organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­phenyl-3-(3-pyrid­yl)-1,2,4-triazine

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 23 November 2009; accepted 18 January 2010; online 23 January 2010)

In the mol­ecule of the title compound, C20H14N4, the triazine ring is attached to two phenyl rings and one pyridine ring. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N hydrogen bonds. The crystal packing is also stabilized by C—H⋯π inter­actions.

Related literature

For applications of substituted 1,2,4-triazines, see: Denecke et al. (2005[Denecke, M. A., Rossberg, A., Panak, P. J., Weigl, M., Schimmelpfennig, B. & Geist, A. (2005). Inorg. Chem. 44, 8418-8425.]); Maheshwari et al. (2006[Maheshwari, V., Bhattacharyya, D., Fronczek, F. R., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 7182-7190.]): Zhao et al. (2003[Zhao, Z. J., Leister, W. H., Strauss, K. A., Wisnoski, D. D. & Lindsley, C. W. (2003). Tetrahedron Lett. 44, 1123-1127.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N4

  • Mr = 310.35

  • Monoclinic, P 21 /c

  • a = 14.4775 (16) Å

  • b = 7.0923 (8) Å

  • c = 18.5786 (15) Å

  • β = 125.587 (6)°

  • V = 1551.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.26 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9802 measured reflections

  • 3770 independent reflections

  • 2184 reflections with I > 2σ(I)

  • Rint = 0.033

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.04

  • 3770 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4,C16–C20 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20A⋯N3 0.93 2.49 2.824 (4) 102
C13—H13ACg1i 0.93 3.49 3.345 (4) 91
C19—H19ACg2ii 0.93 3.67 3.109 (4) 121
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The increasing interest in the chemistry of substituted 1,2,4-triazine is due to their various applications: commercial dyes, herbicides (Zhao et al., 2003), antiviral, antitumor drug (Maheshwari et al., 2006) and selective extracting agents in the separation of lanthanides and actinides in the management of nuclear wastes (Denecke et al., 2005). The title compound belongs to the family of these compounds. We have synthesized the title compound and describe its structure here.

In the title compound, the bond lengths and angles are generally normal. The dihedral angles between triazine ring(p1) with the pyridine ring (p2), C1—C6 (p3) and C9—C14 (p4) phenyl rings are 2.94 (2)°, 53.35 (2)° and 50.43 (2)°, respectively. There exist intermolecular C—H···N hydrogen bond and C—H···π supramolecular interactions in the crystal lattice. The donor and acceptor distance is 2.8235Å for C20—H20A···N3. In addition, there are obvious intermolecular C—H···π interactions between C13—H13A and pyridine ring (Cg(2)), C19—H19A and C1—C6 phenyl ring (Cg(3)). In the solid state, all above intermolecular interactions in the title compound stabilize the crystal packing structure.

Related literature top

For applications of substituted 1,2,4-triazines, see: Denecke et al. (2005); Maheshwari et al. (2006): Zhao et al. (2003).

Experimental top

To a mixture of (3-pyridylcarbonyl)hydrazine (0.828 g, 6 mmol) and benzil (1.26 g, 6 mmol) was added ammonium acetate (4.62 g, 0.06 mol) and 1 ml of acetic acid. The mixture was heated by conventional microwave oven for 5 min at 453 K. Upon rapid cooling of the reaction vessel to 313 K, a yellow precipitate formed, which was washed with water to afford the title compound (yield 45.3%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature for three days.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Structure description top

The increasing interest in the chemistry of substituted 1,2,4-triazine is due to their various applications: commercial dyes, herbicides (Zhao et al., 2003), antiviral, antitumor drug (Maheshwari et al., 2006) and selective extracting agents in the separation of lanthanides and actinides in the management of nuclear wastes (Denecke et al., 2005). The title compound belongs to the family of these compounds. We have synthesized the title compound and describe its structure here.

In the title compound, the bond lengths and angles are generally normal. The dihedral angles between triazine ring(p1) with the pyridine ring (p2), C1—C6 (p3) and C9—C14 (p4) phenyl rings are 2.94 (2)°, 53.35 (2)° and 50.43 (2)°, respectively. There exist intermolecular C—H···N hydrogen bond and C—H···π supramolecular interactions in the crystal lattice. The donor and acceptor distance is 2.8235Å for C20—H20A···N3. In addition, there are obvious intermolecular C—H···π interactions between C13—H13A and pyridine ring (Cg(2)), C19—H19A and C1—C6 phenyl ring (Cg(3)). In the solid state, all above intermolecular interactions in the title compound stabilize the crystal packing structure.

For applications of substituted 1,2,4-triazines, see: Denecke et al. (2005); Maheshwari et al. (2006): Zhao et al. (2003).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
5,6-Diphenyl-3-(3-pyridyl)-1,2,4-triazine top
Crystal data top
C20H14N4F(000) = 648
Mr = 310.35Dx = 1.329 Mg m3
Monoclinic, P21/cMelting point: 444 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.4775 (16) ÅCell parameters from 25 reflections
b = 7.0923 (8) Åθ = 1.7–28.3°
c = 18.5786 (15) ŵ = 0.08 mm1
β = 125.587 (6)°T = 293 K
V = 1551.3 (3) Å3Block, yellow
Z = 40.31 × 0.28 × 0.26 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
Radiation source: fine-focus sealed tubeθmax = 28.3°, θmin = 1.7°
Graphite monochromatorh = 1619
ω scansk = 79
9802 measured reflectionsl = 2420
3770 independent reflections3 standard reflections every 200 reflections
2184 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0536P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3770 reflectionsΔρmax = 0.16 e Å3
218 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0105 (17)
Crystal data top
C20H14N4V = 1551.3 (3) Å3
Mr = 310.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.4775 (16) ŵ = 0.08 mm1
b = 7.0923 (8) ÅT = 293 K
c = 18.5786 (15) Å0.31 × 0.28 × 0.26 mm
β = 125.587 (6)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.033
9802 measured reflections3 standard reflections every 200 reflections
3770 independent reflections intensity decay: none
2184 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
3770 reflectionsΔρmin = 0.15 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.40833 (10)0.74465 (17)0.84881 (7)0.0422 (3)
N20.48148 (11)0.5785 (2)0.75648 (8)0.0554 (4)
N30.55312 (11)0.5984 (2)0.84483 (8)0.0546 (4)
C200.69841 (13)0.6021 (2)1.03161 (9)0.0505 (4)
H20A0.72150.54560.99930.061*
C10.19450 (14)0.9625 (2)0.65096 (9)0.0512 (4)
H1B0.24150.98970.63340.061*
C20.09076 (15)1.0535 (2)0.61123 (10)0.0598 (5)
H2B0.06881.14310.56740.072*
C30.02025 (14)1.0123 (3)0.63613 (10)0.0608 (5)
H3B0.04961.07270.60870.073*
C40.05291 (13)0.8823 (2)0.70138 (10)0.0555 (4)
H4B0.00500.85410.71800.067*
C50.15676 (12)0.7931 (2)0.74260 (9)0.0475 (4)
H5A0.17930.70730.78790.057*
C60.22752 (12)0.8308 (2)0.71683 (9)0.0410 (4)
C70.33957 (11)0.7350 (2)0.76126 (8)0.0398 (4)
C80.37453 (12)0.6390 (2)0.71427 (9)0.0430 (4)
C90.29850 (13)0.5980 (2)0.61817 (9)0.0437 (4)
C100.19430 (15)0.5132 (3)0.58174 (10)0.0625 (5)
H10A0.17100.48330.61760.075*
C110.12424 (16)0.4725 (3)0.49224 (11)0.0692 (5)
H11A0.05460.41410.46840.083*
C120.15742 (15)0.5181 (2)0.43853 (10)0.0581 (5)
H12A0.11020.49120.37830.070*
C130.25980 (15)0.6030 (2)0.47375 (10)0.0578 (5)
H13A0.28190.63540.43730.069*
C140.33114 (14)0.6412 (2)0.56364 (10)0.0531 (4)
H14A0.40160.69640.58740.064*
C150.51278 (12)0.6718 (2)0.88740 (9)0.0410 (4)
C160.59002 (12)0.6778 (2)0.98515 (9)0.0400 (4)
C170.55691 (13)0.7604 (2)1.03439 (9)0.0506 (4)
H17A0.48450.81121.00620.061*
C180.63165 (14)0.7668 (2)1.12525 (10)0.0569 (5)
H18A0.61110.82311.15920.068*
C190.73715 (14)0.6882 (2)1.16431 (10)0.0575 (5)
H19A0.78760.69321.22570.069*
N40.77171 (11)0.6048 (2)1.11941 (8)0.0585 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0368 (7)0.0495 (8)0.0368 (6)0.0013 (6)0.0193 (5)0.0009 (6)
N20.0498 (9)0.0713 (10)0.0462 (8)0.0062 (7)0.0285 (7)0.0046 (7)
N30.0434 (8)0.0729 (10)0.0452 (8)0.0091 (7)0.0244 (7)0.0038 (7)
C200.0439 (9)0.0556 (10)0.0456 (9)0.0041 (7)0.0223 (8)0.0010 (8)
C10.0526 (10)0.0574 (10)0.0405 (8)0.0012 (8)0.0254 (7)0.0024 (8)
C20.0567 (11)0.0541 (11)0.0424 (9)0.0059 (8)0.0138 (8)0.0065 (8)
C30.0386 (9)0.0666 (12)0.0519 (10)0.0081 (8)0.0119 (8)0.0059 (9)
C40.0402 (9)0.0705 (12)0.0524 (10)0.0002 (8)0.0249 (8)0.0068 (9)
C50.0436 (9)0.0577 (10)0.0378 (8)0.0035 (7)0.0217 (7)0.0029 (7)
C60.0372 (8)0.0486 (9)0.0319 (7)0.0006 (7)0.0171 (6)0.0040 (6)
C70.0375 (8)0.0436 (9)0.0371 (8)0.0029 (6)0.0210 (7)0.0006 (6)
C80.0421 (8)0.0484 (9)0.0400 (8)0.0013 (7)0.0248 (7)0.0011 (7)
C90.0477 (9)0.0442 (9)0.0414 (8)0.0003 (7)0.0271 (7)0.0027 (7)
C100.0674 (12)0.0758 (13)0.0490 (10)0.0227 (10)0.0366 (9)0.0126 (9)
C110.0671 (12)0.0810 (14)0.0546 (11)0.0240 (10)0.0326 (10)0.0166 (9)
C120.0664 (12)0.0608 (11)0.0397 (9)0.0004 (9)0.0267 (8)0.0065 (8)
C130.0681 (12)0.0670 (12)0.0479 (10)0.0031 (9)0.0392 (9)0.0005 (8)
C140.0526 (10)0.0626 (11)0.0492 (9)0.0026 (8)0.0325 (8)0.0038 (8)
C150.0363 (8)0.0439 (9)0.0407 (8)0.0005 (7)0.0211 (7)0.0006 (7)
C160.0349 (8)0.0403 (8)0.0420 (8)0.0022 (6)0.0206 (7)0.0005 (7)
C170.0409 (9)0.0596 (10)0.0455 (9)0.0058 (7)0.0220 (7)0.0009 (8)
C180.0576 (11)0.0638 (11)0.0452 (9)0.0006 (9)0.0276 (8)0.0052 (8)
C190.0502 (10)0.0636 (11)0.0412 (9)0.0057 (8)0.0167 (8)0.0005 (8)
N40.0426 (8)0.0701 (10)0.0471 (8)0.0048 (7)0.0173 (7)0.0048 (7)
Geometric parameters (Å, º) top
N1—C71.3253 (16)C8—C91.4823 (19)
N1—C151.3440 (18)C9—C141.379 (2)
N2—C81.3356 (19)C9—C101.381 (2)
N2—N31.3448 (17)C10—C111.383 (2)
N3—C151.3322 (18)C10—H10A0.9300
C20—N41.3313 (18)C11—C121.375 (2)
C20—C161.385 (2)C11—H11A0.9300
C20—H20A0.9300C12—C131.363 (2)
C1—C61.385 (2)C12—H12A0.9300
C1—C21.388 (2)C13—C141.386 (2)
C1—H1B0.9300C13—H13A0.9300
C2—C31.375 (2)C14—H14A0.9300
C2—H2B0.9300C15—C161.4788 (19)
C3—C41.370 (2)C16—C171.386 (2)
C3—H3B0.9300C17—C181.377 (2)
C4—C51.381 (2)C17—H17A0.9300
C4—H4B0.9300C18—C191.371 (2)
C5—C61.386 (2)C18—H18A0.9300
C5—H5A0.9300C19—N41.335 (2)
C6—C71.4887 (19)C19—H19A0.9300
C7—C81.4126 (19)
C7—N1—C15116.31 (12)C10—C9—C8120.64 (13)
C8—N2—N3119.33 (12)C9—C10—C11120.51 (15)
C15—N3—N2118.20 (13)C9—C10—H10A119.7
N4—C20—C16124.33 (15)C11—C10—H10A119.7
N4—C20—H20A117.8C12—C11—C10120.12 (17)
C16—C20—H20A117.8C12—C11—H11A119.9
C6—C1—C2119.60 (16)C10—C11—H11A119.9
C6—C1—H1B120.2C13—C12—C11119.82 (15)
C2—C1—H1B120.2C13—C12—H12A120.1
C3—C2—C1120.50 (16)C11—C12—H12A120.1
C3—C2—H2B119.8C12—C13—C14120.27 (15)
C1—C2—H2B119.8C12—C13—H13A119.9
C4—C3—C2119.95 (16)C14—C13—H13A119.9
C4—C3—H3B120.0C9—C14—C13120.54 (16)
C2—C3—H3B120.0C9—C14—H14A119.7
C3—C4—C5120.19 (16)C13—C14—H14A119.7
C3—C4—H4B119.9N3—C15—N1125.41 (13)
C5—C4—H4B119.9N3—C15—C16117.45 (13)
C4—C5—C6120.33 (15)N1—C15—C16117.13 (12)
C4—C5—H5A119.8C20—C16—C17117.00 (13)
C6—C5—H5A119.8C20—C16—C15121.79 (13)
C1—C6—C5119.42 (14)C17—C16—C15121.21 (13)
C1—C6—C7120.15 (13)C18—C17—C16119.76 (15)
C5—C6—C7120.41 (13)C18—C17—H17A120.1
N1—C7—C8120.00 (13)C16—C17—H17A120.1
N1—C7—C6117.05 (12)C19—C18—C17118.28 (15)
C8—C7—C6122.95 (12)C19—C18—H18A120.9
N2—C8—C7120.14 (13)C17—C18—H18A120.9
N2—C8—C9116.00 (13)N4—C19—C18123.81 (15)
C7—C8—C9123.86 (13)N4—C19—H19A118.1
C14—C9—C10118.71 (14)C18—C19—H19A118.1
C14—C9—C8120.64 (14)C20—N4—C19116.80 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,C16–C20 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20A···N30.932.492.824 (4)102
C13—H13A···Cg1i0.933.493.345 (4)91
C19—H19A···Cg2ii0.933.673.109 (4)121
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H14N4
Mr310.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.4775 (16), 7.0923 (8), 18.5786 (15)
β (°) 125.587 (6)
V3)1551.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.31 × 0.28 × 0.26
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9802, 3770, 2184
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.04
No. of reflections3770
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,C16–C20 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C20—H20A···N30.932.492.824 (4)102
C13—H13A···Cg1i0.933.493.345 (4)91
C19—H19A···Cg2ii0.933.673.109 (4)121
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported financially by the Fund of Doctors of Shandaong Province (No. 2007BS04046).

References

First citationDenecke, M. A., Rossberg, A., Panak, P. J., Weigl, M., Schimmelpfennig, B. & Geist, A. (2005). Inorg. Chem. 44, 8418–8425.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaheshwari, V., Bhattacharyya, D., Fronczek, F. R., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem. 45, 7182–7190.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Z. J., Leister, W. H., Strauss, K. A., Wisnoski, D. D. & Lindsley, C. W. (2003). Tetrahedron Lett. 44, 1123–1127.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds