metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa­aqua­bis­(μ2-1H-pyrazole-3,5-di­carboxyl­ato)tricopper(II) tetra­hydrate

aShenzhen Environmental Monitoring Center, Shenzhen 518008, People's Republic of China, bShenzhen Environmental Protecting Bureau, Shenzhen 518008, People's Republic of China, and cState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
*Correspondence e-mail: jwxu@ciac.jl.cn

(Received 22 November 2009; accepted 13 January 2010; online 30 January 2010)

In the trinucler CuII complex mol­ecule of the title compound, [Cu3(C5HN2O4)2(H2O)8]·4H2O, the central CuII atom is located on an inversion centre and is coordinated in a distorted octa­hedral geometry. The equatorial sites are occupied by two N and two O atoms from two pyrazole-3,5-dicarboxyl­ate ligands and the axial positions are occupied by two water mol­ecules. The two other symmetry-related CuII atoms are penta­coordinated and assume a square-pyramidal geometry. In the crystal structure, coordinated and uncoordinated water mol­ecules and carboxyl­ate O atoms are linked by O—H⋯O hydrogen bonds.

Related literature

For general background to coordination polymers, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). For related structures, see: King et al. (2003[King, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 423, 705-714.]); Li (2005[Li, X.-H. (2005). Acta Cryst. E61, m2405-m2407.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3(C5HN2O4)2(H2O)8]·4H2O

  • Mr = 712.97

  • Triclinic, [P \overline 1]

  • a = 8.9455 (6) Å

  • b = 9.1018 (7) Å

  • c = 9.1125 (7) Å

  • α = 103.485 (1)°

  • β = 90.924 (1)°

  • γ = 117.505 (1)°

  • V = 633.31 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.59 mm−1

  • T = 293 K

  • 0.17 × 0.13 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.666, Tmax = 0.877

  • 3535 measured reflections

  • 2412 independent reflections

  • 2198 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.08

  • 2412 reflections

  • 205 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.87 (3) 2.28 (4) 3.050 (4) 148 (4)
O5—H5B⋯O8ii 0.87 (4) 2.16 (4) 3.021 (5) 172 (4)
O6—H6A⋯O8iii 0.87 (4) 2.38 (5) 3.078 (4) 137 (4)
O6—H6B⋯O2iii 0.87 (6) 2.30 (6) 3.077 (4) 149 (4)
O7—H7A⋯O1ii 0.80 (4) 2.16 (4) 2.860 (4) 147 (4)
O7—H7B⋯O4iv 0.81 (4) 1.91 (4) 2.715 (4) 171 (4)
O8—H8A⋯O7v 0.81 (3) 2.06 (3) 2.854 (4) 169 (4)
O8—H8B⋯O1 0.81 (5) 2.03 (5) 2.836 (4) 175 (4)
O9—H9A⋯O4vi 0.87 (4) 2.26 (4) 3.061 (4) 154 (4)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+2, -z+1; (iii) -x, -y+1, -z+1; (iv) x-1, y, z; (v) x, y, z+1; (vi) x-1, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of novel coordination architectures is a fertile field due to the intriguing network topologies and potential a pplications as new classes of materials (Yaghi et al., 2003; Kitagawa et al., 2004). The ligand of pyrazole-3,5-dicarboxylic acid has several potential coordination sites involving both two N atoms of the pyrazole ring and four carboxylate O atoms. These multifunctional coordination sites are highly accessible to metal ions, as such, the ligand can coordinate as a mono-, bi-, or tetradentate ligand and can act to link together metal centers through a number of bridging modes (Li, 2005). The divalent copper atoms are easily to precipitate with the OH- when the pyrazole-3,5-dicarboxylic acids are deprotoned in base water solution, the mixed solution can obtain coordianted polymer single crystals in hydrothermal condition (King et al., 2003). Nevertheless, when the ammonia was added to the mixed solution, because of the complexing action between the copper atoms and NH3, the turbid soltuion became clear. After the ammonia slowly evaporated, we obtained the blue crystals, compound (I), as shown in Fig.1, a copper(II) trimer.

The central copper atom, Cu1, lies on a crystallographic inversion center. The Cu1 atom has a six-coordinate octahedral geometry, in which two O atoms and two N atoms from two pyrazole-3,5-dicarboxylate ligands occupy the equatorial plane, and the axial coordination sites are occupied two water molecules; the Cu—N/O bond distances range from 2.003 (2) to 2.437 (3) Å. The other two symmetry-related copper atoms, Cu2, have a pentacoordinate square-pyramidal geometry, where a pyrazole nitrogen N2 and a carboxylate oxygen O3 from one pyrazole-3,5-dicarboxylate ligand occupy two coordination sites and the remaining three positions are occupied by water molecules; the Cu—N/O bond distances range from 1.984 (2) to 2.237 (2) Å. The pyrazole-3,5-dicarboxylate ligand is not strictly planar. Deviation from the mean plane defined by the pyrazole ring is seen for both carboxylate groups with values ranging from 0.034 (1) to 0.205 (1) Å. The dihedral angle between the two carboxylate mean planes is 11.3 (3)°. It can be seen that the ligand bite angle at the two different copper centers Cu1 and Cu2 is similar, 74.8 (4) and 80.6 (4)°, respectively. This implies that the pyrazole-3,5-dicarboxylate ligand is a fairly rigid ligand and retains its integrity on metal chelation.

In the asymmetric unit, there are two lattice water molecules, four coordinated water molecules and carboxylate O atoms, which form complexed hydrogen-bonding interactions. Two lattice water molecules and its symmetric equivalents together with two carboxylate O atoms from two trimers form a hydrogen-bonded chair conformation, generating an R46(6) motif (Bernstein et al., 1995). Meanwhile, the four lattice water molecules in each R46(6) motif also bind four another trimers by O7—H7B···O4 hydrogen bond interaction, and O5—H5B···O8 hydrogen bond interaction. Those strong hydrogen-bonding interactions as well as some weaker interactions, such as O5—H5A···O1, O6—H6A···O8, O6—H6B···O2 and O9—H9A···O4, extend the crystal structure into a three-dimensional supramolecular network (Fig. 2).

Related literature top

For general background to coordination polymers, see: Yaghi et al. (2003); Kitagawa et al. (2004). For related structures, see: King et al. (2003); Li (2005). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

The title complex was prepared by the addition of Cu(BF4)2 (20 mmol) and pyrazole-3,5-dicarboxylic acid (30 mmol) to 40 ml water. The mixture was stirred for 1 h, a blue precipitate was obtained. A minimum amount of ammonia (14 M) was added to give a blue solution. Suitable crystals were obtained after standing at room temperature for several days (yield 51% based on Cu).

Refinement top

Atom H2 was placed geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = Ueq(C). The H atoms bonded to O atoms of water molecules were located in a difference Fourier map and refined, with a bond distance restriction [O—H = 0.82 (2) Å], and with Uiso(H) = 1.2Ueq(O).

Structure description top

The design and synthesis of novel coordination architectures is a fertile field due to the intriguing network topologies and potential a pplications as new classes of materials (Yaghi et al., 2003; Kitagawa et al., 2004). The ligand of pyrazole-3,5-dicarboxylic acid has several potential coordination sites involving both two N atoms of the pyrazole ring and four carboxylate O atoms. These multifunctional coordination sites are highly accessible to metal ions, as such, the ligand can coordinate as a mono-, bi-, or tetradentate ligand and can act to link together metal centers through a number of bridging modes (Li, 2005). The divalent copper atoms are easily to precipitate with the OH- when the pyrazole-3,5-dicarboxylic acids are deprotoned in base water solution, the mixed solution can obtain coordianted polymer single crystals in hydrothermal condition (King et al., 2003). Nevertheless, when the ammonia was added to the mixed solution, because of the complexing action between the copper atoms and NH3, the turbid soltuion became clear. After the ammonia slowly evaporated, we obtained the blue crystals, compound (I), as shown in Fig.1, a copper(II) trimer.

The central copper atom, Cu1, lies on a crystallographic inversion center. The Cu1 atom has a six-coordinate octahedral geometry, in which two O atoms and two N atoms from two pyrazole-3,5-dicarboxylate ligands occupy the equatorial plane, and the axial coordination sites are occupied two water molecules; the Cu—N/O bond distances range from 2.003 (2) to 2.437 (3) Å. The other two symmetry-related copper atoms, Cu2, have a pentacoordinate square-pyramidal geometry, where a pyrazole nitrogen N2 and a carboxylate oxygen O3 from one pyrazole-3,5-dicarboxylate ligand occupy two coordination sites and the remaining three positions are occupied by water molecules; the Cu—N/O bond distances range from 1.984 (2) to 2.237 (2) Å. The pyrazole-3,5-dicarboxylate ligand is not strictly planar. Deviation from the mean plane defined by the pyrazole ring is seen for both carboxylate groups with values ranging from 0.034 (1) to 0.205 (1) Å. The dihedral angle between the two carboxylate mean planes is 11.3 (3)°. It can be seen that the ligand bite angle at the two different copper centers Cu1 and Cu2 is similar, 74.8 (4) and 80.6 (4)°, respectively. This implies that the pyrazole-3,5-dicarboxylate ligand is a fairly rigid ligand and retains its integrity on metal chelation.

In the asymmetric unit, there are two lattice water molecules, four coordinated water molecules and carboxylate O atoms, which form complexed hydrogen-bonding interactions. Two lattice water molecules and its symmetric equivalents together with two carboxylate O atoms from two trimers form a hydrogen-bonded chair conformation, generating an R46(6) motif (Bernstein et al., 1995). Meanwhile, the four lattice water molecules in each R46(6) motif also bind four another trimers by O7—H7B···O4 hydrogen bond interaction, and O5—H5B···O8 hydrogen bond interaction. Those strong hydrogen-bonding interactions as well as some weaker interactions, such as O5—H5A···O1, O6—H6A···O8, O6—H6B···O2 and O9—H9A···O4, extend the crystal structure into a three-dimensional supramolecular network (Fig. 2).

For general background to coordination polymers, see: Yaghi et al. (2003); Kitagawa et al. (2004). For related structures, see: King et al. (2003); Li (2005). For graph-set motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids. [Symmetry code: (A) 1 - x, 1 - y, -z.]
[Figure 2] Fig. 2. Perspective view of packing structure of (I) along the c axis. For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.
Octaaquabis(µ2-1H-pyrazole-3,5-dicarboxylato)tricopper(II) tetrahydrate top
Crystal data top
[Cu3(C5HN2O4)2(H2O)8]·4H2OZ = 1
Mr = 712.97F(000) = 361
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9455 (6) ÅCell parameters from 2128 reflections
b = 9.1018 (7) Åθ = 2.3–26.0°
c = 9.1125 (7) ŵ = 2.59 mm1
α = 103.485 (1)°T = 293 K
β = 90.924 (1)°Tabular, blue
γ = 117.505 (1)°0.17 × 0.13 × 0.05 mm
V = 633.31 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube2198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.666, Tmax = 0.877k = 119
3535 measured reflectionsl = 119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0495P)2 + 1.615P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max = 0.042
205 parametersΔρmax = 0.89 e Å3
12 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu3(C5HN2O4)2(H2O)8]·4H2Oγ = 117.505 (1)°
Mr = 712.97V = 633.31 (8) Å3
Triclinic, P1Z = 1
a = 8.9455 (6) ÅMo Kα radiation
b = 9.1018 (7) ŵ = 2.59 mm1
c = 9.1125 (7) ÅT = 293 K
α = 103.485 (1)°0.17 × 0.13 × 0.05 mm
β = 90.924 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2198 reflections with I > 2σ(I)
Tmin = 0.666, Tmax = 0.877Rint = 0.010
3535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03612 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.89 e Å3
2412 reflectionsΔρmin = 0.54 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.00000.01250 (16)
Cu20.18693 (5)0.39943 (5)0.35269 (4)0.01365 (14)
O10.4661 (3)0.8149 (3)0.7106 (3)0.0205 (5)
O20.2463 (3)0.5801 (3)0.5590 (3)0.0180 (5)
O30.8061 (3)0.6833 (3)0.0762 (3)0.0187 (5)
O40.9786 (3)0.8716 (3)0.2903 (3)0.0198 (5)
O50.4555 (4)0.6959 (4)0.0015 (3)0.0319 (7)
H5A0.420 (6)0.690 (7)0.093 (3)0.038*
H5B0.541 (5)0.797 (4)0.040 (5)0.038*
O60.0225 (4)0.2439 (4)0.4269 (4)0.0318 (7)
H6A0.091 (5)0.148 (4)0.360 (5)0.038*
H6B0.083 (6)0.291 (6)0.468 (5)0.038*
O70.2443 (4)0.8545 (4)0.1630 (3)0.0268 (6)
H7A0.330 (4)0.923 (5)0.219 (5)0.032*
H7B0.159 (4)0.848 (6)0.198 (5)0.032*
O80.2631 (4)0.9378 (4)0.8781 (3)0.0280 (6)
H8A0.245 (6)0.913 (6)0.958 (3)0.034*
H8B0.316 (5)0.899 (6)0.826 (5)0.034*
O90.1851 (4)0.2020 (4)0.1939 (4)0.0335 (7)
H9A0.104 (5)0.102 (4)0.195 (6)0.040*
H9B0.282 (4)0.202 (7)0.197 (6)0.040*
O100.0459 (4)0.4770 (5)0.2092 (4)0.0415 (8)
H10A0.102 (6)0.580 (4)0.202 (6)0.050*
H10B0.052 (4)0.452 (7)0.238 (6)0.050*
N10.5326 (3)0.5804 (4)0.2330 (3)0.0135 (6)
N20.4214 (3)0.5670 (4)0.3334 (3)0.0136 (6)
C10.5045 (4)0.6944 (4)0.4637 (4)0.0136 (6)
C20.6742 (4)0.7934 (4)0.4484 (4)0.0151 (7)
H20.75970.88840.51960.015*
C30.6852 (4)0.7162 (4)0.3012 (4)0.0125 (6)
C40.4011 (4)0.6993 (4)0.5882 (4)0.0153 (7)
C50.8344 (4)0.7607 (4)0.2152 (4)0.0136 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0145 (3)0.0118 (3)0.0090 (3)0.0055 (2)0.0011 (2)0.0007 (2)
Cu20.0111 (2)0.0123 (2)0.0137 (2)0.00298 (17)0.00279 (15)0.00235 (16)
O10.0194 (12)0.0210 (13)0.0134 (12)0.0060 (11)0.0028 (10)0.0012 (10)
O20.0141 (12)0.0167 (12)0.0181 (12)0.0045 (10)0.0046 (9)0.0018 (10)
O30.0171 (12)0.0216 (13)0.0122 (12)0.0056 (10)0.0040 (9)0.0030 (10)
O40.0116 (11)0.0210 (13)0.0172 (12)0.0012 (10)0.0018 (9)0.0026 (10)
O50.0366 (17)0.0299 (16)0.0294 (16)0.0160 (14)0.0037 (13)0.0082 (13)
O60.0251 (15)0.0303 (16)0.0354 (17)0.0099 (13)0.0063 (12)0.0076 (13)
O70.0209 (14)0.0209 (14)0.0335 (16)0.0080 (12)0.0098 (12)0.0025 (12)
O80.0286 (15)0.0294 (16)0.0257 (15)0.0154 (13)0.0053 (12)0.0033 (12)
O90.0323 (16)0.0270 (16)0.0358 (17)0.0100 (13)0.0082 (13)0.0076 (13)
O100.0351 (18)0.0381 (19)0.054 (2)0.0156 (16)0.0024 (16)0.0220 (16)
N10.0125 (13)0.0140 (14)0.0123 (13)0.0050 (11)0.0035 (10)0.0035 (11)
N20.0119 (13)0.0146 (14)0.0112 (13)0.0044 (11)0.0020 (10)0.0018 (11)
C10.0136 (15)0.0139 (16)0.0119 (15)0.0057 (13)0.0014 (12)0.0032 (12)
C20.0125 (15)0.0157 (17)0.0132 (16)0.0039 (13)0.0005 (12)0.0031 (13)
C30.0127 (15)0.0126 (16)0.0103 (15)0.0047 (13)0.0010 (12)0.0027 (12)
C40.0149 (16)0.0166 (17)0.0152 (16)0.0081 (14)0.0031 (13)0.0047 (13)
C50.0150 (16)0.0130 (17)0.0133 (16)0.0064 (14)0.0037 (13)0.0048 (13)
Geometric parameters (Å, º) top
Cu1—O52.001 (3)O6—H6B0.87 (6)
Cu1—O5i2.001 (3)O7—H7A0.80 (2)
Cu1—N12.047 (3)O7—H7B0.81 (2)
Cu1—N1i2.047 (3)O8—H8A0.81 (2)
Cu1—O3i2.437 (2)O8—H8B0.81 (5)
Cu1—O32.437 (2)O9—H9A0.87 (2)
Cu2—N21.985 (3)O9—H9B0.87 (5)
Cu2—O62.002 (3)O10—H10A0.85 (2)
Cu2—O92.021 (3)O10—H10B0.86 (5)
Cu2—O22.059 (2)N1—N21.345 (4)
Cu2—O102.236 (3)N1—C31.354 (4)
O1—C41.247 (4)N2—C11.357 (4)
O2—C41.277 (4)C1—C21.392 (5)
O3—C51.255 (4)C1—C41.481 (5)
O4—C51.264 (4)C2—C31.390 (5)
O5—H5A0.87 (2)C2—H20.9300
O5—H5B0.87 (2)C3—C51.497 (4)
O6—H6A0.87 (2)
O5—Cu1—O5i180.0Cu2—O6—H6B116 (3)
O5—Cu1—N187.36 (12)H6A—O6—H6B108 (5)
O5i—Cu1—N192.64 (12)H7A—O7—H7B113 (5)
O5—Cu1—N1i92.64 (12)H8A—O8—H8B117 (5)
O5i—Cu1—N1i87.36 (12)Cu2—O9—H9A114 (3)
N1—Cu1—N1i180.00 (18)Cu2—O9—H9B114 (3)
O5—Cu1—O3i85.89 (11)H9A—O9—H9B110 (5)
O5i—Cu1—O3i94.11 (11)Cu2—O10—H10A115 (4)
N1—Cu1—O3i105.11 (9)Cu2—O10—H10B109 (4)
N1i—Cu1—O3i74.89 (9)H10A—O10—H10B114 (6)
O5—Cu1—O394.11 (11)N2—N1—C3107.6 (3)
O5i—Cu1—O385.89 (11)N2—N1—Cu1132.2 (2)
N1—Cu1—O374.89 (9)C3—N1—Cu1116.3 (2)
N1i—Cu1—O3105.11 (9)N1—N2—C1108.4 (3)
O3i—Cu1—O3180.0N1—N2—Cu2137.8 (2)
N2—Cu2—O6165.29 (12)C1—N2—Cu2113.2 (2)
N2—Cu2—O993.98 (12)N2—C1—C2110.0 (3)
O6—Cu2—O992.94 (13)N2—C1—C4115.9 (3)
N2—Cu2—O280.69 (10)C2—C1—C4134.1 (3)
O6—Cu2—O288.18 (11)C3—C2—C1103.4 (3)
O9—Cu2—O2158.66 (12)C3—C2—H2128.3
N2—Cu2—O1097.78 (12)C1—C2—H2128.3
O6—Cu2—O1093.87 (13)N1—C3—C2110.6 (3)
O9—Cu2—O1099.41 (14)N1—C3—C5119.3 (3)
O2—Cu2—O10101.78 (12)C2—C3—C5130.1 (3)
C4—O2—Cu2114.3 (2)O1—C4—O2124.6 (3)
C5—O3—Cu1109.0 (2)O1—C4—C1120.1 (3)
Cu1—O5—H5A111 (3)O2—C4—C1115.2 (3)
Cu1—O5—H5B115 (3)O3—C5—O4125.8 (3)
H5A—O5—H5B110 (5)O3—C5—C3117.4 (3)
Cu2—O6—H6A115 (3)O4—C5—C3116.8 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1ii0.87 (3)2.28 (4)3.050 (4)148 (4)
O5—H5B···O8iii0.87 (4)2.16 (4)3.021 (5)172 (4)
O6—H6A···O8iv0.87 (4)2.38 (5)3.078 (4)137 (4)
O6—H6B···O2iv0.87 (6)2.30 (6)3.077 (4)149 (4)
O7—H7A···O1iii0.80 (4)2.16 (4)2.860 (4)147 (4)
O7—H7B···O4v0.81 (4)1.91 (4)2.715 (4)171 (4)
O8—H8A···O7vi0.81 (3)2.06 (3)2.854 (4)169 (4)
O8—H8B···O10.81 (5)2.03 (5)2.836 (4)175 (4)
O9—H9A···O4vii0.87 (4)2.26 (4)3.061 (4)154 (4)
Symmetry codes: (ii) x, y, z1; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x, y, z+1; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Cu3(C5HN2O4)2(H2O)8]·4H2O
Mr712.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9455 (6), 9.1018 (7), 9.1125 (7)
α, β, γ (°)103.485 (1), 90.924 (1), 117.505 (1)
V3)633.31 (8)
Z1
Radiation typeMo Kα
µ (mm1)2.59
Crystal size (mm)0.17 × 0.13 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.666, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
3535, 2412, 2198
Rint0.010
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.08
No. of reflections2412
No. of parameters205
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.54

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1i0.87 (3)2.28 (4)3.050 (4)148 (4)
O5—H5B···O8ii0.87 (4)2.16 (4)3.021 (5)172 (4)
O6—H6A···O8iii0.87 (4)2.38 (5)3.078 (4)137 (4)
O6—H6B···O2iii0.87 (6)2.30 (6)3.077 (4)149 (4)
O7—H7A···O1ii0.80 (4)2.16 (4)2.860 (4)147 (4)
O7—H7B···O4iv0.81 (4)1.91 (4)2.715 (4)171 (4)
O8—H8A···O7v0.81 (3)2.06 (3)2.854 (4)169 (4)
O8—H8B···O10.81 (5)2.03 (5)2.836 (4)175 (4)
O9—H9A···O4vi0.87 (4)2.26 (4)3.061 (4)154 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1; (iv) x1, y, z; (v) x, y, z+1; (vi) x1, y1, z.
 

Acknowledgements

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKing, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem. 423, 705–714.  Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationLi, X.-H. (2005). Acta Cryst. E61, m2405–m2407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds