for the six and five membered rings in compound I. top
Puckering parametersRing ARing BRing CRing D
Q0.540 (5)0.563 (4)0.641 (5)0.441 (5)
θ180.0 (5)171.9 (4)19.3 (4)
φ314 (67)98 (3)243.1 (14)134.2 (7)
Ring A atoms C1–C5/C15, B C5–C6/C12–C15, C C6–C9/C12/C16 and D C9–C12/C16.
 

Acknowledgements

We are grateful to the China Ministry of Health Foundation for Scientific Research (project No. WKJ2005–2-022) for financial support.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J., Zhou, W., Chen, J. Q., Sun, M. & Ji, M. (2009). J. Chem. Crystallogr. 39, 108–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, J. C., Kao, P. F., Hsieh, M. H., Chen, Y. J. & Chan, P. (2001). Acta Cardiol. Sin. 17, 133–140.  Google Scholar
First citationMizushina, Y., Akihis, T., Ukiya, M., Hamasaki, Y., Murakami-Nakai, C., Kuriyama, I., Takeuchi, T., Sugawara, F. & Yoshid, H. (2005). Life Sci. 77, 2127–2140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, H. (2010). Acta Cryst. E66, o154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWong, K. L., Chan, P., Yang, H. Y., Hsu, F. L., Liu, I. M., Cheng, Y. W. & Cheng, J. T. (2004). Life Sci. 74, 2379–2387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWu, Y., Yang, J. H., Dai, G. F., Liu, C. J., Tian, G. Q., Ma, W. Y. & Tao, J. C. (2009). Bioorg. Med. Chem. 17, 1464–1473.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, D. Y., Li, Y. F., Wang, J. P., Davey, A. K., Zhang, S. J. & Evans, A. M. (2007). Life Sci. 80, 269–274.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds