supplementary materials


Acta Cryst. (2010). E66, o288    [ doi:10.1107/S1600536809055494 ]

Methyl 2-methyl-3,5-dinitrobenzoate

A. R. Raza, A. Saddiqa, M. N. Tahir, M. Danish and M. S. Iqbal

Abstract top

In the title compound, C9H8N2O6, the methyl ester group is almost planar (r.m.s. deviation = 0.002 Å) and is oriented at a dihedral angle of 24.27 (16)° with respect to the benzene ring. The nitro groups make dihedral angles of 4.2 (5)° and 60.21 (11)° with the benzene ring. In the crystal, molecules are linked by C-H...O interactions, resulting in zigzag chains.

Comment top

Our work is aimed at the synthesis of various isocoumarins and the title compound (I, Fig. 1) is an intermediate for their preparation.

We have reported crystal structures of 2-Methyl-3,5-dinitrobenzoic acid (Tahir et al., 2009) and the title compound is its methyl ester.

In the title compound benzene ring A (C1–C6) is of course planar. The methyl ester B (O2/C7/O1/C8) is also planar with a maximum r. m. s. deviation of 0.0014 Å from the mean square plane. The dihedral angle between A/B is 24.27 (16)°. Two nitro groups C (O3/N1/O4) and D (O5/N2/O6) are oriented at dihedral angles of 60.21 (11)° and 4.22 (51)° respectively, with the benzene ring. The dihedral angle between C/D is 63.24 (25)°. The molecules are stabilized due to intra as well inter-molecular and C–H···O interactions (Table 1, Fig. 2) in the form of zigzag polymeric chains.

Related literature top

For a related structure, see: Tahir et al. (2009).

Experimental top

H2SO4 (5 ml) was added as a catalyst to a stirred solution of 2-methyl-3,5-dinitrobenzoic acid (1 g, 4.4 mmol) (Tahir et al., 2009) in MeOH (20 ml) and refluxed for 5 h. The progress of reaction was monitored by TLC. The crystals were immediately obtained upon gradual cooling followed by pouring reaction mixture to beaker. The crude product was filtered and consecutive washing with MeOH and H2O afforded impure crystals of (I). The recrystalization from CHCl3 afforded (69.3%) colourless needles of the title compound (I).

Refinement top

In the absence of significant anomalous scattering effects, Friedal pairs were merged. The H-atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.2 for aryl and 1.5 for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram of (I).
Methyl 2-methyl-3,5-dinitrobenzoate top
Crystal data top
C9H8N2O6F(000) = 496
Mr = 240.17Dx = 1.529 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1510 reflections
a = 6.7948 (5) Åθ = 2.4–28.3°
b = 8.8478 (8) ŵ = 0.13 mm1
c = 17.3539 (17) ÅT = 296 K
V = 1043.30 (16) Å3Needle, colourless
Z = 40.30 × 0.10 × 0.09 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1510 independent reflections
Radiation source: fine-focus sealed tube1001 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 59
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 119
Tmin = 0.985, Tmax = 0.987l = 2321
6284 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.0609P]
where P = (Fo2 + 2Fc2)/3
1510 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C9H8N2O6V = 1043.30 (16) Å3
Mr = 240.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7948 (5) ŵ = 0.13 mm1
b = 8.8478 (8) ÅT = 296 K
c = 17.3539 (17) Å0.30 × 0.10 × 0.09 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1510 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1001 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.987Rint = 0.034
6284 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.16 e Å3
S = 1.02Δρmin = 0.16 e Å3
1510 reflectionsAbsolute structure: ?
156 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7519 (3)0.6592 (2)0.08307 (14)0.0613 (8)
O20.9455 (3)0.4581 (2)0.07824 (14)0.0640 (8)
O30.4935 (4)0.0440 (3)0.14759 (15)0.0822 (10)
O40.2279 (3)0.0187 (2)0.08784 (14)0.0704 (9)
O50.0268 (4)0.4613 (3)0.26197 (17)0.0929 (10)
O60.1892 (3)0.6626 (3)0.23914 (14)0.0731 (9)
N10.3765 (4)0.0489 (3)0.12346 (13)0.0495 (8)
N20.1635 (3)0.5275 (3)0.23353 (14)0.0552 (10)
C10.6122 (3)0.4298 (3)0.11981 (14)0.0356 (8)
C20.5898 (3)0.2738 (3)0.10750 (14)0.0348 (8)
C30.4175 (4)0.2112 (3)0.13733 (14)0.0388 (8)
C40.2759 (4)0.2888 (3)0.17786 (15)0.0417 (9)
C50.3090 (4)0.4397 (3)0.18916 (15)0.0393 (8)
C60.4714 (4)0.5114 (3)0.16018 (15)0.0414 (9)
C70.7890 (4)0.5130 (3)0.09141 (16)0.0403 (9)
C80.9151 (5)0.7524 (3)0.0570 (3)0.0850 (16)
C90.7325 (4)0.1820 (3)0.06173 (17)0.0491 (10)
H40.163600.241270.196590.0500*
H60.487490.614770.167530.0497*
H8A1.024260.740600.091620.1274*
H8B0.875140.856440.056070.1274*
H8C0.953660.721620.006160.1274*
H9A0.833350.143820.095190.0737*
H9B0.791040.244230.022630.0737*
H9C0.664710.099040.037930.0737*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0486 (11)0.0371 (11)0.0983 (17)0.0068 (9)0.0159 (12)0.0010 (11)
O20.0356 (10)0.0614 (13)0.0950 (17)0.0043 (10)0.0103 (11)0.0042 (13)
O30.104 (2)0.0439 (13)0.0988 (19)0.0038 (14)0.0224 (16)0.0074 (12)
O40.0598 (13)0.0670 (14)0.0843 (17)0.0270 (11)0.0044 (13)0.0147 (13)
O50.0706 (16)0.0951 (18)0.113 (2)0.0172 (15)0.0572 (16)0.0307 (16)
O60.0693 (15)0.0584 (15)0.0916 (19)0.0121 (12)0.0221 (14)0.0147 (13)
N10.0574 (15)0.0460 (15)0.0450 (14)0.0120 (13)0.0060 (12)0.0029 (11)
N20.0467 (14)0.0669 (19)0.0520 (16)0.0031 (13)0.0099 (12)0.0151 (14)
C10.0305 (12)0.0395 (16)0.0367 (14)0.0004 (11)0.0031 (11)0.0010 (11)
C20.0325 (13)0.0404 (15)0.0315 (13)0.0011 (12)0.0033 (11)0.0000 (11)
C30.0438 (15)0.0372 (15)0.0355 (14)0.0059 (13)0.0059 (12)0.0005 (11)
C40.0354 (14)0.0507 (17)0.0389 (16)0.0069 (13)0.0014 (12)0.0003 (13)
C50.0311 (13)0.0474 (16)0.0395 (15)0.0006 (12)0.0022 (10)0.0071 (12)
C60.0380 (14)0.0405 (15)0.0457 (16)0.0013 (12)0.0032 (12)0.0018 (12)
C70.0357 (14)0.0414 (16)0.0437 (16)0.0032 (12)0.0005 (12)0.0011 (12)
C80.066 (2)0.049 (2)0.140 (4)0.0214 (17)0.028 (2)0.010 (2)
C90.0468 (15)0.0458 (16)0.0547 (19)0.0022 (13)0.0062 (15)0.0038 (13)
Geometric parameters (Å, °) top
O1—C71.326 (3)C2—C91.494 (4)
O1—C81.454 (4)C3—C41.375 (4)
O2—C71.191 (3)C4—C51.368 (4)
O3—N11.218 (4)C5—C61.369 (4)
O4—N11.214 (3)C4—H40.9300
O5—N21.204 (4)C6—H60.9300
O6—N21.212 (4)C8—H8A0.9600
N1—C31.482 (4)C8—H8B0.9600
N2—C51.474 (4)C8—H8C0.9600
C1—C21.405 (4)C9—H9A0.9600
C1—C61.388 (4)C9—H9B0.9600
C1—C71.493 (4)C9—H9C0.9600
C2—C31.395 (3)
C7—O1—C8116.3 (2)C1—C6—C5120.0 (2)
O3—N1—O4124.7 (3)O1—C7—O2123.1 (3)
O3—N1—C3118.4 (3)O1—C7—C1111.4 (2)
O4—N1—C3116.9 (2)O2—C7—C1125.5 (2)
O5—N2—O6123.9 (3)C3—C4—H4122.00
O5—N2—C5118.4 (3)C5—C4—H4122.00
O6—N2—C5117.7 (2)C1—C6—H6120.00
C2—C1—C6120.9 (2)C5—C6—H6120.00
C2—C1—C7121.4 (2)O1—C8—H8A109.00
C6—C1—C7117.7 (2)O1—C8—H8B109.00
C1—C2—C3115.1 (2)O1—C8—H8C109.00
C1—C2—C9123.0 (2)H8A—C8—H8B109.00
C3—C2—C9121.8 (2)H8A—C8—H8C109.00
N1—C3—C2118.8 (2)H8B—C8—H8C110.00
N1—C3—C4115.8 (2)C2—C9—H9A109.00
C2—C3—C4125.4 (2)C2—C9—H9B109.00
C3—C4—C5116.5 (2)C2—C9—H9C109.00
N2—C5—C4118.6 (2)H9A—C9—H9B109.00
N2—C5—C6119.2 (2)H9A—C9—H9C110.00
C4—C5—C6122.2 (3)H9B—C9—H9C109.00
C8—O1—C7—O20.4 (5)C7—C1—C6—C5178.3 (2)
C8—O1—C7—C1178.9 (3)C2—C1—C7—O1157.0 (2)
O3—N1—C3—C260.3 (3)C2—C1—C7—O223.7 (4)
O3—N1—C3—C4121.3 (3)C6—C1—C7—O124.1 (3)
O4—N1—C3—C2119.0 (3)C6—C1—C7—O2155.2 (3)
O4—N1—C3—C459.4 (3)C1—C2—C3—N1176.8 (2)
O5—N2—C5—C44.3 (4)C1—C2—C3—C41.4 (4)
O5—N2—C5—C6176.2 (3)C9—C2—C3—N10.4 (4)
O6—N2—C5—C4175.8 (3)C9—C2—C3—C4177.8 (3)
O6—N2—C5—C63.7 (4)N1—C3—C4—C5178.2 (2)
C6—C1—C2—C31.1 (3)C2—C3—C4—C50.1 (4)
C6—C1—C2—C9177.4 (2)C3—C4—C5—N2178.9 (2)
C7—C1—C2—C3179.9 (2)C3—C4—C5—C61.7 (4)
C7—C1—C2—C93.8 (4)N2—C5—C6—C1178.5 (2)
C2—C1—C6—C50.6 (4)C4—C5—C6—C12.0 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.962.563.353 (4)140
Symmetry codes: (i) x−1/2, −y+1/2, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C9—H9C···O2i0.962.563.353 (4)140
Symmetry codes: (i) x−1/2, −y+1/2, −z.
Acknowledgements top

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

references
References top

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tahir, M. N., Raza, A. R., Saddiqa, A., Danish, M. & Saleem, I. (2009). Acta Cryst. E65, o2819.