organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6β-Acet­­oxy-1α,7β,11β,15β-tetra­hydr­­oxy-7α,20-ep­­oxy-ent-kaur-16-ene

aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
*Correspondence e-mail: yannz2009@163.com

(Received 20 December 2009; accepted 4 January 2010; online 9 January 2010)

The title compound, C22H32O7, a natural ent-kaurane diterpenoid also referred to as Maoyecrystal F, was obtained from the medicinal plant Isodon nervosa. There are four rings with the expected cis and trans junctions. Cyclohexane ring A adopts a chair conformation, rings B and C adopt boat conformations, while the five-membered ring has an envelope conformation. The mol­ecules stack along the a axis in the crystal and are linked together by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature on the genus Isodon and diterpenoids, see: Sun et al. (2001[Sun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species, pp. 4-17. Beijing: Science Press.]); Zhang et al. (2003[Zhang, J. X., Han, Q. B., Zhao, A. H. & Sun, H. D. (2003). Fitoterapia, 74, 435-438.]); Yan et al. (2008[Yan, F. L., Guo, L. Q., Bai, S. P. & Sun, H. D. (2008). J. Chin. Chem. Soc. 55, 933-936.]).

[Scheme 1]

Experimental

Crystal data
  • C22H32O7

  • Mr = 408.21

  • Monoclinic, P 21

  • a = 9.759 (3) Å

  • b = 6.6712 (17) Å

  • c = 14.927 (4) Å

  • β = 90.002 (4)°

  • V = 971.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 93 K

  • 0.50 × 0.33 × 0.23 mm

Data collection
  • Rigaku AFC10 Saturn724+ diffractometer

  • 7880 measured reflections

  • 2412 independent reflections

  • 2262 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.064

  • S = 1.00

  • 2412 reflections

  • 281 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O5 0.85 (3) 1.75 (3) 2.5539 (19) 156 (2)
O4—H4O⋯O6i 0.82 (3) 2.03 (3) 2.843 (2) 172 (2)
O5—H5O⋯O2ii 0.82 (2) 1.85 (2) 2.6467 (18) 165 (2)
O6—H6O⋯O3 0.81 (2) 2.07 (3) 2.7743 (18) 145 (2)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 6β-Acetoxy-1α,7β,11β,15β-tetrahydroxy- 7α,20-epoxy-ent-kaur-16-ene, is a natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon nervosa. It is widely distributed in China, and has long been used as a Chinese folk medicine in the treatment of acute jaundice, hepatitis and acute cholecystitis. We re-examined the leaves of Isodon nervosus collected in Henan province of China and obtained the ent-kaurane diterpenoid, named Maoyecrystal F (Yan et al., 2008). The compound has also been isolated from Isodon japonica and its structure was postulated from spectroscopic methods (Zhang et al., 2003). Its X-ray crystallographic analysis confirms this proposed molecular structure (Fig. 1). In the structure there is a trans junction between ring A (C1—C5/C10) and ring B (C5—C10); cis junctions are present between ring B and ring C (C8/C9/C11—C14), and ring C and ring D (C8/C13—C16). Ring A adopts chair conformation, with an average torsion angles of 53.99 (19) °. Rings B and C adopt boat conformation because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an evenlope conformation. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations. The four hydroxy groups at C1, C7, C11 and C15 adopt α, β, β, β-orientations respectively, an acetoxy group at C6 adopt β-orientation. Bond lengths and angles are within expected aranges (Allen et al., 1987), with averages values (Å): Csp3—Csp3 = 1.544 (2), Csp3—Csp2 = 1.516 (2), Csp2—Csp2 (CC) = 1.323 (3), Csp3—O = 1.434 (2).

The compound contains ten chiral centers at C1(S), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C11(S),C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al., 2001), rather than in the kaurane series, allowing us to assign the correct configuration. In the crystal structure, intermolecular O—H···O hydrogen bond (table 1) are effective in the stabilization of the structure and are responsible for the formation of a three-dimensional network (Fig. 2).

Related literature top

For related literature on the genus Isodon and diterpenoids, see: Sun et al. (2001); Zhang et al. (2003); Yan et al. (2008).

Experimental top

The dried and crushed leaves of Isodon nervosa (12 kg, collected from Henan Province, China) were extracted three times with Me2CO/H2O (7:3, v/v) at room temperature over a period of six days. The extract was filtered and the solvent was removed under reduced pressure. The residue was then partitioned between water and AcOEt. After removal of the solvent, the AcOEt residue was separated by repeated silica gel (200–300 mesh) column chromatography and recrystallization from CHCl3/CH3OH(8:1), giving 35 mg of the title compound (m.p. 489–491 K. Optical rotation: [α]D20 -6.1 ° (c 0.52, CH3OH). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in CH3OH at room temperature.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms, with C—H = 0.98Å (CH3), 0.99Å (CH2), 0.95Å (CH2), 1.00Å (CH), and O—H = 0.82Å, and with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged. The choice of enantiomer was based on comparison of the optical rotation with that of related compounds having known stereochemistry.

Structure description top

The title compound, 6β-Acetoxy-1α,7β,11β,15β-tetrahydroxy- 7α,20-epoxy-ent-kaur-16-ene, is a natural ent-kaurane diterpenoid isolated from the medicinal plant Isodon nervosa. It is widely distributed in China, and has long been used as a Chinese folk medicine in the treatment of acute jaundice, hepatitis and acute cholecystitis. We re-examined the leaves of Isodon nervosus collected in Henan province of China and obtained the ent-kaurane diterpenoid, named Maoyecrystal F (Yan et al., 2008). The compound has also been isolated from Isodon japonica and its structure was postulated from spectroscopic methods (Zhang et al., 2003). Its X-ray crystallographic analysis confirms this proposed molecular structure (Fig. 1). In the structure there is a trans junction between ring A (C1—C5/C10) and ring B (C5—C10); cis junctions are present between ring B and ring C (C8/C9/C11—C14), and ring C and ring D (C8/C13—C16). Ring A adopts chair conformation, with an average torsion angles of 53.99 (19) °. Rings B and C adopt boat conformation because of the formation of the oxygen bridge at C-7 and C-20. Ring D shows an evenlope conformation. In addition, the six-membered rings O1/C20/C10/C5—C7 and O1/C7—C10/C20 both adopt boat conformations. The four hydroxy groups at C1, C7, C11 and C15 adopt α, β, β, β-orientations respectively, an acetoxy group at C6 adopt β-orientation. Bond lengths and angles are within expected aranges (Allen et al., 1987), with averages values (Å): Csp3—Csp3 = 1.544 (2), Csp3—Csp2 = 1.516 (2), Csp2—Csp2 (CC) = 1.323 (3), Csp3—O = 1.434 (2).

The compound contains ten chiral centers at C1(S), C5(R), C6(S), C7(S), C8(S), C9(S), C10(S), C11(S),C13(S) and C15(R). Although the absolute configuration could not be reliably determined from anomalous dispersion effects, the negative optical rotation showed this compound to be in the ent-kaurane series as reported in genus Isodon (Sun et al., 2001), rather than in the kaurane series, allowing us to assign the correct configuration. In the crystal structure, intermolecular O—H···O hydrogen bond (table 1) are effective in the stabilization of the structure and are responsible for the formation of a three-dimensional network (Fig. 2).

For related literature on the genus Isodon and diterpenoids, see: Sun et al. (2001); Zhang et al. (2003); Yan et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of compound, viewed along the a axis, showing the O—H···O hydrogen bonds as dashed lines.
6β-Acetoxy-1α,7β,11β,15β-tetrahydroxy-7α,20-epoxy-ent-kaur-16-ene top
Crystal data top
C22H32O7F(000) = 440
Mr = 408.21Dx = 1.396 Mg m3
Monoclinic, P21Melting point = 489–491 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.759 (3) ÅCell parameters from 3508 reflections
b = 6.6712 (17) Åθ = 3.3–27.5°
c = 14.927 (4) ŵ = 0.10 mm1
β = 90.002 (4)°T = 93 K
V = 971.8 (4) Å3Prism, colorless
Z = 20.50 × 0.33 × 0.23 mm
Data collection top
Rigaku AFC10 Saturn724+
diffractometer
2262 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = 912
ω scansk = 88
7880 measured reflectionsl = 1919
2412 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.163P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C22H32O7V = 971.8 (4) Å3
Mr = 408.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.759 (3) ŵ = 0.10 mm1
b = 6.6712 (17) ÅT = 93 K
c = 14.927 (4) Å0.50 × 0.33 × 0.23 mm
β = 90.002 (4)°
Data collection top
Rigaku AFC10 Saturn724+
diffractometer
2262 reflections with I > 2σ(I)
7880 measured reflectionsRint = 0.025
2412 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.25 e Å3
2412 reflectionsΔρmin = 0.17 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71560 (11)0.24172 (19)0.19745 (8)0.0137 (3)
O20.39948 (13)0.6243 (2)0.07687 (8)0.0153 (3)
O30.76328 (11)0.54105 (18)0.39884 (7)0.0130 (3)
O40.91072 (12)0.2840 (2)0.27898 (9)0.0146 (3)
O50.57949 (12)0.90169 (19)0.06925 (8)0.0149 (3)
O60.87086 (12)0.86646 (19)0.30694 (8)0.0143 (3)
O70.78961 (13)0.2859 (2)0.49762 (9)0.0232 (3)
C10.41761 (16)0.6066 (3)0.17186 (11)0.0124 (3)
H10.40590.74320.19830.015*
C20.30078 (17)0.4772 (3)0.20568 (11)0.0157 (4)
H2A0.31040.33980.18140.019*
H2B0.21250.53260.18430.019*
C30.30058 (17)0.4693 (3)0.30758 (11)0.0162 (4)
H3A0.22230.38670.32800.019*
H3B0.28780.60650.33140.019*
C40.43380 (16)0.3814 (3)0.34543 (11)0.0132 (3)
C50.55753 (16)0.4991 (3)0.30404 (11)0.0116 (3)
H50.55350.63680.33040.014*
C60.69539 (16)0.4098 (3)0.33418 (10)0.0119 (3)
H60.67800.27710.36320.014*
C70.78918 (16)0.3783 (3)0.25387 (11)0.0121 (3)
C80.82107 (16)0.5716 (3)0.20203 (11)0.0116 (3)
C90.68182 (16)0.6785 (3)0.17895 (11)0.0111 (3)
H90.67200.79650.21980.013*
C100.56065 (16)0.5289 (3)0.19985 (11)0.0111 (3)
C110.68778 (17)0.7582 (3)0.08150 (11)0.0132 (3)
H110.67160.64330.03980.016*
C120.82467 (17)0.8558 (3)0.05703 (11)0.0166 (4)
H12A0.82960.98980.08540.020*
H12B0.82850.87500.00870.020*
C130.95062 (17)0.7303 (3)0.08700 (11)0.0160 (4)
H131.02280.72430.03950.019*
C140.90325 (17)0.5203 (3)0.11600 (11)0.0143 (3)
H14A0.98200.43150.12920.017*
H14B0.84440.45690.07000.017*
C150.92640 (16)0.7137 (3)0.24989 (11)0.0132 (3)
H150.99130.62980.28570.016*
C161.00555 (17)0.8127 (3)0.17408 (11)0.0152 (4)
C171.10478 (18)0.9460 (3)0.18423 (13)0.0210 (4)
H17A1.14951.00010.13320.025*
H17B1.13130.98750.24260.025*
C180.43741 (17)0.4168 (3)0.44718 (11)0.0165 (4)
H18A0.36190.34370.47560.020*
H18B0.42780.56040.45950.020*
H18C0.52480.36890.47130.020*
C190.43608 (18)0.1517 (3)0.32907 (12)0.0169 (4)
H19A0.36180.08840.36300.020*
H19B0.52430.09700.34880.020*
H19C0.42360.12470.26510.020*
C200.59817 (16)0.3306 (3)0.15381 (11)0.0124 (3)
H20A0.51940.23720.15680.015*
H20B0.61940.35540.08990.015*
C210.81536 (17)0.4540 (3)0.47425 (11)0.0158 (4)
C220.90964 (19)0.5955 (3)0.52190 (12)0.0221 (4)
H22A0.99630.60510.48900.027*
H22B0.92730.54570.58260.027*
H22C0.86700.72830.52530.027*
H5O0.597 (2)0.957 (4)0.0218 (15)0.022 (6)*
H6O0.834 (2)0.812 (4)0.3491 (15)0.025 (6)*
H2O0.444 (2)0.730 (4)0.0632 (15)0.029 (6)*
H4O0.892 (2)0.166 (4)0.2884 (16)0.031 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0143 (5)0.0100 (6)0.0166 (6)0.0011 (5)0.0030 (4)0.0022 (5)
O20.0183 (6)0.0157 (7)0.0119 (6)0.0004 (5)0.0039 (5)0.0004 (5)
O30.0139 (5)0.0136 (6)0.0116 (5)0.0020 (5)0.0024 (4)0.0010 (5)
O40.0116 (5)0.0100 (7)0.0223 (6)0.0012 (5)0.0015 (5)0.0024 (5)
O50.0174 (6)0.0129 (6)0.0143 (6)0.0027 (5)0.0016 (5)0.0034 (5)
O60.0178 (6)0.0108 (6)0.0145 (6)0.0008 (5)0.0011 (5)0.0015 (5)
O70.0194 (6)0.0275 (8)0.0227 (7)0.0025 (6)0.0052 (5)0.0115 (6)
C10.0137 (8)0.0126 (8)0.0109 (7)0.0022 (7)0.0028 (6)0.0008 (6)
C20.0127 (7)0.0170 (9)0.0174 (8)0.0002 (7)0.0035 (6)0.0001 (7)
C30.0116 (7)0.0191 (9)0.0179 (8)0.0000 (7)0.0011 (6)0.0005 (7)
C40.0118 (7)0.0144 (9)0.0135 (7)0.0011 (7)0.0003 (6)0.0003 (7)
C50.0118 (7)0.0112 (8)0.0117 (7)0.0005 (7)0.0011 (6)0.0012 (6)
C60.0116 (7)0.0111 (8)0.0130 (7)0.0015 (7)0.0026 (6)0.0002 (7)
C70.0122 (7)0.0090 (8)0.0150 (7)0.0012 (7)0.0027 (6)0.0013 (7)
C80.0116 (7)0.0100 (8)0.0132 (7)0.0013 (6)0.0007 (6)0.0001 (7)
C90.0122 (7)0.0095 (8)0.0115 (7)0.0013 (6)0.0013 (6)0.0003 (6)
C100.0114 (7)0.0102 (8)0.0116 (7)0.0003 (7)0.0011 (6)0.0001 (6)
C110.0160 (7)0.0117 (8)0.0119 (7)0.0033 (7)0.0000 (6)0.0002 (6)
C120.0179 (8)0.0157 (9)0.0161 (8)0.0009 (8)0.0016 (6)0.0014 (7)
C130.0157 (8)0.0155 (9)0.0169 (8)0.0006 (7)0.0042 (6)0.0010 (7)
C140.0149 (7)0.0128 (9)0.0154 (8)0.0023 (7)0.0031 (6)0.0019 (7)
C150.0127 (7)0.0112 (9)0.0158 (8)0.0018 (7)0.0011 (6)0.0000 (7)
C160.0133 (7)0.0123 (9)0.0199 (8)0.0038 (7)0.0017 (6)0.0007 (7)
C170.0184 (8)0.0189 (10)0.0257 (9)0.0017 (8)0.0036 (7)0.0006 (8)
C180.0158 (8)0.0189 (10)0.0147 (8)0.0005 (7)0.0017 (6)0.0006 (7)
C190.0167 (8)0.0156 (9)0.0186 (8)0.0040 (7)0.0005 (7)0.0028 (7)
C200.0134 (7)0.0103 (8)0.0136 (7)0.0010 (7)0.0014 (6)0.0017 (7)
C210.0115 (7)0.0236 (10)0.0124 (7)0.0018 (7)0.0002 (6)0.0026 (7)
C220.0190 (9)0.0298 (11)0.0175 (8)0.0000 (8)0.0049 (7)0.0014 (8)
Geometric parameters (Å, º) top
O1—C71.434 (2)C8—C91.573 (2)
O1—C201.4453 (19)C9—C111.550 (2)
O2—C11.4337 (19)C9—C101.578 (2)
O2—H2O0.85 (3)C9—H91.0000
O3—C211.365 (2)C10—C201.535 (2)
O3—C61.4620 (19)C11—C121.530 (2)
O4—C71.394 (2)C11—H111.0000
O4—H4O0.82 (3)C12—C131.553 (2)
O5—C111.438 (2)C12—H12A0.9900
O5—H5O0.82 (2)C12—H12B0.9900
O6—C151.434 (2)C13—C161.510 (2)
O6—H6O0.81 (2)C13—C141.537 (3)
O7—C211.201 (2)C13—H131.0000
C1—C21.517 (2)C14—H14A0.9900
C1—C101.546 (2)C14—H14B0.9900
C1—H11.0000C15—C161.521 (2)
C2—C31.522 (2)C15—H151.0000
C2—H2A0.9900C16—C171.323 (3)
C2—H2B0.9900C17—H17A0.9500
C3—C41.534 (2)C17—H17B0.9500
C3—H3A0.9900C18—H18A0.9800
C3—H3B0.9900C18—H18B0.9800
C4—C181.538 (2)C18—H18C0.9800
C4—C191.552 (3)C19—H19A0.9800
C4—C51.567 (2)C19—H19B0.9800
C5—C61.539 (2)C19—H19C0.9800
C5—C101.568 (2)C20—H20A0.9900
C5—H51.0000C20—H20B0.9900
C6—C71.523 (2)C21—C221.498 (3)
C6—H61.0000C22—H22A0.9800
C7—C81.535 (2)C22—H22B0.9800
C8—C141.552 (2)C22—H22C0.9800
C8—C151.570 (2)
C7—O1—C20113.65 (13)C5—C10—C9106.89 (12)
C1—O2—H2O104.1 (16)O5—C11—C12109.13 (14)
C21—O3—C6117.28 (14)O5—C11—C9108.68 (13)
C7—O4—H4O106.7 (17)C12—C11—C9113.75 (13)
C11—O5—H5O104.9 (16)O5—C11—H11108.4
C15—O6—H6O108.2 (17)C12—C11—H11108.4
O2—C1—C2106.46 (13)C9—C11—H11108.4
O2—C1—C10113.96 (13)C11—C12—C13113.12 (14)
C2—C1—C10113.43 (14)C11—C12—H12A109.0
O2—C1—H1107.6C13—C12—H12A109.0
C2—C1—H1107.6C11—C12—H12B109.0
C10—C1—H1107.6C13—C12—H12B109.0
C1—C2—C3110.70 (14)H12A—C12—H12B107.8
C1—C2—H2A109.5C16—C13—C14101.32 (14)
C3—C2—H2A109.5C16—C13—C12109.43 (15)
C1—C2—H2B109.5C14—C13—C12109.54 (14)
C3—C2—H2B109.5C16—C13—H13112.0
H2A—C2—H2B108.1C14—C13—H13112.0
C2—C3—C4112.34 (14)C12—C13—H13112.0
C2—C3—H3A109.1C13—C14—C8100.80 (13)
C4—C3—H3A109.1C13—C14—H14A111.6
C2—C3—H3B109.1C8—C14—H14A111.6
C4—C3—H3B109.1C13—C14—H14B111.6
H3A—C3—H3B107.9C8—C14—H14B111.6
C3—C4—C18108.92 (14)H14A—C14—H14B109.4
C3—C4—C19109.37 (15)O6—C15—C16108.98 (15)
C18—C4—C19107.88 (15)O6—C15—C8116.86 (13)
C3—C4—C5108.42 (14)C16—C15—C8104.85 (13)
C18—C4—C5107.14 (13)O6—C15—H15108.6
C19—C4—C5114.95 (14)C16—C15—H15108.6
C6—C5—C4111.35 (14)C8—C15—H15108.6
C6—C5—C10108.79 (13)C17—C16—C13127.09 (17)
C4—C5—C10117.99 (13)C17—C16—C15125.33 (16)
C6—C5—H5106.0C13—C16—C15107.58 (14)
C4—C5—H5106.0C16—C17—H17A120.0
C10—C5—H5106.0C16—C17—H17B120.0
O3—C6—C7109.26 (12)H17A—C17—H17B120.0
O3—C6—C5110.92 (14)C4—C18—H18A109.5
C7—C6—C5110.41 (13)C4—C18—H18B109.5
O3—C6—H6108.7H18A—C18—H18B109.5
C7—C6—H6108.7C4—C18—H18C109.5
C5—C6—H6108.7H18A—C18—H18C109.5
O4—C7—O1107.27 (13)H18B—C18—H18C109.5
O4—C7—C6111.22 (13)C4—C19—H19A109.5
O1—C7—C6104.41 (12)C4—C19—H19B109.5
O4—C7—C8110.02 (13)H19A—C19—H19B109.5
O1—C7—C8109.84 (13)C4—C19—H19C109.5
C6—C7—C8113.76 (14)H19A—C19—H19C109.5
C7—C8—C14109.67 (14)H19B—C19—H19C109.5
C7—C8—C15114.24 (13)O1—C20—C10109.92 (12)
C14—C8—C1599.86 (13)O1—C20—H20A109.7
C7—C8—C9108.42 (13)C10—C20—H20A109.7
C14—C8—C9111.41 (13)O1—C20—H20B109.7
C15—C8—C9113.04 (14)C10—C20—H20B109.7
C11—C9—C8109.19 (12)H20A—C20—H20B108.2
C11—C9—C10115.50 (13)O7—C21—O3123.98 (17)
C8—C9—C10108.50 (13)O7—C21—C22125.39 (16)
C11—C9—H9107.8O3—C21—C22110.63 (16)
C8—C9—H9107.8C21—C22—H22A109.5
C10—C9—H9107.8C21—C22—H22B109.5
C20—C10—C1112.54 (13)H22A—C22—H22B109.5
C20—C10—C5109.85 (14)C21—C22—H22C109.5
C1—C10—C5107.03 (12)H22A—C22—H22C109.5
C20—C10—C9106.13 (13)H22B—C22—H22C109.5
C1—C10—C9114.25 (14)
O2—C1—C2—C3173.23 (14)C2—C1—C10—C9170.68 (14)
C10—C1—C2—C360.63 (19)C6—C5—C10—C2054.20 (17)
C1—C2—C3—C460.1 (2)C4—C5—C10—C2073.84 (17)
C2—C3—C4—C18168.91 (15)C6—C5—C10—C1176.66 (14)
C2—C3—C4—C1973.40 (19)C4—C5—C10—C148.62 (19)
C2—C3—C4—C552.65 (19)C6—C5—C10—C960.52 (17)
C3—C4—C5—C6176.20 (14)C4—C5—C10—C9171.44 (14)
C18—C4—C5—C666.39 (18)C11—C9—C10—C2073.03 (17)
C19—C4—C5—C653.47 (19)C8—C9—C10—C2049.90 (16)
C3—C4—C5—C1049.38 (19)C11—C9—C10—C151.57 (18)
C18—C4—C5—C10166.79 (15)C8—C9—C10—C1174.50 (13)
C19—C4—C5—C1073.35 (19)C11—C9—C10—C5169.77 (14)
C21—O3—C6—C7104.90 (15)C8—C9—C10—C567.31 (16)
C21—O3—C6—C5133.16 (14)C8—C9—C11—O5163.90 (13)
C4—C5—C6—O3107.33 (15)C10—C9—C11—O573.54 (17)
C10—C5—C6—O3120.97 (14)C8—C9—C11—C1242.11 (19)
C4—C5—C6—C7131.41 (15)C10—C9—C11—C12164.67 (15)
C10—C5—C6—C70.29 (19)O5—C11—C12—C13167.63 (13)
C20—O1—C7—O4170.16 (13)C9—C11—C12—C1346.1 (2)
C20—O1—C7—C671.74 (15)C11—C12—C13—C1698.54 (17)
C20—O1—C7—C850.61 (16)C11—C12—C13—C1411.7 (2)
O3—C6—C7—O462.10 (17)C16—C13—C14—C847.88 (15)
C5—C6—C7—O4175.65 (14)C12—C13—C14—C867.65 (16)
O3—C6—C7—O1177.48 (13)C7—C8—C14—C13168.02 (13)
C5—C6—C7—O160.27 (17)C15—C8—C14—C1347.72 (15)
O3—C6—C7—C862.79 (17)C9—C8—C14—C1371.94 (16)
C5—C6—C7—C859.46 (18)C7—C8—C15—O692.48 (18)
O4—C7—C8—C1460.79 (17)C14—C8—C15—O6150.59 (14)
O1—C7—C8—C1457.07 (17)C9—C8—C15—O632.1 (2)
C6—C7—C8—C14173.68 (13)C7—C8—C15—C16146.76 (14)
O4—C7—C8—C1550.34 (18)C14—C8—C15—C1629.83 (16)
O1—C7—C8—C15168.19 (13)C9—C8—C15—C1688.63 (15)
C6—C7—C8—C1575.20 (17)C14—C13—C16—C17150.63 (18)
O4—C7—C8—C9177.37 (13)C12—C13—C16—C1793.8 (2)
O1—C7—C8—C964.77 (16)C14—C13—C16—C1529.05 (16)
C6—C7—C8—C951.83 (17)C12—C13—C16—C1586.56 (17)
C7—C8—C9—C11137.89 (14)O6—C15—C16—C1753.7 (2)
C14—C8—C9—C1117.12 (19)C8—C15—C16—C17179.54 (17)
C15—C8—C9—C1194.40 (16)O6—C15—C16—C13126.61 (14)
C7—C8—C9—C1011.23 (17)C8—C15—C16—C130.78 (18)
C14—C8—C9—C10109.54 (15)C7—O1—C20—C1015.94 (18)
C15—C8—C9—C10138.94 (14)C1—C10—C20—O1166.48 (13)
O2—C1—C10—C2053.85 (19)C5—C10—C20—O147.35 (17)
C2—C1—C10—C2068.20 (17)C9—C10—C20—O167.87 (16)
O2—C1—C10—C5174.62 (14)C6—O3—C21—O712.8 (2)
C2—C1—C10—C552.56 (18)C6—O3—C21—C22166.23 (14)
O2—C1—C10—C967.26 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O50.85 (3)1.75 (3)2.5539 (19)156 (2)
O4—H4O···O6i0.82 (3)2.03 (3)2.843 (2)172 (2)
O5—H5O···O2ii0.82 (2)1.85 (2)2.6467 (18)165 (2)
O6—H6O···O30.81 (2)2.07 (3)2.7743 (18)145 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H32O7
Mr408.21
Crystal system, space groupMonoclinic, P21
Temperature (K)93
a, b, c (Å)9.759 (3), 6.6712 (17), 14.927 (4)
β (°) 90.002 (4)
V3)971.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.33 × 0.23
Data collection
DiffractometerRigaku AFC10 Saturn724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7880, 2412, 2262
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.064, 1.00
No. of reflections2412
No. of parameters281
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.17

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O50.85 (3)1.75 (3)2.5539 (19)156 (2)
O4—H4O···O6i0.82 (3)2.03 (3)2.843 (2)172 (2)
O5—H5O···O2ii0.82 (2)1.85 (2)2.6467 (18)165 (2)
O6—H6O···O30.81 (2)2.07 (3)2.7743 (18)145 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z.
 

Acknowledgements

This work was supported by the Henan Province Science and Technology Foundation of China (No. 611042600)

References

First citationRigaku (2008). CrystalClear. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H. D., Xu, Y. L. & Jiang, B. (2001). Diterpenoids from Isodon Species, pp. 4–17. Beijing: Science Press.  Google Scholar
First citationYan, F. L., Guo, L. Q., Bai, S. P. & Sun, H. D. (2008). J. Chin. Chem. Soc. 55, 933–936.  CAS Google Scholar
First citationZhang, J. X., Han, Q. B., Zhao, A. H. & Sun, H. D. (2003). Fitoterapia, 74, 435–438.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds