metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tricarbon­yl(2-methyl-2-η6-phenyl-1,3-dioxolane)chromium(0)

aDepartment of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 847 Monroe Avenue, Suite 227A, Memphis, TN 38163, USA, bSt. Jude Children's Research Hospital, Department of Structrual Biology, MS311, 332 North Lauderdale, Memphis, TN 38105-2794, USA, and cDepartment of Chemistry, University of Memphis, 213 Smith Chemistry Building, Memphis, TN 38152-3550, USA
*Correspondence e-mail: tburkey@memphis.edu

(Received 17 December 2009; accepted 7 January 2010; online 13 January 2010)

The structure of the title compound, [Cr(C10H12O2)(CO)3], is presented. The distorted piano-stool geometry features an off-center Cr(CO)3 fragment which reduces contact with the dioxolane ring. The dioxolane ring, in twisted conformation, is syn-oriented towards the Cr(CO)3 moiety.

Related literature

For the synthesis of the title compound, see: Bitterwolf (1988[Bitterwolf, T. E. (1988). Polyhedron, 7, 1377-1382.]); Mahaffy & Pauson (1990[Mahaffy, C. A. L. & Pauson, P. L. (1990). Inorg. Synth. 28, 136-140.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr(C10H12O2)(CO)3]

  • Mr = 300.23

  • Triclinic, [P \overline 1]

  • a = 7.1950 (3) Å

  • b = 7.2120 (3) Å

  • c = 13.9235 (6) Å

  • α = 75.573 (2)°

  • β = 79.277 (2)°

  • γ = 62.734 (1)°

  • V = 619.79 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 7.74 mm−1

  • T = 173 K

  • 0.11 × 0.08 × 0.08 mm

Data collection
  • Bruker Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.489, Tmax = 0.587

  • 13788 measured reflections

  • 2163 independent reflections

  • 2066 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.11

  • 2163 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cr1—C1O 1.837 (2)
Cr1—C3O 1.846 (2)
Cr1—C2O 1.854 (2)
Cr1—C5 2.1942 (18)
Cr1—C6 2.2062 (19)
Cr1—C4 2.2197 (18)
Cr1—C3 2.2248 (18)
Cr1—C2 2.2355 (18)
Cr1—C1 2.2440 (18)
O1C—C1O 1.156 (2)
O3C—C3O 1.150 (2)
O2C—C2O 1.155 (3)
C1O—Cr1—C3O 85.12 (8)
C1O—Cr1—C2O 90.23 (9)
C3O—Cr1—C2O 88.90 (9)

Data collection: PROTEUM2 (Bruker, 2005[Bruker (2005). PROTEUM2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and RASTER3D (Merritt & Bacon, 1997[Merritt, E. A. & Bacon, D. J. (1997). Methods in Enzymology, Vol. 277, pp. 505-524. New York: Academic Press.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Synthesized en route to η6-acetophenone chromium tricarbonyl, I was formed by treatment of acetophenone ethylene ketal (II) with Cr(CO)6. Though similar syntheses of the title compound have been previously reported (Bitterwolf, 1981), no structure (Fig. 1) has been previously published. A piano-stool structure, typical of arenechromiumcarbonyls, was found with the sum of the carbonyl C—Cr—C angles of 264.25 (15) °. Rather than above the ring, as would apparently minimize the interaction between the side chain and metal, the dioxolane moiety is oriented towards the Cr(CO)3 moiety and the benzylic carbon is approximately 6.5 ° out of the plane of the ring. The distorted piano-stool geometry features an off-center Cr(CO)3 fragment which is offset from the dioxolane moiety; Cr—C distances in the ring average 2.2207 (18) Å with a minimum of 2.1942 (18) Å to C5 opposite the closest Cr-sidechain distance of 3.433 Å to H10B. The largest aniosotropic displacement parameters are on the three carbonyl O atoms which experience the largest motion in the molecule as a function of the Cr—CO moment arm. The packing of I (Fig. 2) with two unit cells in each dimension is given.

Related literature top

For the synthesis of the title compound, see: Bitterwolf (1988) or (1981)?; Mahaffey or Mahaffy & Pauson (1990).

Experimental top

Acetophenone (30.0 ml, 100 mmol) and ethylene glycol (28.0 ml, 500 mmol) were stirred in toluene (100 ml) with p-TsOH (30 mg, 0.17 µmol) for 12 h. Concentration by rotary evaporation and filtration afforded 2 (8.856 g) in 54% yield. The title compound was isolated in 28% yield by the standard literature method (Mahaffey et al., 1990) of treating II with Cr(CO)6 in refluxing THF/Bu2O (10%) under a nitrogen environment for 40 h. Solvent removal in vacuo, filtration and subsequent recrystallization from Et2O/hexanes (approximately 1:3 by volume) produced blocky yellow crystals, from which a crystal suitable for diffractometry was selected.

Refinement top

Refinement of all H-atoms was done using isotropic idealized riding models. The largest four peaks in electron density in the model appear in the d-orbitals of chromium, and midway along C9—C10 and C1—C7 bonds.

Structure description top

?

# Following replaced by publCIF - Mon Apr 3 09:37:38 2006

# Insert blank lines between paragraphs ?

Computing details top

Data collection: PROTEUM2 (Bruker, 2005); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and RASTER3D (Merritt & Bacon, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of I (50% probability displacement ellipsoids) with the dioxolane ring oriented towards the metal center.
[Figure 2] Fig. 2. Packing view slightly off of axis b with two unit cells in each dimension.
[Figure 3] Fig. 3. The reaction scheme for the synthesis of I through II Conditions: a) HOCH2CH2OH, PhMe, p-TsOH, 12 h, 25 °C. b) Cr(CO)6, Bu2O/THF (10:1), reflux, 40 h.
Tricarbonyl(2-methyl-2-h6-phenyl-1,3-dioxolane)chromium(0) top
Crystal data top
[Cr(C10H12O2)(CO)3]Z = 2
Mr = 300.23F(000) = 308
Triclinic, P1Dx = 1.609 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.1950 (3) ÅCell parameters from 8653 reflections
b = 7.2120 (3) Åθ = 3.3–68.5°
c = 13.9235 (6) ŵ = 7.74 mm1
α = 75.573 (2)°T = 173 K
β = 79.277 (2)°Block, yellow
γ = 62.734 (1)°0.11 × 0.08 × 0.08 mm
V = 619.79 (5) Å3
Data collection top
Bruker Proteum
diffractometer
2163 independent reflections
Radiation source: fine-focus rotating anode2066 reflections with I > 2σ(I)
Osmic mirrors monochromatorRint = 0.028
Area detector scansθmax = 68.7°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.489, Tmax = 0.587k = 88
13788 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.2689P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.34 e Å3
2163 reflectionsΔρmin = 0.19 e Å3
172 parameters
Crystal data top
[Cr(C10H12O2)(CO)3]γ = 62.734 (1)°
Mr = 300.23V = 619.79 (5) Å3
Triclinic, P1Z = 2
a = 7.1950 (3) ÅCu Kα radiation
b = 7.2120 (3) ŵ = 7.74 mm1
c = 13.9235 (6) ÅT = 173 K
α = 75.573 (2)°0.11 × 0.08 × 0.08 mm
β = 79.277 (2)°
Data collection top
Bruker Proteum
diffractometer
2163 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2066 reflections with I > 2σ(I)
Tmin = 0.489, Tmax = 0.587Rint = 0.028
13788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.11Δρmax = 0.34 e Å3
2163 reflectionsΔρmin = 0.19 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.56963 (4)0.54830 (4)0.67821 (2)0.01624 (12)
O10.5396 (2)0.9647 (2)0.83565 (10)0.0215 (3)
O20.64557 (19)0.6261 (2)0.92482 (9)0.0200 (3)
O1C0.9718 (2)0.2980 (2)0.77613 (11)0.0285 (3)
O3C0.7158 (3)0.1574 (2)0.59248 (11)0.0332 (4)
O2C0.7899 (3)0.7234 (2)0.50035 (13)0.0394 (4)
C70.4720 (3)0.8035 (3)0.87807 (14)0.0189 (4)
C90.8237 (3)0.6734 (3)0.90280 (15)0.0223 (4)
H9A0.95170.55010.88440.027*
H9B0.84830.71420.96040.027*
C50.3036 (3)0.4871 (3)0.75700 (15)0.0212 (4)
H50.29210.35650.77330.025*
C10.4040 (3)0.7366 (3)0.79966 (14)0.0182 (4)
C20.3431 (3)0.8710 (3)0.70791 (14)0.0192 (4)
H20.357710.69070.023*
C3O0.6577 (3)0.3107 (3)0.62306 (14)0.0228 (4)
C100.7633 (3)0.8586 (3)0.81534 (15)0.0233 (4)
H10A0.83050.9520.81440.028*
H10B0.80120.80880.75120.028*
C30.2600 (3)0.8157 (3)0.64066 (14)0.0219 (4)
H30.21910.90750.57860.026*
C60.3853 (3)0.5420 (3)0.82357 (14)0.0189 (4)
H60.42850.44870.8850.023*
C1O0.8162 (3)0.4006 (3)0.73882 (14)0.0203 (4)
C40.2380 (3)0.6255 (3)0.66549 (15)0.0229 (4)
H40.17930.58990.62110.027*
C2O0.7044 (3)0.6586 (3)0.56913 (16)0.0256 (4)
C80.2905 (3)0.8842 (3)0.95580 (14)0.0235 (4)
H8A0.33490.92661.00590.035*
H8B0.24720.77120.9880.035*
H8C0.17231.00680.92370.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01584 (17)0.01495 (17)0.01543 (18)0.00518 (12)0.00099 (12)0.00184 (11)
O10.0236 (7)0.0172 (6)0.0221 (7)0.0082 (5)0.0042 (6)0.0003 (5)
O20.0184 (6)0.0184 (6)0.0191 (7)0.0061 (5)0.0045 (5)0.0017 (5)
O1C0.0184 (7)0.0246 (7)0.0405 (9)0.0037 (6)0.0096 (6)0.0085 (6)
O3C0.0481 (9)0.0220 (7)0.0257 (8)0.0089 (7)0.0069 (7)0.0080 (6)
O2C0.0429 (9)0.0283 (8)0.0347 (9)0.0147 (7)0.0155 (8)0.0002 (7)
C70.0196 (9)0.0157 (9)0.0176 (9)0.0056 (7)0.0026 (8)0.0001 (7)
C90.0208 (9)0.0233 (10)0.0234 (10)0.0097 (8)0.0048 (8)0.0030 (8)
C50.0156 (8)0.0211 (9)0.0259 (11)0.0088 (7)0.0025 (8)0.0040 (8)
C10.0132 (8)0.0191 (9)0.0161 (9)0.0028 (7)0.0013 (7)0.0033 (7)
C20.0164 (8)0.0148 (8)0.0200 (10)0.0021 (7)0.0001 (7)0.0029 (7)
C3O0.0249 (10)0.0231 (10)0.0173 (10)0.0090 (8)0.0048 (8)0.0012 (8)
C100.0231 (9)0.0238 (10)0.0236 (10)0.0116 (8)0.0018 (8)0.0025 (8)
C30.0171 (9)0.0219 (9)0.0188 (10)0.0019 (8)0.0047 (8)0.0016 (7)
C60.0156 (8)0.0203 (9)0.0161 (9)0.0063 (7)0.0016 (7)0.0001 (7)
C1O0.0222 (10)0.0194 (9)0.0209 (10)0.0107 (8)0.0038 (8)0.0073 (7)
C40.0150 (8)0.0278 (10)0.0252 (10)0.0067 (8)0.0037 (8)0.0075 (8)
C2O0.0252 (10)0.0170 (9)0.0274 (12)0.0040 (8)0.0005 (9)0.0036 (8)
C80.0241 (9)0.0220 (10)0.0188 (10)0.0053 (8)0.0013 (8)0.0038 (7)
Geometric parameters (Å, º) top
Cr1—C1O1.837 (2)C9—H9A0.99
Cr1—C3O1.846 (2)C9—H9B0.99
Cr1—C2O1.854 (2)C5—C61.401 (3)
Cr1—C52.1942 (18)C5—C41.415 (3)
Cr1—C62.2062 (19)C5—H50.95
Cr1—C42.2197 (18)C1—C21.402 (3)
Cr1—C32.2248 (18)C1—C61.422 (3)
Cr1—C22.2355 (18)C2—C31.417 (3)
Cr1—C12.2440 (18)C2—H20.95
O1—C71.416 (2)C10—H10A0.99
O1—C101.437 (2)C10—H10B0.99
O2—C71.430 (2)C3—C41.403 (3)
O2—C91.434 (2)C3—H30.95
O1C—C1O1.156 (2)C6—H60.95
O3C—C3O1.150 (2)C4—H40.95
O2C—C2O1.155 (3)C8—H8A0.98
C7—C81.519 (3)C8—H8B0.98
C7—C11.530 (3)C8—H8C0.98
C9—C101.520 (3)
C1O—Cr1—C3O85.12 (8)C6—C5—Cr171.91 (10)
C1O—Cr1—C2O90.23 (9)C4—C5—Cr172.29 (11)
C3O—Cr1—C2O88.90 (9)C6—C5—H5119.9
C1O—Cr1—C5115.71 (8)C4—C5—H5119.9
C3O—Cr1—C588.65 (8)Cr1—C5—H5128.1
C2O—Cr1—C5153.62 (8)C2—C1—C6119.20 (17)
C1O—Cr1—C691.04 (8)C2—C1—C7121.36 (16)
C3O—Cr1—C6114.92 (8)C6—C1—C7119.23 (16)
C2O—Cr1—C6156.17 (8)C2—C1—Cr171.43 (10)
C5—Cr1—C637.12 (7)C6—C1—Cr169.92 (10)
C1O—Cr1—C4152.90 (8)C7—C1—Cr1135.38 (12)
C3O—Cr1—C490.08 (8)C1—C2—C3120.40 (17)
C2O—Cr1—C4116.37 (8)C1—C2—Cr172.09 (10)
C5—Cr1—C437.38 (7)C3—C2—Cr171.06 (10)
C6—Cr1—C466.92 (7)C1—C2—H2119.8
C1O—Cr1—C3157.39 (8)C3—C2—H2119.8
C3O—Cr1—C3117.47 (8)Cr1—C2—H2129.5
C2O—Cr1—C391.19 (8)O3C—C3O—Cr1177.08 (17)
C5—Cr1—C366.90 (7)O1—C10—C9101.71 (15)
C6—Cr1—C378.82 (7)O1—C10—H10A111.4
C4—Cr1—C336.80 (7)C9—C10—H10A111.4
C1O—Cr1—C2120.35 (8)O1—C10—H10B111.4
C3O—Cr1—C2154.47 (8)C9—C10—H10B111.4
C2O—Cr1—C292.49 (8)H10A—C10—H10B109.3
C5—Cr1—C278.90 (7)C4—C3—C2120.15 (17)
C6—Cr1—C266.52 (7)C4—C3—Cr171.40 (10)
C4—Cr1—C266.54 (7)C2—C3—Cr171.89 (10)
C3—Cr1—C237.05 (7)C4—C3—H3119.9
C1O—Cr1—C193.34 (7)C2—C3—H3119.9
C3O—Cr1—C1152.18 (8)Cr1—C3—H3129.1
C2O—Cr1—C1118.90 (8)C5—C6—C1120.38 (17)
C5—Cr1—C166.98 (7)C5—C6—Cr170.98 (11)
C6—Cr1—C137.27 (7)C1—C6—Cr172.81 (11)
C4—Cr1—C178.72 (7)C5—C6—H6119.8
C3—Cr1—C166.38 (7)C1—C6—H6119.8
C2—Cr1—C136.48 (7)Cr1—C6—H6128.7
C7—O1—C10106.41 (13)O1C—C1O—Cr1176.41 (16)
C7—O2—C9108.32 (13)C3—C4—C5119.66 (18)
O1—C7—O2106.85 (14)C3—C4—Cr171.80 (11)
O1—C7—C8108.85 (15)C5—C4—Cr170.34 (10)
O2—C7—C8109.64 (15)C3—C4—H4120.2
O1—C7—C1112.00 (15)C5—C4—H4120.2
O2—C7—C1109.66 (14)Cr1—C4—H4130.2
C8—C7—C1109.78 (15)O2C—C2O—Cr1178.51 (18)
O2—C9—C10103.74 (14)C7—C8—H8A109.5
O2—C9—H9A111C7—C8—H8B109.5
C10—C9—H9A111H8A—C8—H8B109.5
O2—C9—H9B111C7—C8—H8C109.5
C10—C9—H9B111H8A—C8—H8C109.5
H9A—C9—H9B109H8B—C8—H8C109.5
C6—C5—C4120.18 (17)

Experimental details

Crystal data
Chemical formula[Cr(C10H12O2)(CO)3]
Mr300.23
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.1950 (3), 7.2120 (3), 13.9235 (6)
α, β, γ (°)75.573 (2), 79.277 (2), 62.734 (1)
V3)619.79 (5)
Z2
Radiation typeCu Kα
µ (mm1)7.74
Crystal size (mm)0.11 × 0.08 × 0.08
Data collection
DiffractometerBruker Proteum
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.489, 0.587
No. of measured, independent and
observed [I > 2σ(I)] reflections
13788, 2163, 2066
Rint0.028
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.11
No. of reflections2163
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.19

Computer programs: PROTEUM2 (Bruker, 2005), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and RASTER3D (Merritt & Bacon, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cr1—C1O1.837 (2)Cr1—C32.2248 (18)
Cr1—C3O1.846 (2)Cr1—C22.2355 (18)
Cr1—C2O1.854 (2)Cr1—C12.2440 (18)
Cr1—C52.1942 (18)O1C—C1O1.156 (2)
Cr1—C62.2062 (19)O3C—C3O1.150 (2)
Cr1—C42.2197 (18)O2C—C2O1.155 (3)
C1O—Cr1—C3O85.12 (8)C3O—Cr1—C2O88.90 (9)
C1O—Cr1—C2O90.23 (9)
 

Acknowledgements

CBD acknowledges stipend support provided by the National Institute of Standards and Technology grant No. 70NANB4H1093 and the National Science Foundation grant No. CHE-0227475. Support of this research by the Cancer Center Support CORE grant No. P30 CA-21765 and the American Lebanese Syrian Associated Charities (ALSAC) is gratefully acknowledged on behalf of CRR. CBD is also thankful to Professor Duane Miller for his support while writing this paper. Tragically, Charles Ross died before the publication of this paper. His contribution to this work and several others including the doctoral dissertation of CBD is greatly appreciated.

References

First citationBitterwolf, T. E. (1988). Polyhedron, 7, 1377–1382.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). PROTEUM2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMahaffy, C. A. L. & Pauson, P. L. (1990). Inorg. Synth. 28, 136–140.  CrossRef CAS Web of Science Google Scholar
First citationMerritt, E. A. & Bacon, D. J. (1997). Methods in Enzymology, Vol. 277, pp. 505–524. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds