organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro­azepan-2-one

aState Key Laboratory of Materials-Oriented Chemcial Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: dcwang@njut.edu.cn

(Received 6 October 2009; accepted 16 January 2010; online 23 January 2010)

In the title compound, C6H10ClNO, an inter­mediate for the production of lysine, there are intra­molecular C—H⋯Cl hydrogen bonds.

Related literature

For the preparation of the title compound, see: Wineman et al. (1958[Wineman, R. J., Hsu, E.-P. T. & Anagnostopoulos, C. E. (1958). J. Am. Chem. Soc. 80, 6233-6237.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10ClNO

  • Mr = 147.60

  • Monoclinic, C 2/c

  • a = 18.776 (4) Å

  • b = 7.3440 (15) Å

  • c = 11.109 (2) Å

  • β = 103.65 (3)°

  • V = 1488.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.881, Tmax = 0.918

  • 2654 measured reflections

  • 1345 independent reflections

  • 1107 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.148

  • S = 1.01

  • 1345 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯Cl 0.97 2.82 3.215 (3) 105
C3—H3B⋯Cl 0.97 2.80 3.374 (3) 119

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some derivatives of 3-chloroazepan-2-one is important chemical material. We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The seven-membered ring A (N/C1-C6) is not planar, having total puckering amplitude, QT, of 0.702 (2) Å (Cremer & Pople, 1975).

The molecular structure of (I) is shown in Fig. 1. A packing diagram of (I) is shown in Fig. 2, where the dash line indicates C—H···Cl hydrogen bond.

Related literature top

For the preparation of the title compound, see: Wineman et al. (1958). For puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

18.2 g (100 mmol) 3,3-dichloro-2-oxohexamethyleneimine, 2 g. 5% palladium-on-charcoal and 18 g. (220 mmol) sodium acetate were added into 100 ml glacial acetic acid. The mixture was placed in in a shaker under hydrogen (2 atm. initial pressure) until one equivalent of hydrogen was absorbed. The catalyst and sodium chloride were removed by filtration. The filtrate was neutralized and extracted with chloroform and concentrated, and then recrystallized by n-hexane to give 18.1g white solid (87.4%). (Wineman et al., 1958) Pure compound (I) was obstained by crystallizing from acetic acid. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanol solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

Some derivatives of 3-chloroazepan-2-one is important chemical material. We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1, and the selected geometric parameters are given in Table 1. The bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The seven-membered ring A (N/C1-C6) is not planar, having total puckering amplitude, QT, of 0.702 (2) Å (Cremer & Pople, 1975).

The molecular structure of (I) is shown in Fig. 1. A packing diagram of (I) is shown in Fig. 2, where the dash line indicates C—H···Cl hydrogen bond.

For the preparation of the title compound, see: Wineman et al. (1958). For puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.
3-Chloroazepan-2-one top
Crystal data top
C6H10ClNOF(000) = 624
Mr = 147.60Dx = 1.317 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.776 (4) Åθ = 9–14°
b = 7.3440 (15) ŵ = 0.43 mm1
c = 11.109 (2) ÅT = 293 K
β = 103.65 (3)°Block, colourless
V = 1488.6 (5) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1107 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.3°, θmin = 2.2°
ω/2θ scansh = 022
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.881, Tmax = 0.918l = 1312
2654 measured reflections3 standard reflections every 200 reflections
1345 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 0.650P]
where P = (Fo2 + 2Fc2)/3
1345 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C6H10ClNOV = 1488.6 (5) Å3
Mr = 147.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.776 (4) ŵ = 0.43 mm1
b = 7.3440 (15) ÅT = 293 K
c = 11.109 (2) Å0.30 × 0.20 × 0.20 mm
β = 103.65 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1107 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.881, Tmax = 0.9183 standard reflections every 200 reflections
2654 measured reflections intensity decay: 1%
1345 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.01Δρmax = 0.36 e Å3
1345 reflectionsΔρmin = 0.33 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.05987 (4)0.14400 (11)0.65254 (6)0.0703 (3)
O0.24623 (10)0.2773 (2)0.75479 (18)0.0609 (5)
N0.17420 (10)0.4720 (2)0.62946 (16)0.0436 (5)
H0A0.20350.55670.66450.052*
C10.08706 (17)0.2590 (4)0.3877 (2)0.0647 (8)
H1A0.08400.22640.30200.078*
H1B0.03830.24710.40220.078*
C20.11018 (17)0.4574 (4)0.4058 (2)0.0671 (8)
H2A0.15870.47020.39060.081*
H2B0.07680.53050.34460.081*
C30.11132 (14)0.5312 (3)0.5331 (2)0.0552 (7)
H3A0.11130.66320.52950.066*
H3B0.06680.49360.55600.066*
C40.19194 (12)0.3048 (3)0.66976 (19)0.0402 (5)
C50.14703 (13)0.1426 (3)0.6099 (2)0.0458 (6)
H5A0.17310.03340.64750.055*
C60.13727 (15)0.1235 (4)0.4704 (2)0.0579 (7)
H6B0.18530.13200.45250.069*
H6A0.11880.00210.44690.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0684 (5)0.0767 (6)0.0696 (5)0.0248 (4)0.0237 (4)0.0048 (3)
O0.0615 (10)0.0416 (9)0.0627 (10)0.0047 (8)0.0190 (9)0.0013 (8)
N0.0462 (10)0.0336 (10)0.0451 (10)0.0026 (8)0.0014 (8)0.0018 (8)
C10.0739 (18)0.0727 (18)0.0402 (13)0.0032 (15)0.0014 (12)0.0069 (12)
C20.0781 (19)0.0712 (18)0.0448 (14)0.0010 (15)0.0001 (13)0.0173 (12)
C30.0559 (14)0.0410 (13)0.0606 (15)0.0059 (11)0.0024 (12)0.0090 (11)
C40.0426 (11)0.0364 (11)0.0389 (11)0.0013 (9)0.0040 (9)0.0006 (9)
C50.0488 (12)0.0370 (11)0.0469 (12)0.0012 (10)0.0022 (10)0.0003 (10)
C60.0648 (16)0.0545 (15)0.0516 (14)0.0012 (12)0.0084 (12)0.0158 (11)
Geometric parameters (Å, º) top
Cl—C51.808 (3)C2—H2A0.9700
O—C41.232 (3)C2—H2B0.9700
N—C41.322 (3)C3—H3A0.9700
N—C31.460 (3)C3—H3B0.9700
N—H0A0.8600C4—C51.519 (3)
C1—C21.520 (4)C5—C61.524 (3)
C1—C61.521 (4)C5—H5A0.9800
C1—H1A0.9700C6—H6B0.9700
C1—H1B0.9700C6—H6A0.9700
C2—C31.510 (4)
C4—N—C3128.35 (19)N—C3—H3B108.7
C4—N—H0A115.8C2—C3—H3B108.7
C3—N—H0A115.8H3A—C3—H3B107.6
C2—C1—C6115.5 (2)O—C4—N120.6 (2)
C2—C1—H1A108.4O—C4—C5118.68 (19)
C6—C1—H1A108.4N—C4—C5120.71 (18)
C2—C1—H1B108.4C4—C5—C6116.0 (2)
C6—C1—H1B108.4C4—C5—Cl108.92 (15)
H1A—C1—H1B107.5C6—C5—Cl111.58 (17)
C3—C2—C1114.1 (2)C4—C5—H5A106.6
C3—C2—H2A108.7C6—C5—H5A106.6
C1—C2—H2A108.7Cl—C5—H5A106.6
C3—C2—H2B108.7C1—C6—C5117.6 (2)
C1—C2—H2B108.7C1—C6—H6B107.9
H2A—C2—H2B107.6C5—C6—H6B107.9
N—C3—C2114.2 (2)C1—C6—H6A107.9
N—C3—H3A108.7C5—C6—H6A107.9
C2—C3—H3A108.7H6B—C6—H6A107.2
C6—C1—C2—C362.8 (3)N—C4—C5—C655.0 (3)
C4—N—C3—C263.1 (3)O—C4—C5—Cl109.8 (2)
C1—C2—C3—N76.1 (3)N—C4—C5—Cl71.8 (2)
C3—N—C4—O178.0 (2)C2—C1—C6—C561.3 (4)
C3—N—C4—C53.6 (4)C4—C5—C6—C171.6 (3)
O—C4—C5—C6123.4 (2)Cl—C5—C6—C153.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl0.972.823.215 (3)105
C3—H3B···Cl0.972.803.374 (3)119

Experimental details

Crystal data
Chemical formulaC6H10ClNO
Mr147.60
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.776 (4), 7.3440 (15), 11.109 (2)
β (°) 103.65 (3)
V3)1488.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.881, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
2654, 1345, 1107
Rint0.020
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.148, 1.01
No. of reflections1345
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.33

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl0.97002.82003.215 (3)105.00
C3—H3B···Cl0.97002.80003.374 (3)119.00
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWineman, R. J., Hsu, E.-P. T. & Anagnostopoulos, C. E. (1958). J. Am. Chem. Soc. 80, 6233–6237.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds