metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Di­phenyldi(pyrazol-1-yl)methane]­dinitratocobalt(II)

aKennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144-5591, USA, and bBruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711, USA
*Correspondence e-mail: jshaw22@kennesaw.edu

(Received 24 November 2009; accepted 5 January 2010; online 13 January 2010)

In the title compound, [Co(NO3)2(C19H16N4)], the diphenyl­dipyrazolylmethane ligand coordinates to CoII in a bidentate fashion forming a six-membered ring with an approximate boat configuration. The mean planes of the two pyrazolyl rings are separated by an angle of 39.6 (2)°. The coordination at the CoII center is best described as distorted octa­hedral with two NO3 anions serving as bidentate ligands for charge balance. The dihedral angle between the mean planes of the two nitrate rings is 85.0 (1)° and that between the mean planes of the two phenyl rings is 73.7 (1)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O and intra­molecular C—H⋯N hydrogen-bond inter­actions.

Related literature

For related structures incorporating diphenyl­dipyrazolyl­methane ligands, see: Shiu et al. (1993[Shiu, K., Yeh, L., Peng, S. & Cheng, M. (1993). J. Organomet. Chem. 460, 203-211.]); Tsuji et al. (1999[Tsuji, S., Swenson, D. C. & Jordan, R. F. (1999). Organometallics , 18, 4758-4764.]); Reger et al. (2004[Reger, D. L., Gardinier, J. R. & Smith, M. D. (2004). Inorg. Chem. 43, 3825-3832.]); Shaw et al. (2004[Shaw, J. L., Cardon, T., Lorigan, G. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. 5, 1073-1080.], 2005[Shaw, J. L., Yee, G. T., Wang, G. W., Benson, D. E., Gokdemir, C. & Ziegler, C. J. (2005). Inorg. Chem. 44, 5060-5067.], 2009[Shaw, J. L., Gwaltney, K. P. & Keer, N. (2009). Inorg. Chim. Acta, 362, 2396-2401.]); Baho & Zargarian (2007a[Baho, N. & Zargarian, D. (2007a). Inorg. Chem. 46, 299-308.],b[Baho, N. & Zargarian, D. (2007b). Inorg. Chem. 46, 7621-7632.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO3)2(C19H16N4)]

  • Mr = 483.31

  • Monoclinic, P 21 /n

  • a = 8.5476 (14) Å

  • b = 14.8058 (17) Å

  • c = 16.818 (3) Å

  • β = 103.383 (4)°

  • V = 2070.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 200 K

  • 0.50 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART X2S benchtop diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.668, Tmax = 0.778

  • 13223 measured reflections

  • 3666 independent reflections

  • 3042 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.118

  • S = 0.96

  • 3666 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O5i 0.93 2.54 3.413 (3) 157
C10—H10⋯O3ii 0.93 2.59 3.399 (4) 146
C3—H3⋯O4iii 0.93 2.50 3.313 (3) 146
C19—H19⋯N1 0.93 2.46 2.799 (3) 102
Symmetry codes: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The metal chemistry of diphenyldipyrazolylmethane ligands was first explored by Shiu et al. (1993) who crystallized two complexes of the 3,5-dimethylpyrazolyl variant with molybdenum. Similar complexes with PdII were synthesized by Tsuji et al. (1999) and Reger et al. (2004) who generated complexes with AgI . More recently, compounds with diphenyldipyrazolylmethane ligands complexed with CuI/II (Shaw et al. 2004;2005), NiII (Baho & Zargarian, 2007a; 2007b), and ZnII (Shaw et al. 2009) have appeared in the literature.

In the title compound, Co(C19H16N4)(NO3)2, the diphenyldipyrazolylmethane ligand coordinates to the CoII in a bidentate fashion forming a six-membered ring with an approximate boat configuration (Fig. 1). The mean planes of the two pyrazolyl rings are separated by 39.55 (12)°. The geometry at the CoII is best described as a distorted octahedral with two NO3- anions serving as bidentate ligands for charge balance. The N2 and N4 atoms are the bidentate groups that form a heteroscorpionate type structure coordinated to a d2sp3 hybridized CoII ion. The dihedral angle between the mean planes of the two nitrato rings is 84.52 (10)° and between the mean planes of the two phenyl rings is 73.71 (6)°. The crystal structure is stabilized by weak intermolecular C—H···O and intramolecular C—H···N hydrogen bond interactions (Fig. 2; Table 1).

Related literature top

For related structures incorporating diphenyldipyrazolylmethane ligands, see: Shiu et al. (1993); Tsuji et al. (1999); Reger et al. (2004); Shaw et al. (2004, 2005, 2009); Baho & Zargarian (2007a,b).

Experimental top

The title compound was prepared by reacting cobalt(II) nitrate hexahydrate (1.64 mmoles) with diphenyldipyrazolylmethane (1.97 mmoles) in ethanol (100 ml). After 24 h of stirring, the solution was evaporated under reduced pressure to afford a red solid. Crystals were isolated by redissolving the solid in dichloromethane and layering with hexanes.

Refinement top

All hydrogen atoms were refined using a riding model. C—H values were set from 0.93 to 0.97 Å with Uiso(H) = 1.2Ueq(C).

Structure description top

The metal chemistry of diphenyldipyrazolylmethane ligands was first explored by Shiu et al. (1993) who crystallized two complexes of the 3,5-dimethylpyrazolyl variant with molybdenum. Similar complexes with PdII were synthesized by Tsuji et al. (1999) and Reger et al. (2004) who generated complexes with AgI . More recently, compounds with diphenyldipyrazolylmethane ligands complexed with CuI/II (Shaw et al. 2004;2005), NiII (Baho & Zargarian, 2007a; 2007b), and ZnII (Shaw et al. 2009) have appeared in the literature.

In the title compound, Co(C19H16N4)(NO3)2, the diphenyldipyrazolylmethane ligand coordinates to the CoII in a bidentate fashion forming a six-membered ring with an approximate boat configuration (Fig. 1). The mean planes of the two pyrazolyl rings are separated by 39.55 (12)°. The geometry at the CoII is best described as a distorted octahedral with two NO3- anions serving as bidentate ligands for charge balance. The N2 and N4 atoms are the bidentate groups that form a heteroscorpionate type structure coordinated to a d2sp3 hybridized CoII ion. The dihedral angle between the mean planes of the two nitrato rings is 84.52 (10)° and between the mean planes of the two phenyl rings is 73.71 (6)°. The crystal structure is stabilized by weak intermolecular C—H···O and intramolecular C—H···N hydrogen bond interactions (Fig. 2; Table 1).

For related structures incorporating diphenyldipyrazolylmethane ligands, see: Shiu et al. (1993); Tsuji et al. (1999); Reger et al. (2004); Shaw et al. (2004, 2005, 2009); Baho & Zargarian (2007a,b).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 and SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of Co(C19H16N4)(NO3)2 with 50% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram for Co(C19H16N4)(NO3)2 viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular hydrogen bond interactions.
[Diphenyldi(pyrazol-1-yl)methane]dinitratocobalt(II) top
Crystal data top
[Co(NO3)2(C19H16N4)]F(000) = 988
Mr = 483.31Dx = 1.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5780 reflections
a = 8.5476 (14) Åθ = 2.5–24.7°
b = 14.8058 (17) ŵ = 0.88 mm1
c = 16.818 (3) ÅT = 200 K
β = 103.383 (4)°Block, red
V = 2070.6 (5) Å30.50 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART X2S benchtop
diffractometer
3666 independent reflections
Radiation source: microfocus sealed tube3042 reflections with I > 2σ(I)
Doubly curved silicon crystal monochromatorRint = 0.035
ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1010
Tmin = 0.668, Tmax = 0.778k = 1317
13223 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.2696P]
where P = (Fo2 + 2Fc2)/3
3666 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(NO3)2(C19H16N4)]V = 2070.6 (5) Å3
Mr = 483.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5476 (14) ŵ = 0.88 mm1
b = 14.8058 (17) ÅT = 200 K
c = 16.818 (3) Å0.50 × 0.30 × 0.30 mm
β = 103.383 (4)°
Data collection top
Bruker SMART X2S benchtop
diffractometer
3666 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
3042 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.778Rint = 0.035
13223 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.96Δρmax = 0.42 e Å3
3666 reflectionsΔρmin = 0.45 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.03355 (4)0.17196 (2)0.34055 (2)0.02457 (16)
N10.7926 (2)0.22829 (13)0.18460 (12)0.0213 (5)
N20.9396 (3)0.24461 (14)0.23606 (13)0.0235 (5)
N30.6768 (2)0.14506 (15)0.28100 (13)0.0237 (5)
N40.8088 (2)0.13421 (15)0.34433 (13)0.0265 (5)
C11.0006 (3)0.31437 (17)0.20321 (17)0.0291 (6)
H11.09910.34130.22580.035*
C20.8968 (4)0.34157 (18)0.13031 (18)0.0318 (6)
H20.91230.38850.09610.038*
C30.7677 (3)0.28493 (17)0.11973 (16)0.0278 (6)
H30.67860.28520.07580.033*
C40.7511 (3)0.1164 (2)0.40996 (17)0.0337 (7)
H40.81410.10700.46230.040*
C50.5849 (4)0.1140 (2)0.38961 (18)0.0393 (7)
H50.51700.10290.42440.047*
C60.5413 (3)0.1313 (2)0.30753 (17)0.0311 (6)
H60.43680.13310.27570.037*
C70.6991 (3)0.14624 (17)0.19537 (15)0.0220 (5)
C80.5318 (3)0.15306 (17)0.13787 (15)0.0229 (6)
C90.4379 (3)0.22968 (18)0.14071 (17)0.0292 (6)
H90.47800.27640.17660.035*
C100.2851 (3)0.23643 (19)0.09023 (16)0.0316 (6)
H100.22250.28740.09230.038*
C110.2264 (3)0.16684 (19)0.03673 (18)0.0325 (7)
H110.12400.17100.00270.039*
C120.3187 (3)0.0916 (2)0.03361 (17)0.0329 (6)
H120.27830.04500.00230.039*
C130.4716 (3)0.08490 (18)0.08371 (16)0.0267 (6)
H130.53390.03410.08080.032*
C140.7942 (3)0.06191 (17)0.18337 (15)0.0212 (5)
C150.7524 (3)0.02053 (18)0.21221 (17)0.0288 (6)
H150.66940.02350.23940.035*
C160.8343 (3)0.09812 (19)0.20048 (18)0.0356 (7)
H160.80470.15330.21900.043*
C170.9592 (3)0.0945 (2)0.16159 (16)0.0314 (7)
H171.01550.14660.15500.038*
C181.0000 (3)0.01311 (18)0.13258 (16)0.0291 (6)
H181.08400.01050.10610.035*
C190.9174 (3)0.06503 (17)0.14234 (15)0.0248 (6)
H190.94450.11950.12140.030*
N51.2003 (3)0.03089 (17)0.38553 (19)0.0432 (7)
O11.1748 (2)0.06871 (14)0.31497 (13)0.0377 (5)
O21.1390 (3)0.07016 (16)0.43733 (14)0.0486 (6)
O31.2805 (3)0.03780 (16)0.4002 (2)0.0696 (8)
N61.1981 (3)0.29851 (17)0.42180 (14)0.0350 (6)
O41.0646 (2)0.26855 (14)0.43302 (12)0.0370 (5)
O51.2473 (2)0.26008 (14)0.36490 (13)0.0382 (5)
O61.2721 (3)0.35837 (17)0.46355 (14)0.0579 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0188 (2)0.0290 (3)0.0254 (2)0.00224 (13)0.00403 (16)0.00001 (14)
N10.0205 (11)0.0212 (11)0.0222 (11)0.0004 (8)0.0047 (9)0.0017 (8)
N20.0210 (11)0.0229 (11)0.0272 (11)0.0030 (9)0.0067 (9)0.0025 (9)
N30.0207 (11)0.0298 (11)0.0210 (11)0.0023 (9)0.0058 (9)0.0030 (9)
N40.0220 (11)0.0344 (12)0.0223 (11)0.0030 (10)0.0032 (9)0.0003 (9)
C10.0282 (15)0.0282 (14)0.0326 (15)0.0059 (11)0.0102 (12)0.0035 (11)
C20.0368 (16)0.0267 (14)0.0337 (16)0.0023 (12)0.0123 (13)0.0057 (12)
C30.0329 (15)0.0267 (14)0.0240 (14)0.0036 (11)0.0072 (12)0.0009 (11)
C40.0313 (15)0.0478 (18)0.0224 (14)0.0073 (13)0.0076 (12)0.0004 (12)
C50.0329 (16)0.059 (2)0.0305 (16)0.0096 (15)0.0170 (13)0.0008 (14)
C60.0218 (14)0.0407 (16)0.0330 (15)0.0029 (12)0.0109 (12)0.0035 (13)
C70.0207 (13)0.0245 (13)0.0209 (13)0.0034 (10)0.0048 (10)0.0021 (10)
C80.0206 (13)0.0260 (13)0.0228 (13)0.0004 (10)0.0065 (11)0.0006 (10)
C90.0270 (14)0.0292 (15)0.0316 (15)0.0006 (11)0.0070 (12)0.0032 (11)
C100.0240 (14)0.0357 (15)0.0358 (16)0.0083 (12)0.0081 (12)0.0009 (12)
C110.0221 (14)0.0448 (18)0.0289 (15)0.0013 (12)0.0025 (12)0.0013 (12)
C120.0291 (15)0.0357 (16)0.0319 (15)0.0050 (12)0.0029 (12)0.0092 (12)
C130.0264 (14)0.0253 (13)0.0280 (14)0.0016 (11)0.0054 (11)0.0025 (11)
C140.0193 (12)0.0233 (13)0.0206 (12)0.0001 (10)0.0035 (10)0.0017 (10)
C150.0274 (14)0.0293 (15)0.0311 (15)0.0018 (11)0.0100 (12)0.0050 (11)
C160.0411 (17)0.0235 (14)0.0426 (17)0.0040 (12)0.0106 (14)0.0090 (12)
C170.0324 (15)0.0278 (15)0.0314 (15)0.0090 (11)0.0022 (13)0.0019 (11)
C180.0241 (13)0.0350 (15)0.0291 (14)0.0019 (11)0.0082 (12)0.0069 (12)
C190.0257 (13)0.0238 (13)0.0247 (13)0.0027 (11)0.0055 (11)0.0012 (10)
N50.0272 (13)0.0356 (14)0.0631 (19)0.0012 (11)0.0030 (13)0.0115 (13)
O10.0304 (11)0.0371 (11)0.0450 (12)0.0022 (9)0.0073 (9)0.0004 (10)
O20.0457 (13)0.0550 (14)0.0452 (13)0.0062 (11)0.0108 (11)0.0152 (11)
O30.0546 (16)0.0409 (14)0.112 (2)0.0174 (12)0.0161 (16)0.0256 (14)
N60.0356 (14)0.0373 (14)0.0293 (13)0.0105 (11)0.0020 (11)0.0006 (11)
O40.0335 (11)0.0477 (12)0.0304 (11)0.0102 (9)0.0087 (9)0.0085 (9)
O50.0325 (11)0.0439 (12)0.0383 (12)0.0100 (9)0.0081 (9)0.0036 (9)
O60.0704 (17)0.0561 (14)0.0429 (13)0.0357 (13)0.0045 (12)0.0139 (11)
Geometric parameters (Å, º) top
Co1—N42.015 (2)C8—C91.397 (4)
Co1—O12.054 (2)C9—C101.387 (4)
Co1—N22.058 (2)C9—H90.9300
Co1—O42.0841 (19)C10—C111.383 (4)
Co1—O52.205 (2)C10—H100.9300
Co1—O22.248 (2)C11—C121.372 (4)
N1—C31.353 (3)C11—H110.9300
N1—N21.372 (3)C12—C131.385 (4)
N1—C71.488 (3)C12—H120.9300
N2—C11.333 (3)C13—H130.9300
N3—C61.350 (3)C14—C191.387 (3)
N3—N41.370 (3)C14—C151.390 (4)
N3—C71.496 (3)C15—C161.383 (4)
N4—C41.335 (3)C15—H150.9300
C1—C21.396 (4)C16—C171.376 (4)
C1—H10.9300C16—H160.9300
C2—C31.364 (4)C17—C181.375 (4)
C2—H20.9300C17—H170.9300
C3—H30.9300C18—C191.385 (4)
C4—C51.382 (4)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.368 (4)N5—O31.219 (3)
C5—H50.9300N5—O21.258 (4)
C6—H60.9300N5—O11.284 (3)
C7—C141.528 (3)N6—O61.214 (3)
C7—C81.533 (3)N6—O51.266 (3)
C8—C131.377 (4)N6—O41.278 (3)
N4—Co1—O1114.25 (9)N3—C7—C8107.4 (2)
N4—Co1—N289.17 (9)C14—C7—C8114.7 (2)
O1—Co1—N2110.01 (8)C13—C8—C9119.2 (2)
N4—Co1—O497.15 (8)C13—C8—C7121.4 (2)
O1—Co1—O4133.44 (8)C9—C8—C7119.4 (2)
N2—Co1—O4103.62 (8)C10—C9—C8120.3 (2)
N4—Co1—O5155.92 (9)C10—C9—H9119.8
O1—Co1—O588.71 (8)C8—C9—H9119.8
N2—Co1—O589.55 (8)C11—C10—C9119.5 (3)
O4—Co1—O559.90 (8)C11—C10—H10120.2
N4—Co1—O290.96 (9)C9—C10—H10120.2
O1—Co1—O259.74 (9)C12—C11—C10120.3 (3)
N2—Co1—O2168.60 (9)C12—C11—H11119.9
O4—Co1—O287.67 (9)C10—C11—H11119.9
O5—Co1—O294.93 (8)C11—C12—C13120.3 (3)
C3—N1—N2110.5 (2)C11—C12—H12119.8
C3—N1—C7128.0 (2)C13—C12—H12119.8
N2—N1—C7120.40 (19)C8—C13—C12120.3 (2)
C1—N2—N1105.3 (2)C8—C13—H13119.8
C1—N2—Co1130.24 (18)C12—C13—H13119.8
N1—N2—Co1124.46 (15)C19—C14—C15119.3 (2)
C6—N3—N4109.9 (2)C19—C14—C7121.8 (2)
C6—N3—C7129.1 (2)C15—C14—C7118.9 (2)
N4—N3—C7119.0 (2)C16—C15—C14120.0 (2)
C4—N4—N3105.7 (2)C16—C15—H15120.0
C4—N4—Co1128.17 (18)C14—C15—H15120.0
N3—N4—Co1124.22 (16)C17—C16—C15120.6 (3)
N2—C1—C2110.9 (2)C17—C16—H16119.7
N2—C1—H1124.5C15—C16—H16119.7
C2—C1—H1124.5C18—C17—C16119.4 (2)
C3—C2—C1105.5 (2)C18—C17—H17120.3
C3—C2—H2127.2C16—C17—H17120.3
C1—C2—H2127.2C17—C18—C19120.8 (2)
N1—C3—C2107.7 (2)C17—C18—H18119.6
N1—C3—H3126.1C19—C18—H18119.6
C2—C3—H3126.1C18—C19—C14119.9 (2)
N4—C4—C5110.8 (2)C18—C19—H19120.1
N4—C4—H4124.6C14—C19—H19120.1
C5—C4—H4124.6O3—N5—O2123.3 (3)
C6—C5—C4105.6 (3)O3—N5—O1121.2 (3)
C6—C5—H5127.2O2—N5—O1115.4 (2)
C4—C5—H5127.2N5—O1—Co196.51 (17)
N3—C6—C5107.9 (2)N5—O2—Co188.28 (16)
N3—C6—H6126.0O6—N6—O5123.1 (3)
C5—C6—H6126.0O6—N6—O4122.1 (3)
N1—C7—N3108.57 (19)O5—N6—O4114.8 (2)
N1—C7—C14109.52 (19)N6—O4—Co195.26 (15)
N3—C7—C14107.9 (2)N6—O5—Co190.03 (15)
N1—C7—C8108.6 (2)
C3—N1—N2—C12.5 (3)C14—C7—C8—C133.7 (4)
C7—N1—N2—C1171.1 (2)N1—C7—C8—C953.9 (3)
C3—N1—N2—Co1177.56 (16)N3—C7—C8—C963.3 (3)
C7—N1—N2—Co18.9 (3)C14—C7—C8—C9176.7 (2)
N4—Co1—N2—C1157.3 (2)C13—C8—C9—C100.8 (4)
O1—Co1—N2—C187.1 (2)C7—C8—C9—C10178.8 (2)
O4—Co1—N2—C160.2 (2)C8—C9—C10—C110.3 (4)
O5—Co1—N2—C11.4 (2)C9—C10—C11—C120.0 (4)
O2—Co1—N2—C1111.9 (4)C10—C11—C12—C130.3 (4)
N4—Co1—N2—N122.63 (19)C9—C8—C13—C121.0 (4)
O1—Co1—N2—N192.95 (19)C7—C8—C13—C12178.6 (2)
O4—Co1—N2—N1119.78 (18)C11—C12—C13—C80.8 (4)
O5—Co1—N2—N1178.58 (19)N1—C7—C14—C1919.7 (3)
O2—Co1—N2—N168.1 (5)N3—C7—C14—C19137.7 (2)
C6—N3—N4—C41.9 (3)C8—C7—C14—C19102.6 (3)
C7—N3—N4—C4167.1 (2)N1—C7—C14—C15162.4 (2)
C6—N3—N4—Co1167.12 (19)N3—C7—C14—C1544.4 (3)
C7—N3—N4—Co127.7 (3)C8—C7—C14—C1575.3 (3)
O1—Co1—N4—C499.7 (3)C19—C14—C15—C160.5 (4)
N2—Co1—N4—C4148.7 (3)C7—C14—C15—C16178.6 (2)
O4—Co1—N4—C445.1 (3)C14—C15—C16—C171.1 (4)
O5—Co1—N4—C461.7 (3)C15—C16—C17—C181.5 (4)
O2—Co1—N4—C442.7 (3)C16—C17—C18—C190.3 (4)
O1—Co1—N4—N398.5 (2)C17—C18—C19—C141.4 (4)
N2—Co1—N4—N313.1 (2)C15—C14—C19—C181.8 (4)
O4—Co1—N4—N3116.75 (19)C7—C14—C19—C18179.7 (2)
O5—Co1—N4—N3100.1 (3)O3—N5—O1—Co1178.8 (2)
O2—Co1—N4—N3155.5 (2)O2—N5—O1—Co12.1 (3)
N1—N2—C1—C21.5 (3)N4—Co1—O1—N574.82 (17)
Co1—N2—C1—C2178.50 (18)N2—Co1—O1—N5173.28 (15)
N2—C1—C2—C30.1 (3)O4—Co1—O1—N553.1 (2)
N2—N1—C3—C22.5 (3)O5—Co1—O1—N597.67 (16)
C7—N1—C3—C2170.1 (2)O2—Co1—O1—N51.20 (15)
C1—C2—C3—N11.4 (3)O3—N5—O2—Co1179.0 (3)
N3—N4—C4—C51.1 (3)O1—N5—O2—Co11.9 (2)
Co1—N4—C4—C5165.6 (2)N4—Co1—O2—N5116.54 (17)
N4—C4—C5—C60.0 (4)O1—Co1—O2—N51.22 (15)
N4—N3—C6—C51.9 (3)N2—Co1—O2—N526.0 (5)
C7—N3—C6—C5165.2 (3)O4—Co1—O2—N5146.35 (17)
C4—C5—C6—N31.1 (3)O5—Co1—O2—N586.83 (17)
C3—N1—C7—N3138.1 (2)O6—N6—O4—Co1178.9 (3)
N2—N1—C7—N355.4 (3)O5—N6—O4—Co10.1 (2)
C3—N1—C7—C14104.3 (3)N4—Co1—O4—N6172.34 (16)
N2—N1—C7—C1462.2 (3)O1—Co1—O4—N654.13 (19)
C3—N1—C7—C821.6 (3)N2—Co1—O4—N681.46 (17)
N2—N1—C7—C8171.9 (2)O5—Co1—O4—N60.08 (14)
C6—N3—C7—N1131.7 (3)O2—Co1—O4—N696.98 (16)
N4—N3—C7—N166.4 (3)O6—N6—O5—Co1178.9 (3)
C6—N3—C7—C14109.7 (3)O4—N6—O5—Co10.1 (2)
N4—N3—C7—C1452.3 (3)N4—Co1—O5—N619.2 (3)
C6—N3—C7—C814.4 (4)O1—Co1—O5—N6143.82 (16)
N4—N3—C7—C8176.4 (2)N2—Co1—O5—N6106.16 (16)
N1—C7—C8—C13126.5 (2)O4—Co1—O5—N60.08 (14)
N3—C7—C8—C13116.3 (3)O2—Co1—O5—N684.34 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5i0.932.543.413 (3)157
C10—H10···O3ii0.932.593.399 (4)146
C3—H3···O4iii0.932.503.313 (3)146
C19—H19···N10.932.462.799 (3)102
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(NO3)2(C19H16N4)]
Mr483.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.5476 (14), 14.8058 (17), 16.818 (3)
β (°) 103.383 (4)
V3)2070.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.50 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART X2S benchtop
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.668, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
13223, 3666, 3042
Rint0.035
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.118, 0.96
No. of reflections3666
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.45

Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O5i0.932.543.413 (3)156.8
C10—H10···O3ii0.932.593.399 (4)145.5
C3—H3···O4iii0.932.503.313 (3)145.7
C19—H19···N10.932.462.799 (3)101.7
Symmetry codes: (i) x+5/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

References

First citationBaho, N. & Zargarian, D. (2007a). Inorg. Chem. 46, 299–308.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBaho, N. & Zargarian, D. (2007b). Inorg. Chem. 46, 7621–7632.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2008). XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationReger, D. L., Gardinier, J. R. & Smith, M. D. (2004). Inorg. Chem. 43, 3825–3832.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationShaw, J. L., Cardon, T., Lorigan, G. & Ziegler, C. J. (2004). Eur. J. Inorg. Chem. 5, 1073–1080.  CSD CrossRef Google Scholar
First citationShaw, J. L., Gwaltney, K. P. & Keer, N. (2009). Inorg. Chim. Acta, 362, 2396–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationShaw, J. L., Yee, G. T., Wang, G. W., Benson, D. E., Gokdemir, C. & Ziegler, C. J. (2005). Inorg. Chem. 44, 5060–5067.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiu, K., Yeh, L., Peng, S. & Cheng, M. (1993). J. Organomet. Chem. 460, 203–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationTsuji, S., Swenson, D. C. & Jordan, R. F. (1999). Organometallics , 18, 4758–4764.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds