organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Benzyl-2-oxo-1,3-oxazolidin-5-yl)methyl methane­sulfonate

aDepartamento de Química Orgânica, Universidade Federal de Pelotas (UFPel), Campus Universitário, s/n°, Caixa Postal 354, 96010-900 Pelotas, RS, Brazil, bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–Farmanguinhos, R. Sizenando Nabuco 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 21 December 2009; accepted 21 December 2009; online 9 January 2010)

The title compound, C12H15NO5S, features an approximately planar five-membered oxazolidin ring (r.m.s. deviation = 0.045 Å) with the peripheral benzyl and methyl methane­sulfonate residues lying to either side of the plane. In the crystal, N—H⋯O hydrogen bonds, involving one of the sulfur-bound oxo groups as acceptor, lead to the formation of supra­molecular chains along the b axis. These chains are reinforced by C—H⋯O contacts with the carbonyl O atom accepting three such inter­actions. The structure was refined as a racemic twin, with the major component being present 89% of the time.

Related literature

For the use of 1,3-oxazolidin-2-ones as chiral auxiliaries in organic synthesis, see: Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.]); Ager et al. (1996[Ager, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835-876.], 1997[Ager, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3-11.]); Hinter­mann & Seebach (1998[Hintermann, T. & Seebach, D. (1998). Helv. Chim. Acta, 81, 2093-2126.]). For their biological activity, see: Poce et al. (2008[Poce, G., Zappia, G., Porretta, G. C., Botta, B. & Biava, M. (2008). Exp. Opin. Ther. Patents, 18, 97-121.]); Brickner et al. (2008[Brickner, S. J., Barbachyn, M. R., Hutchinson, D. K. & Manninen, P. R. (2008). J. Med. Chem. 51, 1981-1990.]); Means et al. (2006[Means, J. A., Katz, S., Nayek, A., Anupm, R., Hines, J. V. & Bergmeier, S. C. (2006). Bioorg. Med. Chem. Lett. 16, 3600-3604.]); Kaiser et al. (2007[Kaiser, C., Cunico, W., Pinheiro, A. C., de Oliveira, A. G. & Souza, M. V. N. (2007). Rev. Brás. Farm. 88, 83-88.]); Clemmet & Markham (2000[Clemmet, D. & Markham, A. (2000). Drugs, 59, 815-827.]); Ebner et al. (2008[Ebner, D. C., Culhane, J. C., Winkelman, T. N., Haustein, M. D., Ditty, J. L. & Ippoliti, J. T. (2008). Bioorg. Med. Chem. 16, 2651-2656.]); Negwer & Scharnow (2007[Negwer, M. & Scharnow, H. G. (2007). Organic Chemical Drugs and Their Synonyms, 9th ed. Weinheim, Germany: Wiley-VCH.]); Mai et al. (2003[Mai, A., Artico, M., Esposito, M., Ragno, R., Sbardella, G. & Massa, S. (2003). Il Farmaco, 58, 231-241.]). For background to their syntheses, see: Ochoa-Terán & Rivero (2008[Ochoa-Terán, A. & Rivero, I. A. (2008). Arkivoc, pp. 330-343.]); Zappia et al. (2007[Zappia, G., Gacs-Baitz, E., Delle Monache, G., Misiti, D., Nevola, L. & Botta, B. (2007). Curr. Org. Synth. 4, 81-135.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO5S

  • Mr = 285.31

  • Monoclinic, P 21

  • a = 8.7332 (5) Å

  • b = 5.8757 (3) Å

  • c = 12.9650 (7) Å

  • β = 103.317 (3)°

  • V = 647.39 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 120 K

  • 0.26 × 0.08 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.700, Tmax = 1.000

  • 6748 measured reflections

  • 2587 independent reflections

  • 2266 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.123

  • S = 1.11

  • 2587 reflections

  • 177 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (2) 2.28 (2) 3.113 (5) 160 (4)
C1—H1B⋯O5ii 0.98 2.51 3.428 (6) 155
C2—H2A⋯O5ii 0.99 2.32 3.214 (5) 150
C5—H5⋯O5iii 1.00 2.36 3.326 (6) 162
C6—H6B⋯O1iv 0.99 2.59 3.528 (6) 158
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) x, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

1,3-Oxazolidin-2-ones have found use initially as chiral auxiliaries in organic synthesis (Evans et al., 1981; Ager et al., 1996, 1997; Hintermann & Seebach 1998) and more recently in various biological applications, e.g., as a class of synthetic antibacterial agents with potent activity against clinically important susceptible and resistant Gram-positive and anaerobic pathogens (Poce et al., 2008; Brickner et al., 2008; Means et al., 2006; Kaiser et al., 2007; Clemmet & Markham, 2000; Ebner et al., 2008), as interneuron blocking agents or depressants of central synaptic transmission, muscle relaxants, anticonvulsants, and tranquilizers (Negwer & Scharnow, 2007), and as potent and selective monoamine oxidase type A (MAO) inhibitors (Mai et al., 2003). The syntheses of 1,3-oxazolidin-2-ones have been variously reported (Ochoa-Terán & Rivero, 2008; Zappia et al., 2007).

The oxazolidin ring in (I), Fig. 1, is essentially planar with the maximum deviations of 0.036 (5) Å for atom C5 and -0.040 (4) Å for atom N1. The O5 atom lies 0.089 (3) Å out of the plane in the direction of the C2 atom, and the C6 atom is below the plane. The C2–C3–C5–C6 torsion angle of 124.6 (4) ° shows a significant twist consistent with the methanesulfonate residue being splayed out from the rest of the molecule. The methanesulfonate-methyl group is oriented towards the ring-O4 atom.

Supramolecular chains are formed in the crystal structure of (I) along the b direction. These are sustained by N—H···O hydrogen bonds where the oxygen acceptor is an sulfur-bound oxo group, Fig. 2 and Table 1. Three close CH···O-carbonyl contacts, Table 1, provide additional stability to the chain. Chains are linked into supramolecular arrays in the bc plane via weaker C—H···O contacts and these stack along the a axis, Fig. 3 and Table 1.

Related literature top

For the use of 1,3-oxazolidin-2-ones as chiral auxiliaries in organic synthesis, see: Evans et al. (1981); Ager et al. (1996, 1997); Hintermann & Seebach (1998). For their biological activity, see: Poce et al. (2008); Brickner et al. (2008); Means et al. (2006); Kaiser et al. (2007); Clemmet & Markham (2000); Ebner et al. (2008); Negwer & Scharnow (2007); Mai et al. (2003). For background to their syntheses, see: Ochoa-Terán & Rivero (2008); Zappia et al. (2007).

Experimental top

A solution of (4S,5R)-4-benzyl-5-(hydroxymethyl)-1,3-oxazolidin-2-one (1.036 g, 5 mmol) and methanesulfonyl chloride (0.75 ml, 10 mmol) in triethylamine (10 ml) was stirred at room temperature for 2 h, HCl (20 ml, 15%) was added and the mixture was extracted with dichloromethane (5 x 20 ml). The combined organic layers were washed with brine, dried over anhydrous Na2SO4 and evaporated, giving (I) as a brown solid (0.62 g, 44%) which was recrystallized from aqueous ethanol. 1H-NMR (MeOD, 400 MHz): δ 7.30 (m, 5H, Ph), 4.57 (m, 1H, CHO), 4.23 (dd, 1H, 1J = 11.6; 2J = 3.0 Hz, CH2O), 4.11 (dd, 1H, 1J = 11.6; 2J = 4.9 Hz, CH2O), 4.00 (m, 1H, CHN), 3.05 (s, 3H, CH3), 2.92 (m, 2H, CH2Ph) p.p.m.; NH not obs. 13C-NMR (MeOD, 100 MHz): 160.4 (CO), 137.1–128.2 (Ph), 79.5 (CHO), 70.4 (CH2O), 56.3 (CHN), 41.7 (CH2Ph), 37.4 (CH3) p.p.m. MS (m/z): MH+ 286.2.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The methyl H atoms were rotated to fit the electron density. The N–H atom was located in a difference map and refined with the distance restraint N–H = 0.88±0.01 and with Uiso(H) = 1.2Ueq(N). The structure was refined as a racemic twin precluding the determination of the absolute structure.

Structure description top

1,3-Oxazolidin-2-ones have found use initially as chiral auxiliaries in organic synthesis (Evans et al., 1981; Ager et al., 1996, 1997; Hintermann & Seebach 1998) and more recently in various biological applications, e.g., as a class of synthetic antibacterial agents with potent activity against clinically important susceptible and resistant Gram-positive and anaerobic pathogens (Poce et al., 2008; Brickner et al., 2008; Means et al., 2006; Kaiser et al., 2007; Clemmet & Markham, 2000; Ebner et al., 2008), as interneuron blocking agents or depressants of central synaptic transmission, muscle relaxants, anticonvulsants, and tranquilizers (Negwer & Scharnow, 2007), and as potent and selective monoamine oxidase type A (MAO) inhibitors (Mai et al., 2003). The syntheses of 1,3-oxazolidin-2-ones have been variously reported (Ochoa-Terán & Rivero, 2008; Zappia et al., 2007).

The oxazolidin ring in (I), Fig. 1, is essentially planar with the maximum deviations of 0.036 (5) Å for atom C5 and -0.040 (4) Å for atom N1. The O5 atom lies 0.089 (3) Å out of the plane in the direction of the C2 atom, and the C6 atom is below the plane. The C2–C3–C5–C6 torsion angle of 124.6 (4) ° shows a significant twist consistent with the methanesulfonate residue being splayed out from the rest of the molecule. The methanesulfonate-methyl group is oriented towards the ring-O4 atom.

Supramolecular chains are formed in the crystal structure of (I) along the b direction. These are sustained by N—H···O hydrogen bonds where the oxygen acceptor is an sulfur-bound oxo group, Fig. 2 and Table 1. Three close CH···O-carbonyl contacts, Table 1, provide additional stability to the chain. Chains are linked into supramolecular arrays in the bc plane via weaker C—H···O contacts and these stack along the a axis, Fig. 3 and Table 1.

For the use of 1,3-oxazolidin-2-ones as chiral auxiliaries in organic synthesis, see: Evans et al. (1981); Ager et al. (1996, 1997); Hintermann & Seebach (1998). For their biological activity, see: Poce et al. (2008); Brickner et al. (2008); Means et al. (2006); Kaiser et al. (2007); Clemmet & Markham (2000); Ebner et al. (2008); Negwer & Scharnow (2007); Mai et al. (2003). For background to their syntheses, see: Ochoa-Terán & Rivero (2008); Zappia et al. (2007).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) mediated by N–H···O hydrogen bonding and C–H···O contacts, shown as blue and orange dashed lines, respectively. Hydrogen atoms not involved in intermolecular contacts sustaining the chain are omitted for reasons of clarity. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view of the stacking of layers in (I) with partial the interdigitation of the benzene rings. The N–H···O hydrogen bonding and C–H···O contacts stabilizing the supramolecular chains are shown as blue and orange dashed lines, respectively. The C–H···O contacts connecting the chains into layers are shown as green dashed lines. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
(4-Benzyl-2-oxo-1,3-oxazolidin-5-yl)methyl methanesulfonate top
Crystal data top
C12H15NO5SF(000) = 300
Mr = 285.31Dx = 1.464 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7909 reflections
a = 8.7332 (5) Åθ = 2.9–27.5°
b = 5.8757 (3) ŵ = 0.27 mm1
c = 12.9650 (7) ÅT = 120 K
β = 103.317 (3)°Plate, colourless
V = 647.39 (6) Å30.26 × 0.08 × 0.02 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
2587 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2266 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 26.5°, θmin = 3.2°
φ and ω scansh = 810
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 77
Tmin = 0.700, Tmax = 1.000l = 1614
6748 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + 1.5106P]
where P = (Fo2 + 2Fc2)/3
2587 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.33 e Å3
2 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H15NO5SV = 647.39 (6) Å3
Mr = 285.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.7332 (5) ŵ = 0.27 mm1
b = 5.8757 (3) ÅT = 120 K
c = 12.9650 (7) Å0.26 × 0.08 × 0.02 mm
β = 103.317 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2587 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2266 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 1.000Rint = 0.059
6748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.33 e Å3
2587 reflectionsΔρmin = 0.36 e Å3
177 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44667 (11)0.00547 (18)0.67229 (8)0.0215 (2)
O10.6105 (3)0.0327 (6)0.7186 (2)0.0284 (7)
O20.3629 (4)0.1750 (5)0.7089 (2)0.0283 (8)
O30.4391 (3)0.0275 (5)0.5504 (2)0.0210 (7)
O40.2132 (3)0.2865 (5)0.4405 (2)0.0222 (7)
O50.0104 (3)0.5267 (5)0.4294 (2)0.0233 (6)
N10.0074 (4)0.2084 (6)0.3228 (3)0.0223 (8)
H1N0.1104 (13)0.208 (8)0.305 (4)0.027*
C10.3493 (6)0.2628 (8)0.6800 (4)0.0278 (11)
H1A0.36250.30630.75450.042*
H1B0.23700.24480.64730.042*
H1C0.39370.38150.64250.042*
C20.2907 (5)0.1031 (7)0.4793 (3)0.0207 (9)
H2A0.20780.11930.51960.025*
H2B0.30580.25240.44780.025*
C30.2425 (5)0.0726 (7)0.3934 (3)0.0208 (9)
H30.32800.09220.35440.025*
C40.0626 (5)0.3548 (7)0.3990 (3)0.0209 (9)
C50.0868 (4)0.0065 (9)0.3147 (3)0.0198 (8)
H50.03960.13040.34100.024*
C60.1067 (5)0.0349 (8)0.2020 (3)0.0246 (10)
H6A0.15060.10360.17630.030*
H6B0.18240.16070.20300.030*
C70.0472 (5)0.0941 (8)0.1270 (3)0.0229 (9)
C80.1231 (5)0.0627 (8)0.0526 (3)0.0289 (11)
H80.07730.20830.04920.035*
C90.2646 (5)0.0105 (11)0.0168 (3)0.0333 (10)
H90.31460.11990.06740.040*
C100.3333 (6)0.1999 (9)0.0126 (4)0.0326 (11)
H100.43080.23600.05970.039*
C110.2577 (6)0.3580 (8)0.0615 (4)0.0301 (11)
H110.30370.50330.06530.036*
C120.1161 (5)0.3054 (8)0.1297 (4)0.0267 (10)
H120.06510.41600.17920.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0215 (5)0.0219 (5)0.0206 (5)0.0014 (5)0.0037 (4)0.0012 (5)
O10.0221 (14)0.036 (2)0.0237 (15)0.0046 (16)0.0008 (11)0.0039 (15)
O20.0333 (19)0.0263 (18)0.0235 (17)0.0045 (15)0.0030 (14)0.0029 (14)
O30.0161 (13)0.0277 (18)0.0178 (13)0.0015 (13)0.0007 (10)0.0043 (13)
O40.0176 (15)0.0207 (15)0.0260 (16)0.0016 (12)0.0001 (12)0.0014 (13)
O50.0240 (14)0.0174 (16)0.0294 (15)0.0013 (14)0.0082 (12)0.0000 (14)
N10.0172 (18)0.026 (2)0.024 (2)0.0008 (15)0.0046 (15)0.0014 (15)
C10.032 (3)0.021 (2)0.031 (3)0.000 (2)0.009 (2)0.005 (2)
C20.020 (2)0.022 (2)0.019 (2)0.0003 (17)0.0018 (17)0.0022 (17)
C30.020 (2)0.014 (2)0.028 (2)0.0019 (15)0.0052 (17)0.0025 (16)
C40.022 (2)0.021 (2)0.021 (2)0.0033 (18)0.0066 (17)0.0057 (17)
C50.0181 (17)0.0195 (19)0.0217 (19)0.001 (2)0.0041 (14)0.006 (2)
C60.022 (2)0.026 (3)0.025 (2)0.0009 (18)0.0060 (17)0.0007 (18)
C70.027 (2)0.026 (2)0.017 (2)0.0023 (18)0.0080 (18)0.0022 (17)
C80.035 (2)0.029 (3)0.024 (2)0.001 (2)0.0093 (19)0.0006 (18)
C90.041 (2)0.035 (3)0.020 (2)0.004 (3)0.0000 (18)0.003 (3)
C100.027 (2)0.043 (3)0.027 (3)0.003 (2)0.003 (2)0.007 (2)
C110.033 (3)0.024 (3)0.034 (3)0.005 (2)0.008 (2)0.003 (2)
C120.029 (2)0.028 (2)0.022 (2)0.001 (2)0.0024 (18)0.0016 (19)
Geometric parameters (Å, º) top
S1—O11.427 (3)C3—H31.0000
S1—O21.430 (3)C5—C61.529 (5)
S1—O31.578 (3)C5—H51.0000
S1—C11.749 (5)C6—C71.507 (6)
O3—C21.475 (5)C6—H6A0.9900
O4—C41.362 (5)C6—H6B0.9900
O4—C31.445 (5)C7—C121.383 (6)
O5—C41.210 (5)C7—C81.387 (6)
N1—C41.346 (6)C8—C91.385 (6)
N1—C51.462 (6)C8—H80.9500
N1—H1N0.875 (10)C9—C101.381 (8)
C1—H1A0.9800C9—H90.9500
C1—H1B0.9800C10—C111.390 (7)
C1—H1C0.9800C10—H100.9500
C2—C31.506 (5)C11—C121.379 (7)
C2—H2A0.9900C11—H110.9500
C2—H2B0.9900C12—H120.9500
C3—C51.550 (5)
O1—S1—O2118.9 (2)N1—C4—O4109.6 (4)
O1—S1—O3103.99 (16)N1—C5—C6112.8 (3)
O2—S1—O3109.53 (18)N1—C5—C399.9 (4)
O1—S1—C1109.4 (2)C6—C5—C3113.2 (3)
O2—S1—C1109.2 (2)N1—C5—H5110.2
O3—S1—C1104.8 (2)C6—C5—H5110.2
C2—O3—S1119.4 (2)C3—C5—H5110.2
C4—O4—C3109.8 (3)C7—C6—C5111.9 (3)
C4—N1—C5113.8 (4)C7—C6—H6A109.2
C4—N1—H1N117 (3)C5—C6—H6A109.2
C5—N1—H1N123 (3)C7—C6—H6B109.2
S1—C1—H1A109.5C5—C6—H6B109.2
S1—C1—H1B109.5H6A—C6—H6B107.9
H1A—C1—H1B109.5C12—C7—C8118.2 (4)
S1—C1—H1C109.5C12—C7—C6121.3 (4)
H1A—C1—H1C109.5C8—C7—C6120.5 (4)
H1B—C1—H1C109.5C9—C8—C7121.1 (5)
O3—C2—C3108.1 (3)C9—C8—H8119.4
O3—C2—H2A110.1C7—C8—H8119.4
C3—C2—H2A110.1C10—C9—C8120.2 (5)
O3—C2—H2B110.1C10—C9—H9119.9
C3—C2—H2B110.1C8—C9—H9119.9
H2A—C2—H2B108.4C9—C10—C11118.9 (4)
O4—C3—C2109.3 (3)C9—C10—H10120.5
O4—C3—C5106.4 (3)C11—C10—H10120.5
C2—C3—C5111.6 (3)C12—C11—C10120.4 (5)
O4—C3—H3109.8C12—C11—H11119.8
C2—C3—H3109.8C10—C11—H11119.8
C5—C3—H3109.8C11—C12—C7121.1 (4)
O5—C4—N1129.1 (4)C11—C12—H12119.5
O5—C4—O4121.3 (4)C7—C12—H12119.5
O1—S1—O3—C2168.8 (3)C2—C3—C5—N1123.5 (4)
O2—S1—O3—C240.7 (4)O4—C3—C5—C6124.6 (4)
C1—S1—O3—C276.4 (3)C2—C3—C5—C6116.3 (4)
S1—O3—C2—C3122.4 (3)N1—C5—C6—C766.3 (5)
C4—O4—C3—C2121.3 (4)C3—C5—C6—C7178.9 (4)
C4—O4—C3—C50.7 (4)C5—C6—C7—C1273.9 (5)
O3—C2—C3—O462.6 (4)C5—C6—C7—C8106.5 (5)
O3—C2—C3—C5180.0 (3)C12—C7—C8—C90.4 (6)
C5—N1—C4—O5174.4 (4)C6—C7—C8—C9180.0 (4)
C5—N1—C4—O47.3 (5)C7—C8—C9—C100.3 (7)
C3—O4—C4—O5177.7 (4)C8—C9—C10—C110.5 (7)
C3—O4—C4—N13.8 (5)C9—C10—C11—C120.1 (7)
C4—N1—C5—C6127.6 (4)C10—C11—C12—C70.9 (7)
C4—N1—C5—C37.1 (4)C8—C7—C12—C111.0 (7)
O4—C3—C5—N14.4 (4)C6—C7—C12—C11179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (2)2.28 (2)3.113 (5)160 (4)
C1—H1B···O5ii0.982.513.428 (6)155
C2—H2A···O5ii0.992.323.214 (5)150
C5—H5···O5iii1.002.363.326 (6)162
C6—H6B···O1iv0.992.593.528 (6)158
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1; (iii) x, y1, z; (iv) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H15NO5S
Mr285.31
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)8.7332 (5), 5.8757 (3), 12.9650 (7)
β (°) 103.317 (3)
V3)647.39 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.26 × 0.08 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.700, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6748, 2587, 2266
Rint0.059
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.123, 1.11
No. of reflections2587
No. of parameters177
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.36

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (2)2.28 (2)3.113 (5)160 (4)
C1—H1B···O5ii0.982.513.428 (6)155
C2—H2A···O5ii0.992.323.214 (5)150
C5—H5···O5iii1.002.363.326 (6)162
C6—H6B···O1iv0.992.593.528 (6)158
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1; (iii) x, y1, z; (iv) x+1, y1/2, z+1.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAger, D. J., Prakash, I. & Schaad, D. R. (1996). Chem. Rev. 96, 835–876.  CrossRef PubMed CAS Web of Science Google Scholar
First citationAger, D. J., Prakash, I. & Schaad, D. R. (1997). Aldrichim. Acta, 30, 3–11.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrickner, S. J., Barbachyn, M. R., Hutchinson, D. K. & Manninen, P. R. (2008). J. Med. Chem. 51, 1981–1990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClemmet, D. & Markham, A. (2000). Drugs, 59, 815–827.  Web of Science PubMed Google Scholar
First citationEbner, D. C., Culhane, J. C., Winkelman, T. N., Haustein, M. D., Ditty, J. L. & Ippoliti, J. T. (2008). Bioorg. Med. Chem. 16, 2651–2656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHintermann, T. & Seebach, D. (1998). Helv. Chim. Acta, 81, 2093–2126.  CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaiser, C., Cunico, W., Pinheiro, A. C., de Oliveira, A. G. & Souza, M. V. N. (2007). Rev. Brás. Farm. 88, 83–88.  CAS Google Scholar
First citationMai, A., Artico, M., Esposito, M., Ragno, R., Sbardella, G. & Massa, S. (2003). Il Farmaco, 58, 231–241.  CrossRef PubMed CAS Google Scholar
First citationMeans, J. A., Katz, S., Nayek, A., Anupm, R., Hines, J. V. & Bergmeier, S. C. (2006). Bioorg. Med. Chem. Lett. 16, 3600–3604.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNegwer, M. & Scharnow, H. G. (2007). Organic Chemical Drugs and Their Synonyms, 9th ed. Weinheim, Germany: Wiley–VCH.  Google Scholar
First citationOchoa-Terán, A. & Rivero, I. A. (2008). Arkivoc, pp. 330–343.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoce, G., Zappia, G., Porretta, G. C., Botta, B. & Biava, M. (2008). Exp. Opin. Ther. Patents, 18, 97–121.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZappia, G., Gacs-Baitz, E., Delle Monache, G., Misiti, D., Nevola, L. & Botta, B. (2007). Curr. Org. Synth. 4, 81–135.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds