organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2-(4-meth­oxy­phen­­oxy)ethane

aSchool of Pharmaceutical Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 14 December 2009; accepted 15 January 2010; online 23 January 2010)

In the crystal structure of the title compound, C9H11BrO2, mol­ecules are stacked parallel to the b-axis direction, forming double layers in which the molecules are arranged head-to-head, with the bromo­methyl groups pointing towards each other.

Related literature

For background to the use of the title compound as a pharmaceutical inter­mediate, see: Ran et al. (2000[Ran, C. Z., Xia, L., Ni, P. Z. & Fu, J. H. (2000). J. Chin. Pharm. Univ. 31, 246-250.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11BrO2

  • Mr = 231.09

  • Monoclinic, P 21 /c

  • a = 21.112 (4) Å

  • b = 5.4180 (11) Å

  • c = 8.3230 (17) Å

  • β = 94.54 (3)°

  • V = 949.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.29 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.481, Tmax = 0.674

  • 1759 measured reflections

  • 1713 independent reflections

  • 1050 reflections with I > 2σ(I)

  • Rint = 0.073

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.155

  • S = 1.01

  • 1713 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The tile compound, (I), contains halogen and methoxy groups, which can react with differen groups to prepare various functional organic compounds as a fine organic intermediate (Ran et al., 2000). we report herein its crystal structure.

In the molecule of the tile compound (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The O1 and O2 atoms (Table 1) lie in the benzene ring plane. No intramolecular hydrogen bonds were observed.

In the crystal structure, the molecules are stacked along the b axis and the 'double layers' of molecules lying with all their bromomethyl groups together (Fig.2).

Related literature top

For background to the use of the title compound as a pharmaceutical intermediate, see: Ran et al. (2000). For bond-length data, see: Allen et al. (1987).

Experimental top

4-methoxyphenol (18.6 g,0.15 mol) was dissolved with stirring in water (80 ml) containing sodium hydroxide (9.0 g, 0.25 mol) and TBAB (0.48 g, 0.0015 mol) and then added dropwise to excess refluxing ethylene dibromide (65 g, 0.35 mol). The reaction mixture was heated under reflux for 12 h, cooled and extracted into chloroform. The combined organic extracts were washed with water, dried over Na2SO4, filtered and evaporated to dryness to yield an oil. Fractionation under reduced pressure yielded 1-Bromo-2-(4-methoxyphenoxy)ethane as a colorless oil, then cooled to give 27.3 g white solid (78.9% yield). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Structure description top

The tile compound, (I), contains halogen and methoxy groups, which can react with differen groups to prepare various functional organic compounds as a fine organic intermediate (Ran et al., 2000). we report herein its crystal structure.

In the molecule of the tile compound (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The O1 and O2 atoms (Table 1) lie in the benzene ring plane. No intramolecular hydrogen bonds were observed.

In the crystal structure, the molecules are stacked along the b axis and the 'double layers' of molecules lying with all their bromomethyl groups together (Fig.2).

For background to the use of the title compound as a pharmaceutical intermediate, see: Ran et al. (2000). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
1-Bromo-2-(4-methoxyphenoxy)ethane top
Crystal data top
C9H11BrO2F(000) = 464
Mr = 231.09Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 21.112 (4) Åθ = 9–13°
b = 5.4180 (11) ŵ = 4.29 mm1
c = 8.3230 (17) ÅT = 293 K
β = 94.54 (3)°Block, colourless
V = 949.0 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1050 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = 250
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.481, Tmax = 0.674l = 99
1759 measured reflections3 standard reflections every 200 reflections
1713 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.060P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1713 reflectionsΔρmax = 0.66 e Å3
110 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C9H11BrO2V = 949.0 (3) Å3
Mr = 231.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.112 (4) ŵ = 4.29 mm1
b = 5.4180 (11) ÅT = 293 K
c = 8.3230 (17) Å0.20 × 0.10 × 0.10 mm
β = 94.54 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1050 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.073
Tmin = 0.481, Tmax = 0.6743 standard reflections every 200 reflections
1759 measured reflections intensity decay: 1%
1713 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.01Δρmax = 0.66 e Å3
1713 reflectionsΔρmin = 0.55 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.43028 (5)0.39656 (16)0.68335 (11)0.0565 (4)
O10.0725 (3)0.4636 (12)0.1822 (7)0.0603 (17)
C10.0493 (5)0.2506 (19)0.0971 (11)0.068 (3)
H1A0.00470.26890.06820.102*
H1B0.05640.10770.16430.102*
H1C0.07130.23130.00120.102*
O20.3246 (3)0.5406 (10)0.4019 (5)0.0443 (14)
C20.1538 (4)0.6649 (13)0.3366 (8)0.0344 (18)
H2A0.12380.77850.36640.041*
C30.1353 (3)0.4740 (14)0.2328 (8)0.0305 (17)
C40.2150 (3)0.6877 (13)0.3951 (8)0.0317 (17)
H4A0.22630.81410.46730.038*
C50.2602 (3)0.5311 (12)0.3510 (7)0.0266 (16)
C60.2427 (4)0.3359 (14)0.2494 (8)0.0374 (19)
H6A0.27310.22390.22030.045*
C70.1801 (4)0.3076 (14)0.1914 (8)0.0361 (19)
H7A0.16830.17550.12430.043*
C80.3458 (4)0.7249 (14)0.5127 (8)0.039 (2)
H8A0.32220.71520.60790.047*
H8B0.33870.88660.46460.047*
C90.4136 (4)0.6893 (15)0.5575 (9)0.0408 (19)
H9A0.42990.83130.61860.049*
H9B0.43600.67910.46030.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0742 (7)0.0413 (5)0.0505 (6)0.0066 (5)0.0173 (4)0.0053 (5)
O10.051 (4)0.066 (4)0.062 (4)0.002 (3)0.011 (3)0.013 (3)
C10.076 (7)0.069 (7)0.056 (6)0.010 (6)0.021 (5)0.011 (5)
O20.061 (4)0.051 (4)0.019 (3)0.002 (3)0.006 (2)0.007 (2)
C20.053 (5)0.026 (4)0.025 (4)0.006 (3)0.006 (3)0.005 (3)
C30.036 (4)0.037 (4)0.018 (4)0.008 (4)0.000 (3)0.007 (3)
C40.045 (4)0.022 (4)0.027 (4)0.002 (4)0.001 (3)0.009 (3)
C50.046 (4)0.023 (4)0.010 (3)0.002 (3)0.001 (3)0.005 (3)
C60.058 (5)0.033 (5)0.020 (4)0.004 (4)0.003 (3)0.000 (3)
C70.064 (5)0.026 (4)0.016 (4)0.001 (4)0.011 (3)0.003 (3)
C80.068 (6)0.029 (4)0.018 (4)0.011 (4)0.008 (3)0.005 (3)
C90.048 (5)0.040 (5)0.034 (4)0.016 (4)0.000 (4)0.004 (4)
Geometric parameters (Å, º) top
Br—C91.918 (8)C4—C51.350 (9)
O1—C31.360 (9)C4—H4A0.9300
O1—C11.421 (11)C5—C61.386 (9)
C1—H1A0.9600C6—C71.380 (10)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—H7A0.9300
O2—C51.393 (8)C8—C91.463 (10)
O2—C81.408 (9)C8—H8A0.9700
C2—C41.350 (10)C8—H8B0.9700
C2—C31.384 (10)C9—H9A0.9700
C2—H2A0.9300C9—H9B0.9700
C3—C71.370 (10)
C3—O1—C1118.4 (7)C6—C5—O2114.9 (6)
O1—C1—H1A109.5C7—C6—C5120.0 (7)
O1—C1—H1B109.5C7—C6—H6A120.0
H1A—C1—H1B109.5C5—C6—H6A120.0
O1—C1—H1C109.5C3—C7—C6120.0 (7)
H1A—C1—H1C109.5C3—C7—H7A120.0
H1B—C1—H1C109.5C6—C7—H7A120.0
C5—O2—C8118.5 (6)O2—C8—C9109.1 (7)
C4—C2—C3120.6 (7)O2—C8—H8A109.9
C4—C2—H2A119.7C9—C8—H8A109.9
C3—C2—H2A119.7O2—C8—H8B109.9
O1—C3—C7124.8 (6)C9—C8—H8B109.9
O1—C3—C2116.4 (6)H8A—C8—H8B108.3
C7—C3—C2118.8 (7)C8—C9—Br112.4 (5)
C2—C4—C5121.5 (7)C8—C9—H9A109.1
C2—C4—H4A119.3Br—C9—H9A109.1
C5—C4—H4A119.3C8—C9—H9B109.1
C4—C5—C6119.0 (7)Br—C9—H9B109.1
C4—C5—O2126.1 (6)H9A—C9—H9B107.9
C1—O1—C3—C78.3 (11)C8—O2—C5—C6176.4 (6)
C1—O1—C3—C2170.1 (7)C4—C5—C6—C71.7 (10)
C4—C2—C3—O1179.0 (7)O2—C5—C6—C7179.9 (6)
C4—C2—C3—C70.5 (10)O1—C3—C7—C6179.8 (7)
C3—C2—C4—C52.0 (11)C2—C3—C7—C61.8 (10)
C2—C4—C5—C63.1 (10)C5—C6—C7—C30.7 (10)
C2—C4—C5—O2178.9 (6)C5—O2—C8—C9176.1 (6)
C8—O2—C5—C41.6 (9)O2—C8—C9—Br68.6 (7)

Experimental details

Crystal data
Chemical formulaC9H11BrO2
Mr231.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.112 (4), 5.4180 (11), 8.3230 (17)
β (°) 94.54 (3)
V3)949.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.29
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.481, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
1759, 1713, 1050
Rint0.073
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.155, 1.01
No. of reflections1713
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.55

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Br—C91.918 (8)O2—C51.393 (8)
O1—C31.360 (9)O2—C81.408 (9)
O1—C11.421 (11)
C3—O1—C1118.4 (7)C4—C5—O2126.1 (6)
C5—O2—C8118.5 (6)C6—C5—O2114.9 (6)
O1—C3—C7124.8 (6)O2—C8—C9109.1 (7)
O1—C3—C2116.4 (6)C8—C9—Br112.4 (5)
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRan, C. Z., Xia, L., Ni, P. Z. & Fu, J. H. (2000). J. Chin. Pharm. Univ. 31, 246–250.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds