organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An orthorhombic polymorph of mulinic acid

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez N°2, La Laguna, Tenerife, Spain, and cDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 23 December 2009; accepted 5 January 2010; online 9 January 2010)

The title compound [systematic name: (3S,3aS,10bR)-3-isopropyl-5a,8-dimethyl-2,3,4,5,5a,6,7,10,10a,10b-deca­hydro-endo-epidioxy­cyclo­hepta­[e]indene-3a(1H)-carboxylic acid], C20H30O4, is a polymorphic form of a previously reported structure [Loyola et al. (1990[Loyola, L., Morales, G., Rodríguez, B., Jiménez-Barbero, J., de la Torre, M., Perales, A. & Torres, M. (1990). Tetrahedron, 46, 5413-5420.]). Tetra­hedron, 46, 5413–5420]. The newly found ortho­rhom­bic polymorph crystallizes in P212121 with two mol­ecules in the asymmetric unit. The mol­ecules are linked into discrete D(2) chains by simple O—H⋯O inter­actions. There are only slight variations in the mol­ecular geometry and supra­molecular organization in the crystal structures of the two polymorphs. The densities are 1.145 (monoclinic, P21) and 1.155 Mg m−3 (ortho­rhom­bic, P212121).

Related literature

For background to the structures of mulinic acid, see: Loyola et al. (1990[Loyola, L., Morales, G., Rodríguez, B., Jiménez-Barbero, J., de la Torre, M., Perales, A. & Torres, M. (1990). Tetrahedron, 46, 5413-5420.], 2004[Loyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931-1935.]). For their biological activity, see: Munizaga & Gunkel (1958[Munizaga, C. & Gunkel, H. (1958). Notas etnobotánicas del pueblo de Socaire. Publicación No. 5. Universidad de Chile.]); Araya et al. (2003[Araya, J. E., Neira, I., da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz Rio de Janeiro, 98, 413-418.]). For related structures, see: Brito et al. (2008a[Brito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008a). Acta Cryst. E64, o1348-o1349.],b[Brito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008b). Acta Cryst. E64, o1209.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H30O4

  • Mr = 334.44

  • Orthorhombic, P 21 21 21

  • a = 7.4160 (15) Å

  • b = 19.374 (4) Å

  • c = 26.767 (5) Å

  • V = 3845.8 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 43215 measured reflections

  • 5387 independent reflections

  • 4452 reflections with I > 2σ(I)

  • Rint = 0.08

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.224

  • S = 1.25

  • 5387 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2AA⋯O1i 0.82 1.86 2.681 (4) 177
O2—H2⋯O1Aii 0.82 1.89 2.702 (4) 175
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Polymorphism in crystalline material may occurs as a result of crystallization from different solvents, crystallizations in the presence of small-molecules or macromolecular additives, or phase transitions etc (Bernstein et al., 1995). We have obtained an orthorhombic modification of (I) by crystallization from a chloroform-acetonitrile (1:1) whereas the monoclinic phase was obtained from ethylacetate-n-hexane solution of (I) (1:1). The title compound was obtained from dried and finely powdered aerial parts of Mulinun crassifolium Phil. (Loyola et al., 1990).This plant, commonly know as chuquican, susurco or espinilla, is used in folk medicine, principally against diabetes, and bronchial (cough) and intestinal disorders (Munizaga & Gunkel, 1958). Mulinane diterpenes exhibit antiplasmodial and anti-tripanosomacruzi (Araya et al., 2003) activity. We report here the crystal structure of a new polymorphic form of a previously reported structure, characterized by different crystal packing according to our X-ray investigation and a lower melting point than the reported for the known monoclinic phase (132–139° vs 185–187°, respectively). We were not able to determine the absolute stereochemistry by X-ray methods, and the configuration shown here was chosen to be in accord with the reported in the previous X-ray diffraction studies (Loyola et al. 2004). The molecule of the title compound is built up from three fused carbocycles, one five-menbered, one six-membered and one seven-membered ring. The five- membered ring has an envelope conformation (ring A) whereas the six-membered ring has a perfect chair conformation (ring B) and the seven-menbered ring has a boat conformation (ring C) respectively. [Q2=0.442 (4) Å, φ =104.8 (6)°; QT=0.556 (4) Å, θ=163.6 (4)°, φ =180.4 (2)°; QT=1.153 (4) Å, φ2 =179.5 (2)°] (Cremer & Pople, 1975). The isopropyl, methyl groups and the carboxylic acid at C3, C8 and C5a are β-oriented respectively, whereas the endo-peroxide group is α-oriented. The molecules are linked into R22 (8) dimers by simple O–H···O interactions (Table 1 and Fig. 2). There are only slight variations in the molecular geometry and supramolecular organization in the crystal structures of the two polymorphs. The densities are 1.145 Mg m-3 (monoclinic, P21) and 1.155 Mg m-3 (orthorhombic, P212121).

Related literature top

For background to the structures of mulinic acid, see: Loyola et al. (1990, 2004). For their biological activity, see: Munizaga & Gunkel (1958); Araya et al. (2003). For related structures, see: Brito et al. (2008a,b). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

We have obtained the orthorhombic modification of (I) by recrystallization from chloroform-acetonitrile (1:1) at room temperature. The spectroscopic data are identical to those of monoclinic phase.

Refinement top

In the absence of anomalous scatterers, 3871 Friedel pairs were merged. PLATON (Spek, 2009) reports a solvent accessible voids of total area 289.5 Å3 in the structure. However, the low residual electron density does not suggest additional solvent in the structure. This was confirmed using the SQUEEZE procedure (Spek, 2009). All H atoms were refined as riding on their parent atoms, with distances of 0.82 (OH), 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å from the parent C and O atoms, with Uiso(H) = 1.2Ueq(C, O) or 1.5Ueq(C).

Structure description top

Polymorphism in crystalline material may occurs as a result of crystallization from different solvents, crystallizations in the presence of small-molecules or macromolecular additives, or phase transitions etc (Bernstein et al., 1995). We have obtained an orthorhombic modification of (I) by crystallization from a chloroform-acetonitrile (1:1) whereas the monoclinic phase was obtained from ethylacetate-n-hexane solution of (I) (1:1). The title compound was obtained from dried and finely powdered aerial parts of Mulinun crassifolium Phil. (Loyola et al., 1990).This plant, commonly know as chuquican, susurco or espinilla, is used in folk medicine, principally against diabetes, and bronchial (cough) and intestinal disorders (Munizaga & Gunkel, 1958). Mulinane diterpenes exhibit antiplasmodial and anti-tripanosomacruzi (Araya et al., 2003) activity. We report here the crystal structure of a new polymorphic form of a previously reported structure, characterized by different crystal packing according to our X-ray investigation and a lower melting point than the reported for the known monoclinic phase (132–139° vs 185–187°, respectively). We were not able to determine the absolute stereochemistry by X-ray methods, and the configuration shown here was chosen to be in accord with the reported in the previous X-ray diffraction studies (Loyola et al. 2004). The molecule of the title compound is built up from three fused carbocycles, one five-menbered, one six-membered and one seven-membered ring. The five- membered ring has an envelope conformation (ring A) whereas the six-membered ring has a perfect chair conformation (ring B) and the seven-menbered ring has a boat conformation (ring C) respectively. [Q2=0.442 (4) Å, φ =104.8 (6)°; QT=0.556 (4) Å, θ=163.6 (4)°, φ =180.4 (2)°; QT=1.153 (4) Å, φ2 =179.5 (2)°] (Cremer & Pople, 1975). The isopropyl, methyl groups and the carboxylic acid at C3, C8 and C5a are β-oriented respectively, whereas the endo-peroxide group is α-oriented. The molecules are linked into R22 (8) dimers by simple O–H···O interactions (Table 1 and Fig. 2). There are only slight variations in the molecular geometry and supramolecular organization in the crystal structures of the two polymorphs. The densities are 1.145 Mg m-3 (monoclinic, P21) and 1.155 Mg m-3 (orthorhombic, P212121).

For background to the structures of mulinic acid, see: Loyola et al. (1990, 2004). For their biological activity, see: Munizaga & Gunkel (1958); Araya et al. (2003). For related structures, see: Brito et al. (2008a,b). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom numbering scheme. Displacemenent ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure, showing the discrete chain D(2) motif. For clarity only the H atoms involved in the hydrogen bonds (dashed lines) are shown.
(3S,3aS,10bR)-3-isopropyl-5a,8-dimethyl- 2,3,4,5,5a,6,7,10,10a,10b-decahydro-endo- epidioxycyclohepta[e]indene-3a(1H)-carboxylic acid top
Crystal data top
C20H30O4F(000) = 1456
Mr = 334.44Dx = 1.155 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5298 reflections
a = 7.4160 (15) Åθ = 1.3–28.6°
b = 19.374 (4) ŵ = 0.08 mm1
c = 26.767 (5) ÅT = 293 K
V = 3845.8 (13) Å3Prism, colourless
Z = 80.18 × 0.15 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4452 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.08
Graphite monochromatorθmax = 28.6°, θmin = 1.3°
φ scans, and ω scans with κ offsetsh = 99
43215 measured reflectionsk = 2626
5387 independent reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H-atom parameters constrained
wR(F2) = 0.224 w = 1/[σ2(Fo2) + (0.1087P)2 + 1.0561P]
where P = (Fo2 + 2Fc2)/3
S = 1.25(Δ/σ)max < 0.001
5387 reflectionsΔρmax = 0.45 e Å3
444 parametersΔρmin = 0.48 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (4)
Crystal data top
C20H30O4V = 3845.8 (13) Å3
Mr = 334.44Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 7.4160 (15) ŵ = 0.08 mm1
b = 19.374 (4) ÅT = 293 K
c = 26.767 (5) Å0.18 × 0.15 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
4452 reflections with I > 2σ(I)
43215 measured reflectionsRint = 0.08
5387 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0910 restraints
wR(F2) = 0.224H-atom parameters constrained
S = 1.25Δρmax = 0.45 e Å3
5387 reflectionsΔρmin = 0.48 e Å3
444 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0240 (4)0.5230 (2)0.81073 (10)0.0568 (9)
O20.7577 (4)0.5035 (2)0.84418 (9)0.0526 (8)
H20.81480.50860.87010.079*
O31.0415 (5)0.47601 (16)0.62047 (10)0.0487 (7)
O40.9156 (4)0.42951 (17)0.59483 (11)0.0548 (8)
C10.9999 (6)0.5802 (2)0.70754 (15)0.0400 (9)
H1A1.11480.57590.72460.048*
H1B1.02180.59250.67290.048*
C20.8811 (6)0.6343 (2)0.73306 (16)0.0443 (10)
H2A0.85670.67220.71040.053*
H2B0.94110.65250.76240.053*
C30.7038 (5)0.59812 (19)0.74797 (14)0.0353 (8)
H30.62580.59860.71840.042*
C40.6015 (6)0.6359 (2)0.78963 (15)0.0432 (9)
H40.67910.63730.81920.052*
C50.7641 (5)0.52173 (18)0.75618 (12)0.0302 (7)
C60.6212 (5)0.4648 (2)0.75110 (14)0.0384 (9)
H6A0.53560.46790.77840.046*
H6B0.55580.47050.720.046*
C70.7130 (7)0.3948 (2)0.75195 (16)0.0447 (10)
H7A0.6210.360.74670.054*
H7B0.76080.38780.78530.054*
C80.8680 (6)0.38068 (19)0.71418 (15)0.0400 (9)
C90.9969 (5)0.44437 (19)0.70991 (13)0.0347 (8)
H91.07420.44380.73960.042*
C100.8922 (5)0.51262 (18)0.71109 (12)0.0307 (7)
H100.81420.51190.68150.037*
C111.1245 (5)0.4450 (2)0.66369 (14)0.0409 (9)
H111.22740.47420.67260.049*
C121.2001 (7)0.3765 (3)0.64918 (17)0.0552 (12)
H121.31860.36460.65650.066*
C131.0920 (8)0.3340 (2)0.62570 (16)0.0522 (12)
C140.9036 (7)0.3622 (2)0.61696 (16)0.0494 (11)
H140.84560.3320.59230.059*
C150.7823 (6)0.3629 (2)0.66327 (16)0.0469 (10)
H15A0.72720.31770.66620.056*
H15B0.68590.39570.65730.056*
C161.1342 (10)0.2621 (3)0.6100 (2)0.0788 (18)
H16A1.25670.25140.61870.118*
H16B1.11890.25790.57450.118*
H16C1.05440.23070.62670.118*
C170.9659 (9)0.3176 (2)0.7367 (2)0.0638 (14)
H17A1.05230.30030.71320.096*
H17B0.87950.28220.74420.096*
H17C1.02670.33110.76680.096*
C180.5621 (9)0.7103 (3)0.7738 (2)0.0706 (15)
H18A0.49910.73370.80010.106*
H18B0.4890.71020.74420.106*
H18C0.67350.73380.76710.106*
C190.4256 (6)0.6015 (3)0.80408 (19)0.0585 (12)
H19A0.45020.55730.81880.088*
H19B0.35220.59550.77490.088*
H19C0.36290.62990.82780.088*
C200.8616 (5)0.51600 (19)0.80626 (13)0.0331 (8)
O1A0.5588 (4)0.48787 (19)0.43116 (10)0.0542 (8)
O2A0.2933 (4)0.50197 (18)0.39526 (9)0.0485 (8)
H2AA0.35110.49330.36990.073*
O3A0.5334 (5)0.54458 (17)0.62191 (10)0.0529 (8)
O4A0.3982 (5)0.59001 (18)0.64451 (12)0.0583 (9)
C1A0.5303 (6)0.4365 (2)0.53523 (15)0.0413 (9)
H1A10.6460.44310.5190.05*
H1A20.55030.42570.57020.05*
C2A0.4232 (6)0.3791 (2)0.50961 (17)0.0483 (10)
H2A10.40170.34150.53280.058*
H2A20.48990.36130.48120.058*
C3A0.2422 (5)0.41043 (19)0.49212 (13)0.0348 (8)
H3A0.16010.4090.52080.042*
C4A0.1512 (6)0.3704 (2)0.44994 (15)0.0428 (9)
H4A0.22640.37510.420.051*
C5A0.2929 (5)0.48839 (19)0.48342 (12)0.0293 (7)
C6A0.1421 (5)0.5416 (2)0.48575 (14)0.0375 (8)
H6A10.06050.53520.45780.045*
H6A20.07420.5360.51650.045*
C7A0.2246 (6)0.6134 (2)0.48375 (15)0.0441 (10)
H7A10.12750.64670.48680.053*
H7A20.27730.61960.45090.053*
C8A0.3718 (6)0.6322 (2)0.52339 (15)0.0414 (9)
C9A0.5069 (5)0.57135 (19)0.53126 (13)0.0341 (8)
H9A0.59080.57230.5030.041*
C10A0.4126 (5)0.50107 (18)0.52985 (11)0.0305 (7)
H10A0.33060.50060.55860.037*
C11A0.6238 (6)0.5749 (2)0.57973 (15)0.0461 (10)
H11A0.73150.54680.57350.055*
C12A0.6884 (7)0.6452 (3)0.59389 (17)0.0612 (14)
H12A0.80670.65890.5880.073*
C13A0.5714 (9)0.6868 (3)0.61497 (18)0.0599 (14)
C14A0.3857 (7)0.6562 (2)0.62047 (17)0.0519 (11)
H14A0.31920.68640.64330.062*
C15A0.2736 (7)0.6515 (2)0.57253 (17)0.0487 (10)
H15C0.21520.69570.56750.058*
H15D0.17910.61770.5780.058*
C16A0.6059 (11)0.7598 (3)0.6313 (2)0.089 (2)
H16D0.72870.77190.62410.133*
H16E0.58460.76370.66660.133*
H16F0.52630.79040.61370.133*
C17A0.4677 (9)0.6961 (2)0.5010 (2)0.0645 (14)
H17D0.37930.72990.49160.097*
H17E0.53540.68250.47210.097*
H17F0.54770.71550.52540.097*
C18A0.1365 (10)0.2934 (3)0.4622 (3)0.0786 (18)
H18D0.05550.28720.48980.118*
H18E0.25330.27580.47090.118*
H18F0.09130.26910.43360.118*
C19A0.0363 (7)0.3971 (3)0.4373 (2)0.0663 (14)
H19D0.0280.44390.42590.099*
H19E0.1110.39510.46650.099*
H19F0.08810.36890.41150.099*
C20A0.3954 (5)0.49324 (19)0.43429 (12)0.0337 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0367 (16)0.107 (3)0.0270 (13)0.0195 (17)0.0079 (12)0.0018 (15)
O20.0400 (14)0.095 (2)0.0229 (12)0.0030 (16)0.0021 (11)0.0077 (15)
O30.0585 (18)0.0556 (17)0.0320 (14)0.0015 (15)0.0073 (14)0.0055 (12)
O40.0499 (18)0.070 (2)0.0448 (17)0.0049 (16)0.0087 (15)0.0053 (15)
C10.040 (2)0.048 (2)0.0325 (19)0.0154 (18)0.0021 (17)0.0026 (16)
C20.052 (2)0.042 (2)0.039 (2)0.010 (2)0.0065 (19)0.0013 (17)
C30.037 (2)0.0415 (19)0.0277 (17)0.0020 (16)0.0024 (16)0.0018 (15)
C40.042 (2)0.052 (2)0.0352 (19)0.005 (2)0.0042 (18)0.0091 (17)
C50.0302 (17)0.0405 (18)0.0200 (14)0.0088 (15)0.0019 (13)0.0006 (13)
C60.0318 (19)0.054 (2)0.0297 (17)0.0150 (17)0.0011 (15)0.0033 (16)
C70.056 (3)0.039 (2)0.038 (2)0.0126 (19)0.008 (2)0.0039 (16)
C80.048 (2)0.0360 (18)0.036 (2)0.0017 (18)0.0025 (18)0.0026 (15)
C90.0317 (18)0.047 (2)0.0253 (16)0.0014 (16)0.0027 (15)0.0022 (15)
C100.0298 (16)0.0423 (18)0.0200 (14)0.0042 (15)0.0000 (13)0.0012 (13)
C110.0316 (19)0.059 (2)0.0326 (19)0.0009 (18)0.0009 (16)0.0007 (17)
C120.046 (2)0.077 (3)0.043 (2)0.020 (3)0.003 (2)0.004 (2)
C130.066 (3)0.052 (2)0.038 (2)0.015 (2)0.007 (2)0.0054 (19)
C140.055 (3)0.055 (2)0.038 (2)0.003 (2)0.003 (2)0.0140 (19)
C150.050 (2)0.048 (2)0.043 (2)0.007 (2)0.0003 (19)0.0107 (18)
C160.109 (5)0.064 (3)0.064 (3)0.032 (3)0.005 (4)0.012 (3)
C170.085 (4)0.054 (3)0.053 (3)0.012 (3)0.007 (3)0.014 (2)
C180.077 (4)0.056 (3)0.079 (4)0.015 (3)0.012 (3)0.009 (3)
C190.039 (2)0.087 (3)0.049 (3)0.000 (2)0.009 (2)0.009 (2)
C200.0361 (19)0.0412 (19)0.0221 (15)0.0036 (16)0.0036 (14)0.0019 (14)
O1A0.0362 (15)0.101 (2)0.0252 (12)0.0121 (17)0.0038 (11)0.0004 (15)
O2A0.0437 (15)0.083 (2)0.0188 (11)0.0009 (17)0.0032 (11)0.0062 (14)
O3A0.066 (2)0.0612 (18)0.0314 (14)0.0056 (17)0.0109 (15)0.0053 (13)
O4A0.062 (2)0.069 (2)0.0445 (17)0.0099 (18)0.0064 (16)0.0081 (15)
C1A0.039 (2)0.052 (2)0.0333 (19)0.0154 (18)0.0056 (17)0.0048 (16)
C2A0.055 (3)0.045 (2)0.044 (2)0.014 (2)0.010 (2)0.0045 (18)
C3A0.040 (2)0.0404 (18)0.0242 (16)0.0053 (17)0.0016 (15)0.0046 (14)
C4A0.050 (2)0.044 (2)0.034 (2)0.0052 (19)0.0020 (18)0.0026 (17)
C5A0.0272 (16)0.0405 (17)0.0200 (14)0.0035 (15)0.0025 (13)0.0029 (13)
C6A0.0330 (19)0.046 (2)0.0333 (19)0.0085 (17)0.0058 (16)0.0012 (16)
C7A0.056 (2)0.041 (2)0.035 (2)0.017 (2)0.008 (2)0.0055 (16)
C8A0.051 (2)0.0385 (19)0.0351 (19)0.0003 (19)0.0012 (18)0.0026 (16)
C9A0.0313 (18)0.047 (2)0.0237 (16)0.0014 (16)0.0008 (14)0.0013 (14)
C10A0.0313 (17)0.0421 (18)0.0180 (14)0.0030 (15)0.0028 (13)0.0004 (13)
C11A0.038 (2)0.067 (3)0.033 (2)0.003 (2)0.0047 (18)0.0005 (18)
C12A0.055 (3)0.091 (4)0.038 (2)0.031 (3)0.005 (2)0.002 (2)
C13A0.081 (4)0.065 (3)0.034 (2)0.027 (3)0.005 (2)0.003 (2)
C14A0.061 (3)0.056 (2)0.039 (2)0.003 (2)0.005 (2)0.0095 (19)
C15A0.052 (2)0.045 (2)0.049 (2)0.008 (2)0.003 (2)0.0054 (19)
C16A0.134 (6)0.070 (4)0.061 (3)0.041 (4)0.006 (4)0.007 (3)
C17A0.087 (4)0.050 (3)0.056 (3)0.013 (3)0.007 (3)0.016 (2)
C18A0.098 (4)0.050 (3)0.088 (4)0.019 (3)0.019 (4)0.000 (3)
C19A0.054 (3)0.076 (3)0.068 (3)0.008 (3)0.020 (3)0.010 (3)
C20A0.0375 (19)0.0413 (18)0.0223 (15)0.0019 (16)0.0004 (14)0.0029 (14)
Geometric parameters (Å, º) top
O1—C201.218 (5)O1A—C20A1.220 (5)
O2—C201.298 (5)O2A—C20A1.301 (4)
O2—H20.82O2A—H2AA0.82
O3—C111.442 (5)O3A—C11A1.438 (5)
O3—O41.468 (4)O3A—O4A1.465 (5)
O4—C141.435 (6)O4A—C14A1.437 (6)
C1—C21.530 (6)C1A—C2A1.529 (6)
C1—C101.537 (5)C1A—C10A1.532 (5)
C1—H1A0.97C1A—H1A10.97
C1—H1B0.97C1A—H1A20.97
C2—C31.542 (6)C2A—C3A1.546 (6)
C2—H2A0.97C2A—H2A10.97
C2—H2B0.97C2A—H2A20.97
C3—C41.535 (5)C3A—C4A1.527 (5)
C3—C51.562 (5)C3A—C5A1.574 (5)
C3—H30.98C3A—H3A0.98
C4—C191.515 (6)C4A—C19A1.522 (7)
C4—C181.531 (7)C4A—C18A1.530 (6)
C4—H40.98C4A—H4A0.98
C5—C201.527 (5)C5A—C20A1.522 (5)
C5—C61.536 (5)C5A—C6A1.522 (5)
C5—C101.546 (5)C5A—C10A1.547 (4)
C6—C71.517 (6)C6A—C7A1.521 (6)
C6—H6A0.97C6A—H6A10.97
C6—H6B0.97C6A—H6A20.97
C7—C81.555 (6)C7A—C8A1.565 (6)
C7—H7A0.97C7A—H7A10.97
C7—H7B0.97C7A—H7A20.97
C8—C151.543 (6)C8A—C17A1.548 (6)
C8—C171.545 (6)C8A—C15A1.549 (6)
C8—C91.565 (5)C8A—C9A1.561 (5)
C9—C101.534 (5)C9A—C10A1.531 (5)
C9—C111.558 (5)C9A—C11A1.562 (5)
C9—H90.98C9A—H9A0.98
C10—H100.98C10A—H10A0.98
C11—C121.491 (6)C11A—C12A1.493 (7)
C11—H110.98C11A—H11A0.98
C12—C131.310 (7)C12A—C13A1.312 (8)
C12—H120.93C12A—H12A0.93
C13—C161.488 (6)C13A—C16A1.502 (7)
C13—C141.519 (7)C13A—C14A1.507 (8)
C14—C151.531 (6)C14A—C15A1.532 (7)
C14—H140.98C14A—H14A0.98
C15—H15A0.97C15A—H15C0.97
C15—H15B0.97C15A—H15D0.97
C16—H16A0.96C16A—H16D0.96
C16—H16B0.96C16A—H16E0.96
C16—H16C0.96C16A—H16F0.96
C17—H17A0.96C17A—H17D0.96
C17—H17B0.96C17A—H17E0.96
C17—H17C0.96C17A—H17F0.96
C18—H18A0.96C18A—H18D0.96
C18—H18B0.96C18A—H18E0.96
C18—H18C0.96C18A—H18F0.96
C19—H19A0.96C19A—H19D0.96
C19—H19B0.96C19A—H19E0.96
C19—H19C0.96C19A—H19F0.96
C20—O2—H2109.5C20A—O2A—H2AA109.5
C11—O3—O4113.0 (3)C11A—O3A—O4A113.5 (3)
C14—O4—O3113.8 (3)C14A—O4A—O3A113.3 (3)
C2—C1—C10104.8 (3)C2A—C1A—C10A104.8 (3)
C2—C1—H1A110.8C2A—C1A—H1A1110.8
C10—C1—H1A110.8C10A—C1A—H1A1110.8
C2—C1—H1B110.8C2A—C1A—H1A2110.8
C10—C1—H1B110.8C10A—C1A—H1A2110.8
H1A—C1—H1B108.9H1A1—C1A—H1A2108.9
C1—C2—C3107.2 (3)C1A—C2A—C3A107.5 (3)
C1—C2—H2A110.3C1A—C2A—H2A1110.2
C3—C2—H2A110.3C3A—C2A—H2A1110.2
C1—C2—H2B110.3C1A—C2A—H2A2110.2
C3—C2—H2B110.3C3A—C2A—H2A2110.2
H2A—C2—H2B108.5H2A1—C2A—H2A2108.5
C4—C3—C2113.1 (3)C4A—C3A—C2A114.1 (3)
C4—C3—C5119.4 (3)C4A—C3A—C5A118.9 (3)
C2—C3—C5102.8 (3)C2A—C3A—C5A102.4 (3)
C4—C3—H3106.9C4A—C3A—H3A106.9
C2—C3—H3106.9C2A—C3A—H3A106.9
C5—C3—H3106.9C5A—C3A—H3A106.9
C19—C4—C18108.7 (4)C19A—C4A—C3A113.3 (4)
C19—C4—C3113.7 (4)C19A—C4A—C18A108.2 (4)
C18—C4—C3110.0 (4)C3A—C4A—C18A111.6 (4)
C19—C4—H4108.1C19A—C4A—H4A107.8
C18—C4—H4108.1C3A—C4A—H4A107.8
C3—C4—H4108.1C18A—C4A—H4A107.8
C20—C5—C6110.6 (3)C20A—C5A—C6A111.1 (3)
C20—C5—C10112.7 (3)C20A—C5A—C10A113.4 (3)
C6—C5—C10105.8 (3)C6A—C5A—C10A106.3 (3)
C20—C5—C3109.2 (3)C20A—C5A—C3A107.8 (3)
C6—C5—C3118.1 (3)C6A—C5A—C3A117.9 (3)
C10—C5—C3100.0 (3)C10A—C5A—C3A99.8 (3)
C7—C6—C5109.3 (3)C7A—C6A—C5A108.8 (3)
C7—C6—H6A109.8C7A—C6A—H6A1109.9
C5—C6—H6A109.8C5A—C6A—H6A1109.9
C7—C6—H6B109.8C7A—C6A—H6A2109.9
C5—C6—H6B109.8C5A—C6A—H6A2109.9
H6A—C6—H6B108.3H6A1—C6A—H6A2108.3
C6—C7—C8118.6 (3)C6A—C7A—C8A118.0 (3)
C6—C7—H7A107.7C6A—C7A—H7A1107.8
C8—C7—H7A107.7C8A—C7A—H7A1107.8
C6—C7—H7B107.7C6A—C7A—H7A2107.8
C8—C7—H7B107.7C8A—C7A—H7A2107.8
H7A—C7—H7B107.1H7A1—C7A—H7A2107.1
C15—C8—C17111.2 (4)C17A—C8A—C15A110.6 (4)
C15—C8—C7108.0 (4)C17A—C8A—C9A111.2 (4)
C17—C8—C7103.4 (4)C15A—C8A—C9A111.7 (3)
C15—C8—C9111.3 (3)C17A—C8A—C7A104.1 (3)
C17—C8—C9111.4 (4)C15A—C8A—C7A107.7 (4)
C7—C8—C9111.1 (3)C9A—C8A—C7A111.3 (3)
C10—C9—C11108.5 (3)C10A—C9A—C8A112.1 (3)
C10—C9—C8111.6 (3)C10A—C9A—C11A108.2 (3)
C11—C9—C8115.8 (3)C8A—C9A—C11A115.8 (3)
C10—C9—H9106.8C10A—C9A—H9A106.8
C11—C9—H9106.8C8A—C9A—H9A106.8
C8—C9—H9106.8C11A—C9A—H9A106.8
C9—C10—C1118.0 (3)C9A—C10A—C1A117.6 (3)
C9—C10—C5115.2 (3)C9A—C10A—C5A115.0 (3)
C1—C10—C5105.7 (3)C1A—C10A—C5A105.8 (3)
C9—C10—H10105.6C9A—C10A—H10A105.8
C1—C10—H10105.6C1A—C10A—H10A105.8
C5—C10—H10105.6C5A—C10A—H10A105.8
O3—C11—C12108.8 (3)O3A—C11A—C12A108.8 (4)
O3—C11—C9112.4 (3)O3A—C11A—C9A112.1 (3)
C12—C11—C9115.4 (4)C12A—C11A—C9A115.4 (4)
O3—C11—H11106.6O3A—C11A—H11A106.7
C12—C11—H11106.6C12A—C11A—H11A106.7
C9—C11—H11106.6C9A—C11A—H11A106.7
C13—C12—C11117.0 (4)C13A—C12A—C11A117.2 (5)
C13—C12—H12121.5C13A—C12A—H12A121.4
C11—C12—H12121.5C11A—C12A—H12A121.4
C12—C13—C16126.5 (5)C12A—C13A—C16A126.2 (6)
C12—C13—C14114.2 (4)C12A—C13A—C14A113.9 (4)
C16—C13—C14119.2 (5)C16A—C13A—C14A119.8 (6)
O4—C14—C13109.5 (4)O4A—C14A—C13A109.6 (4)
O4—C14—C15111.3 (4)O4A—C14A—C15A110.9 (4)
C13—C14—C15114.7 (4)C13A—C14A—C15A116.0 (4)
O4—C14—H14107O4A—C14A—H14A106.6
C13—C14—H14107C13A—C14A—H14A106.6
C15—C14—H14107C15A—C14A—H14A106.6
C14—C15—C8118.4 (4)C14A—C15A—C8A118.1 (4)
C14—C15—H15A107.7C14A—C15A—H15C107.8
C8—C15—H15A107.7C8A—C15A—H15C107.8
C14—C15—H15B107.7C14A—C15A—H15D107.8
C8—C15—H15B107.7C8A—C15A—H15D107.8
H15A—C15—H15B107.1H15C—C15A—H15D107.1
C13—C16—H16A109.5C13A—C16A—H16D109.5
C13—C16—H16B109.5C13A—C16A—H16E109.5
H16A—C16—H16B109.5H16D—C16A—H16E109.5
C13—C16—H16C109.5C13A—C16A—H16F109.5
H16A—C16—H16C109.5H16D—C16A—H16F109.5
H16B—C16—H16C109.5H16E—C16A—H16F109.5
C8—C17—H17A109.5C8A—C17A—H17D109.5
C8—C17—H17B109.5C8A—C17A—H17E109.5
H17A—C17—H17B109.5H17D—C17A—H17E109.5
C8—C17—H17C109.5C8A—C17A—H17F109.5
H17A—C17—H17C109.5H17D—C17A—H17F109.5
H17B—C17—H17C109.5H17E—C17A—H17F109.5
C4—C18—H18A109.5C4A—C18A—H18D109.5
C4—C18—H18B109.5C4A—C18A—H18E109.5
H18A—C18—H18B109.5H18D—C18A—H18E109.5
C4—C18—H18C109.5C4A—C18A—H18F109.5
H18A—C18—H18C109.5H18D—C18A—H18F109.5
H18B—C18—H18C109.5H18E—C18A—H18F109.5
C4—C19—H19A109.5C4A—C19A—H19D109.5
C4—C19—H19B109.5C4A—C19A—H19E109.5
H19A—C19—H19B109.5H19D—C19A—H19E109.5
C4—C19—H19C109.5C4A—C19A—H19F109.5
H19A—C19—H19C109.5H19D—C19A—H19F109.5
H19B—C19—H19C109.5H19E—C19A—H19F109.5
O1—C20—O2122.1 (3)O1A—C20A—O2A122.3 (3)
O1—C20—C5123.1 (3)O1A—C20A—C5A123.4 (3)
O2—C20—C5114.8 (3)O2A—C20A—C5A114.3 (3)
C11—O3—O4—C141.5 (4)C11A—O3A—O4A—C14A1.1 (5)
C10—C1—C2—C33.2 (4)C10A—C1A—C2A—C3A2.6 (4)
C1—C2—C3—C4158.9 (3)C1A—C2A—C3A—C4A158.1 (3)
C1—C2—C3—C528.7 (4)C1A—C2A—C3A—C5A28.3 (4)
C2—C3—C4—C19179.1 (4)C2A—C3A—C4A—C19A173.4 (4)
C5—C3—C4—C1959.6 (5)C5A—C3A—C4A—C19A65.6 (5)
C2—C3—C4—C1857.0 (5)C2A—C3A—C4A—C18A50.9 (5)
C5—C3—C4—C18178.2 (4)C5A—C3A—C4A—C18A171.9 (4)
C4—C3—C5—C2049.9 (4)C4A—C3A—C5A—C20A50.0 (4)
C2—C3—C5—C2076.4 (3)C2A—C3A—C5A—C20A76.7 (3)
C4—C3—C5—C677.6 (4)C4A—C3A—C5A—C6A76.8 (4)
C2—C3—C5—C6156.2 (3)C2A—C3A—C5A—C6A156.5 (3)
C4—C3—C5—C10168.3 (3)C4A—C3A—C5A—C10A168.7 (3)
C2—C3—C5—C1042.1 (3)C2A—C3A—C5A—C10A42.0 (3)
C20—C5—C6—C762.5 (4)C20A—C5A—C6A—C7A62.8 (4)
C10—C5—C6—C759.8 (4)C10A—C5A—C6A—C7A61.1 (4)
C3—C5—C6—C7170.7 (3)C3A—C5A—C6A—C7A172.0 (3)
C5—C6—C7—C854.2 (5)C5A—C6A—C7A—C8A55.1 (5)
C6—C7—C8—C1579.9 (4)C6A—C7A—C8A—C17A162.2 (4)
C6—C7—C8—C17162.2 (4)C6A—C7A—C8A—C15A80.3 (4)
C6—C7—C8—C942.5 (5)C6A—C7A—C8A—C9A42.3 (5)
C15—C8—C9—C1081.2 (4)C17A—C8A—C9A—C10A153.8 (3)
C17—C8—C9—C10154.0 (3)C15A—C8A—C9A—C10A82.1 (4)
C7—C8—C9—C1039.2 (4)C7A—C8A—C9A—C10A38.2 (4)
C15—C8—C9—C1143.6 (5)C17A—C8A—C9A—C11A81.4 (4)
C17—C8—C9—C1181.2 (4)C15A—C8A—C9A—C11A42.7 (5)
C7—C8—C9—C11164.0 (3)C7A—C8A—C9A—C11A163.0 (3)
C11—C9—C10—C151.6 (4)C8A—C9A—C10A—C1A177.9 (3)
C8—C9—C10—C1179.7 (3)C11A—C9A—C10A—C1A53.2 (4)
C11—C9—C10—C5177.6 (3)C8A—C9A—C10A—C5A52.1 (4)
C8—C9—C10—C553.6 (4)C11A—C9A—C10A—C5A179.0 (3)
C2—C1—C10—C9154.6 (3)C2A—C1A—C10A—C9A155.0 (3)
C2—C1—C10—C524.0 (4)C2A—C1A—C10A—C5A24.9 (4)
C20—C5—C10—C957.5 (4)C20A—C5A—C10A—C9A58.9 (4)
C6—C5—C10—C963.6 (4)C6A—C5A—C10A—C9A63.6 (4)
C3—C5—C10—C9173.3 (3)C3A—C5A—C10A—C9A173.3 (3)
C20—C5—C10—C174.7 (4)C20A—C5A—C10A—C1A72.8 (4)
C6—C5—C10—C1164.3 (3)C6A—C5A—C10A—C1A164.8 (3)
C3—C5—C10—C141.1 (3)C3A—C5A—C10A—C1A41.7 (3)
O4—O3—C11—C1250.5 (4)O4A—O3A—C11A—C12A49.7 (4)
O4—O3—C11—C978.6 (4)O4A—O3A—C11A—C9A79.1 (4)
C10—C9—C11—O339.1 (4)C10A—C9A—C11A—O3A40.1 (4)
C8—C9—C11—O387.3 (4)C8A—C9A—C11A—O3A86.7 (4)
C10—C9—C11—C12164.7 (3)C10A—C9A—C11A—C12A165.4 (4)
C8—C9—C11—C1238.2 (5)C8A—C9A—C11A—C12A38.6 (5)
O3—C11—C12—C1351.0 (5)O3A—C11A—C12A—C13A49.8 (6)
C9—C11—C12—C1376.3 (5)C9A—C11A—C12A—C13A77.1 (5)
C11—C12—C13—C16176.6 (5)C11A—C12A—C13A—C16A178.9 (5)
C11—C12—C13—C140.1 (6)C11A—C12A—C13A—C14A1.2 (6)
O3—O4—C14—C1348.5 (4)O3A—O4A—C14A—C13A49.5 (5)
O3—O4—C14—C1579.4 (4)O3A—O4A—C14A—C15A79.8 (5)
C12—C13—C14—O450.4 (5)C12A—C13A—C14A—O4A51.7 (5)
C16—C13—C14—O4132.7 (4)C16A—C13A—C14A—O4A130.5 (5)
C12—C13—C14—C1575.6 (5)C12A—C13A—C14A—C15A74.8 (6)
C16—C13—C14—C15101.3 (5)C16A—C13A—C14A—C15A102.9 (5)
O4—C14—C15—C887.5 (5)O4A—C14A—C15A—C8A87.7 (5)
C13—C14—C15—C837.5 (6)C13A—C14A—C15A—C8A38.2 (6)
C17—C8—C15—C1480.3 (5)C17A—C8A—C15A—C14A80.4 (5)
C7—C8—C15—C14166.9 (4)C9A—C8A—C15A—C14A44.0 (5)
C9—C8—C15—C1444.6 (5)C7A—C8A—C15A—C14A166.5 (4)
C6—C5—C20—O1137.6 (4)C6A—C5A—C20A—O1A139.5 (4)
C10—C5—C20—O119.4 (5)C10A—C5A—C20A—O1A19.8 (6)
C3—C5—C20—O190.8 (5)C3A—C5A—C20A—O1A89.8 (5)
C6—C5—C20—O242.9 (5)C6A—C5A—C20A—O2A42.1 (4)
C10—C5—C20—O2161.2 (3)C10A—C5A—C20A—O2A161.9 (3)
C3—C5—C20—O288.6 (4)C3A—C5A—C20A—O2A88.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2AA···O1i0.821.862.681 (4)177
O2—H2···O1Aii0.821.892.702 (4)175
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H30O4
Mr334.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.4160 (15), 19.374 (4), 26.767 (5)
V3)3845.8 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
43215, 5387, 4452
Rint0.08
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.224, 1.25
No. of reflections5387
No. of parameters444
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.48

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2AA···O1i0.821.862.681 (4)177
O2—H2···O1Aii0.821.892.702 (4)175
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x+3/2, y+1, z+1/2.
 

Acknowledgements

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAraya, J. E., Neira, I., da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz Rio de Janeiro, 98, 413–418.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008a). Acta Cryst. E64, o1348–o1349.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrito, I., Bórquez, J., Loyola, L. A., Cárdenas, A. & López-Rodríguez, M. (2008b). Acta Cryst. E64, o1209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLoyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931–1935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L., Morales, G., Rodríguez, B., Jiménez-Barbero, J., de la Torre, M., Perales, A. & Torres, M. (1990). Tetrahedron, 46, 5413-5420.  CSD CrossRef CAS Web of Science Google Scholar
First citationMunizaga, C. & Gunkel, H. (1958). Notas etnobotánicas del pueblo de Socaire. Publicación No. 5. Universidad de Chile.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds