organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 5-amino-2,4,6-tri­iodo­isophthalate

aJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: zou-pei@163.com

(Received 30 December 2009; accepted 8 January 2010; online 16 January 2010)

The title compound, C10H8I3NO4, crystallizes with two mol­ecules in the asymmetric unit. The I atoms and the benzene ring plane in the two mol­ecules are approximately coplanar, the I atoms deviating by −0.1631 (1), 0.0704 (1) and −0.0507 (1) Å from the mean plane of the benzene ring in one mol­ecule and by 0.1500 (1), −0.0034 (1) and −0.1213 (1) Å in the other. The planes of the ester groups are almost orthogonal to those of the benzene rings in both mol­ecules, forming dihedral angles of 83.5 (3), 76.4 (3), 97.3 (1) and 75.7 (1)°. The mean planes of the benzene rings in two mol­ecules are inclined at 69.8 (3)° with respect to each other. In the crystal, inter­molecular I⋯O inter­actions link the mol­ecules into infinite chains. In addition, N—H⋯O and non-classical C—H⋯O hydrogen bonds are observed.

Related literature

For general background to 1,3,5-triiodobenzene derivatives, see: Morin et al. (1987[Morin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol. 35, 1215-1220.]); Singh & Rathore (1980[Singh, G. B. & Rathore, H. G. S. (1980). Indian Drug. Pharm. Ind. 15, 35-38.]); Stacul et al. (2001[Stacul, F. (2001). Eur. Radiol. 11, 690-697.]); Yu & Watson (1999[Yu, S. B. & Watson, A. D. (1999). Chem. Rev. 99, 2353-2378.]). For a related structure, see: Beck & Sheldrick (2008[Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8I3NO4

  • Mr = 586.87

  • Triclinic, [P \overline 1]

  • a = 8.4423 (17) Å

  • b = 10.3545 (19) Å

  • c = 18.365 (3) Å

  • α = 75.158 (5)°

  • β = 80.045 (5)°

  • γ = 89.728 (6)°

  • V = 1527.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.15 mm−1

  • T = 93 K

  • 0.40 × 0.33 × 0.13 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: empirical (using intensity measurements) (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.193, Tmax = 0.495

  • 10344 measured reflections

  • 5251 independent reflections

  • 4488 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.067

  • S = 0.98

  • 5251 reflections

  • 325 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯I2A 0.88 2.74 3.224 (5) 116
N1A—H1A⋯O4Bi 0.88 2.48 3.036 (7) 122
N1A—H1B⋯I3A 0.88 2.72 3.211 (5) 117
N1B—H1C⋯I2B 0.88 2.73 3.212 (5) 116
N1B—H1D⋯I3B 0.88 2.73 3.222 (5) 116
N1B—H1D⋯O2Aii 0.88 2.43 3.026 (7) 125
C8B—H8E⋯O2Biii 0.98 2.54 3.516 (9) 171
C10A—H10A⋯O2Biv 0.98 2.58 3.499 (9) 155
C10A—H10B⋯O4Av 0.98 2.54 3.519 (9) 173
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x+1, -y, -z+2; (iv) x, y+1, z-1; (v) -x, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,3,5-triiodobenzene core has been the basis of many contrast agents (Yu & Watson, 1999). The title compound is useful as an important intermediate for the preparation of iodinated X-ray contrast agent, such as iotalamic acid, ioxitalamic acid, and ioxilan, which are used clinically all over the world (Morin et al., 1987; Singh et al., 1980; Stacul et al., 2001). In this paper, we present the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules (A and B) in an asymmetric unit. The three I atoms deviate from the mean-planes of the phenyl rings, respectively, by -0.1631 (1), 0.0704 (1) and -0.0507 (1) Å for molecule A and 0.1500 (1), -0.0034 (1) and -0.1213 (1) Å for molecule B. Bond lengths and angles are comparable to those observed in a related structure (Beck & Sheldrick, 2008). The planes of the ester groups in both molecule are almost orthogonal to the benzene ring, as indicated by the dihedral angles of 83.5 (3)° (C10A/O3A/C9A/O4A; C1A—C6A), 76.4 (3)°(C8A/O1A/C7A/O2A; C1A—C6A), 97.3 (1)° (C10B/O3B/C9B/O4B; C1B—C6B) and 75.7 (1)° (C8B/O1B/C7B/O2B; C1B—C6B). The dihedral angle between the rings (C1A—C6A) and (C1B—C6B) is 69.8 (3)°.

In the crystal structure, intermolecular I···O interactions link the molecules into infinite one-dimensional chains (Fig. 2). In addition, C—H···O hydrogen bonds and N—H···O hydrogen bonds are observed.

Related literature top

For general background, see: Morin et al. (1987); Singh et al. (1980); Stacul et al. (2001); Yu & Watson (1999). For a related structure, see: Beck & Sheldrick (2008).

Experimental top

A mixture of 5-amino-2,4,6-triiodoisophthaloyl dichloride (2.97 g, 5 mmol) and methanol (15 ml) was heated under reflux for four hours to produce dimethyl 5-amino-2,4,6-triiodoisophthalate. It was recrystallized from a methanol solution by slowly evaporating the solvents to obtain crystals suitable for X-ray single-crystal diffraction.

Refinement top

All H atoms were initially located from a difference Fourier map and then were regenerated at ideal positions and treated as riding, with N—H = 0.88 Å, C—H = 0.98 Å and Uiso(H) = 1.2Ueq (N), Uiso(H) = 1.5Ueq (C). The final difference map showed electron density in the vicinity of I3B atom and was deemed meaningless.

Structure description top

The 1,3,5-triiodobenzene core has been the basis of many contrast agents (Yu & Watson, 1999). The title compound is useful as an important intermediate for the preparation of iodinated X-ray contrast agent, such as iotalamic acid, ioxitalamic acid, and ioxilan, which are used clinically all over the world (Morin et al., 1987; Singh et al., 1980; Stacul et al., 2001). In this paper, we present the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains two crystallographically independent molecules (A and B) in an asymmetric unit. The three I atoms deviate from the mean-planes of the phenyl rings, respectively, by -0.1631 (1), 0.0704 (1) and -0.0507 (1) Å for molecule A and 0.1500 (1), -0.0034 (1) and -0.1213 (1) Å for molecule B. Bond lengths and angles are comparable to those observed in a related structure (Beck & Sheldrick, 2008). The planes of the ester groups in both molecule are almost orthogonal to the benzene ring, as indicated by the dihedral angles of 83.5 (3)° (C10A/O3A/C9A/O4A; C1A—C6A), 76.4 (3)°(C8A/O1A/C7A/O2A; C1A—C6A), 97.3 (1)° (C10B/O3B/C9B/O4B; C1B—C6B) and 75.7 (1)° (C8B/O1B/C7B/O2B; C1B—C6B). The dihedral angle between the rings (C1A—C6A) and (C1B—C6B) is 69.8 (3)°.

In the crystal structure, intermolecular I···O interactions link the molecules into infinite one-dimensional chains (Fig. 2). In addition, C—H···O hydrogen bonds and N—H···O hydrogen bonds are observed.

For general background, see: Morin et al. (1987); Singh et al. (1980); Stacul et al. (2001); Yu & Watson (1999). For a related structure, see: Beck & Sheldrick (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial view of molecular structure. Molecules are linked into infinite one dimensional chains by I···O interactions (dashed lines).
Dimethyl 5-amino-2,4,6-triiodoisophthalate top
Crystal data top
C10H8I3NO4Z = 4
Mr = 586.87F(000) = 1064
Triclinic, P1Dx = 2.553 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4423 (17) ÅCell parameters from 4796 reflections
b = 10.3545 (19) Åθ = 3.1–27.5°
c = 18.365 (3) ŵ = 6.15 mm1
α = 75.158 (5)°T = 93 K
β = 80.045 (5)°Chunk, colorless
γ = 89.728 (6)°0.40 × 0.33 × 0.13 mm
V = 1527.2 (5) Å3
Data collection top
Rigaku SPIDER
diffractometer
5251 independent reflections
Radiation source: Rotating anode4488 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
h = 710
Tmin = 0.193, Tmax = 0.495k = 1212
10344 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0226P)2]
where P = (Fo2 + 2Fc2)/3
5251 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 1.10 e Å3
24 restraintsΔρmin = 1.19 e Å3
Crystal data top
C10H8I3NO4γ = 89.728 (6)°
Mr = 586.87V = 1527.2 (5) Å3
Triclinic, P1Z = 4
a = 8.4423 (17) ÅMo Kα radiation
b = 10.3545 (19) ŵ = 6.15 mm1
c = 18.365 (3) ÅT = 93 K
α = 75.158 (5)°0.40 × 0.33 × 0.13 mm
β = 80.045 (5)°
Data collection top
Rigaku SPIDER
diffractometer
5251 independent reflections
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
4488 reflections with I > 2σ(I)
Tmin = 0.193, Tmax = 0.495Rint = 0.036
10344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03524 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.98Δρmax = 1.10 e Å3
5251 reflectionsΔρmin = 1.19 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I1A0.38817 (5)0.22093 (4)0.17667 (3)0.01707 (12)
I2A0.17168 (6)0.58657 (5)0.16991 (3)0.02695 (14)
I3A0.09149 (5)0.19121 (4)0.46691 (2)0.01540 (11)
I1B0.64018 (5)0.26656 (5)0.82446 (3)0.02072 (12)
I2B0.38563 (5)0.31590 (4)0.53036 (2)0.01505 (11)
I3B0.08377 (6)0.09395 (5)0.82042 (3)0.02305 (13)
O1A0.3577 (5)0.1765 (4)0.3694 (2)0.0153 (11)
O2A0.1825 (5)0.0114 (4)0.3694 (3)0.0165 (11)
O3A0.2236 (5)0.5535 (4)0.0837 (3)0.0192 (11)
O4A0.1008 (5)0.3729 (4)0.0665 (3)0.0168 (11)
O1B0.2646 (5)0.1247 (4)0.9244 (2)0.0158 (11)
O2B0.3971 (5)0.0629 (4)0.9177 (2)0.0168 (11)
O3B0.7581 (5)0.3230 (4)0.6314 (3)0.0155 (11)
O4B0.5834 (5)0.4882 (4)0.6325 (3)0.0155 (11)
N1A0.2391 (6)0.4225 (5)0.3477 (3)0.0200 (14)
H1A0.29360.48610.32250.024*
H1B0.27240.38640.39680.024*
N1B0.1464 (6)0.0829 (5)0.6453 (3)0.0198 (14)
H1C0.15080.12000.59610.024*
H1D0.07260.01970.66980.024*
C1A0.1312 (7)0.2407 (6)0.3123 (4)0.0084 (14)
C2A0.1852 (8)0.2955 (6)0.2348 (4)0.0126 (15)
C3A0.0967 (8)0.3922 (6)0.1933 (4)0.0130 (15)
C4A0.0451 (8)0.4349 (6)0.2320 (4)0.0134 (15)
C5A0.1032 (8)0.3800 (6)0.3106 (4)0.0140 (15)
C6A0.0100 (7)0.2800 (6)0.3494 (4)0.0097 (14)
C7A0.2236 (8)0.1295 (7)0.3534 (4)0.0150 (15)
C8A0.4678 (8)0.0755 (7)0.3980 (4)0.0258 (19)
H8A0.56180.11900.40790.039*
H8B0.50260.02540.35990.039*
H8C0.41320.01410.44570.039*
C9A0.1392 (8)0.4374 (6)0.1075 (4)0.0138 (15)
C10A0.2670 (9)0.6031 (7)0.0006 (4)0.0276 (19)
H10A0.32840.68850.01220.041*
H10B0.16890.61620.02180.041*
H10C0.33270.53800.02000.041*
C1B0.3607 (8)0.1014 (6)0.8020 (4)0.0139 (15)
C2B0.4819 (7)0.1978 (6)0.7639 (4)0.0129 (15)
C3B0.4876 (8)0.2602 (6)0.6861 (4)0.0140 (15)
C4B0.3739 (7)0.2233 (6)0.6478 (4)0.0128 (15)
C5B0.2547 (8)0.1237 (6)0.6838 (4)0.0160 (16)
C6B0.2527 (7)0.0631 (6)0.7624 (4)0.0138 (15)
C7B0.3465 (7)0.0435 (6)0.8873 (4)0.0124 (15)
C8B0.2448 (9)0.0829 (7)1.0074 (4)0.0273 (19)
H8D0.18360.14901.02920.041*
H8E0.35090.07581.02260.041*
H8F0.18670.00421.02640.041*
C9B0.6117 (8)0.3721 (6)0.6468 (4)0.0133 (15)
C10B0.8891 (8)0.4222 (7)0.6051 (4)0.0260 (18)
H10D0.99070.37820.59520.039*
H10E0.89410.47000.64440.039*
H10F0.87150.48590.55780.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.0142 (3)0.0210 (3)0.0134 (3)0.00420 (19)0.00138 (19)0.0023 (2)
I2A0.0343 (3)0.0252 (3)0.0207 (3)0.0188 (2)0.0082 (2)0.0030 (2)
I3A0.0146 (3)0.0179 (2)0.0123 (2)0.00037 (18)0.00006 (19)0.00286 (19)
I1B0.0208 (3)0.0254 (3)0.0153 (3)0.0088 (2)0.0064 (2)0.0017 (2)
I2B0.0154 (3)0.0171 (2)0.0116 (2)0.00127 (18)0.00228 (19)0.00199 (19)
I3B0.0247 (3)0.0223 (3)0.0187 (3)0.0151 (2)0.0029 (2)0.0032 (2)
O1A0.010 (3)0.019 (3)0.018 (3)0.006 (2)0.009 (2)0.004 (2)
O2A0.013 (3)0.013 (3)0.023 (3)0.001 (2)0.005 (2)0.002 (2)
O3A0.023 (3)0.019 (3)0.013 (3)0.006 (2)0.001 (2)0.000 (2)
O4A0.022 (3)0.014 (2)0.018 (3)0.002 (2)0.008 (2)0.005 (2)
O1B0.016 (3)0.020 (3)0.012 (3)0.008 (2)0.000 (2)0.006 (2)
O2B0.023 (3)0.010 (3)0.013 (3)0.002 (2)0.002 (2)0.005 (2)
O3B0.011 (3)0.017 (3)0.019 (3)0.0020 (19)0.004 (2)0.008 (2)
O4B0.015 (3)0.011 (3)0.019 (3)0.0012 (19)0.003 (2)0.000 (2)
N1A0.021 (4)0.022 (3)0.014 (3)0.015 (3)0.003 (3)0.000 (3)
N1B0.020 (3)0.024 (3)0.015 (3)0.012 (3)0.003 (3)0.004 (3)
C1A0.005 (3)0.010 (3)0.011 (4)0.000 (3)0.001 (3)0.003 (3)
C2A0.016 (4)0.010 (3)0.014 (4)0.001 (3)0.006 (3)0.005 (3)
C3A0.013 (4)0.007 (3)0.020 (4)0.001 (3)0.005 (3)0.006 (3)
C4A0.013 (3)0.011 (2)0.016 (3)0.004 (2)0.005 (2)0.003 (2)
C5A0.017 (4)0.013 (4)0.013 (4)0.003 (3)0.001 (3)0.006 (3)
C6A0.011 (2)0.007 (2)0.009 (2)0.002 (2)0.000 (2)0.001 (2)
C7A0.014 (4)0.018 (4)0.012 (4)0.002 (3)0.003 (3)0.005 (3)
C8A0.022 (5)0.022 (4)0.038 (5)0.009 (3)0.017 (4)0.009 (4)
C9A0.010 (3)0.012 (2)0.017 (3)0.005 (2)0.002 (2)0.000 (2)
C10A0.030 (3)0.028 (3)0.022 (3)0.007 (2)0.005 (2)0.003 (2)
C1B0.015 (4)0.008 (3)0.013 (4)0.001 (3)0.003 (3)0.005 (3)
C2B0.010 (4)0.016 (4)0.017 (4)0.001 (3)0.004 (3)0.009 (3)
C3B0.013 (4)0.012 (4)0.012 (4)0.000 (3)0.003 (3)0.003 (3)
C4B0.013 (4)0.010 (3)0.014 (4)0.001 (3)0.000 (3)0.003 (3)
C5B0.011 (4)0.015 (4)0.025 (4)0.004 (3)0.012 (3)0.007 (3)
C6B0.010 (4)0.007 (3)0.023 (4)0.000 (3)0.001 (3)0.004 (3)
C7B0.011 (4)0.016 (4)0.009 (4)0.004 (3)0.005 (3)0.004 (3)
C8B0.033 (5)0.038 (5)0.012 (4)0.016 (4)0.001 (3)0.011 (4)
C9B0.016 (4)0.015 (4)0.008 (4)0.007 (3)0.001 (3)0.002 (3)
C10B0.008 (4)0.031 (5)0.040 (5)0.002 (3)0.001 (3)0.014 (4)
Geometric parameters (Å, º) top
I1A—C2A2.110 (6)C1A—C7A1.502 (8)
I2A—C4A2.096 (6)C2A—C3A1.394 (8)
I3A—C6A2.110 (6)C3A—C4A1.412 (9)
I1B—C2B2.111 (6)C3A—C9A1.504 (9)
I2B—C4B2.109 (6)C4A—C5A1.410 (9)
I3B—C6B2.103 (6)C5A—C6A1.416 (8)
O1A—C7A1.341 (7)C8A—H8A0.9800
O1A—C8A1.453 (7)C8A—H8B0.9800
O2A—C7A1.220 (7)C8A—H8C0.9800
O3A—C9A1.333 (7)C10A—H10A0.9800
O3A—C10A1.461 (8)C10A—H10B0.9800
O4A—C9A1.209 (7)C10A—H10C0.9800
O1B—C7B1.332 (7)C1B—C6B1.377 (9)
O1B—C8B1.455 (7)C1B—C2B1.392 (8)
O2B—C7B1.213 (7)C1B—C7B1.511 (9)
O3B—C9B1.346 (7)C2B—C3B1.402 (9)
O3B—C10B1.444 (7)C3B—C4B1.392 (8)
O4B—C9B1.195 (7)C3B—C9B1.510 (8)
N1A—C5A1.360 (8)C4B—C5B1.395 (9)
N1A—H1A0.8800C5B—C6B1.417 (9)
N1A—H1B0.8800C8B—H8D0.9800
N1B—C5B1.377 (8)C8B—H8E0.9800
N1B—H1C0.8800C8B—H8F0.9800
N1B—H1D0.8800C10B—H10D0.9800
C1A—C2A1.384 (8)C10B—H10E0.9800
C1A—C6A1.381 (8)C10B—H10F0.9800
C7A—O1A—C8A115.3 (5)O3A—C10A—H10B109.5
C9A—O3A—C10A114.4 (5)H10A—C10A—H10B109.5
C7B—O1B—C8B115.8 (5)O3A—C10A—H10C109.5
C9B—O3B—C10B114.8 (5)H10A—C10A—H10C109.5
C5A—N1A—H1A120.0H10B—C10A—H10C109.5
C5A—N1A—H1B120.0C6B—C1B—C2B120.1 (6)
H1A—N1A—H1B120.0C6B—C1B—C7B120.9 (6)
C5B—N1B—H1C120.0C2B—C1B—C7B119.0 (6)
C5B—N1B—H1D120.0C3B—C2B—C1B119.3 (6)
H1C—N1B—H1D120.0C3B—C2B—I1B119.5 (5)
C2A—C1A—C6A121.1 (6)C1B—C2B—I1B120.8 (5)
C2A—C1A—C7A118.0 (5)C2B—C3B—C4B119.6 (6)
C6A—C1A—C7A120.8 (6)C2B—C3B—C9B119.0 (6)
C1A—C2A—C3A119.8 (6)C4B—C3B—C9B121.3 (6)
C1A—C2A—I1A120.6 (4)C3B—C4B—C5B122.3 (6)
C3A—C2A—I1A119.3 (5)C3B—C4B—I2B119.3 (5)
C2A—C3A—C4A118.9 (6)C5B—C4B—I2B118.4 (5)
C2A—C3A—C9A120.5 (6)N1B—C5B—C4B122.4 (6)
C4A—C3A—C9A120.2 (5)N1B—C5B—C6B121.1 (6)
C3A—C4A—C5A122.3 (5)C4B—C5B—C6B116.5 (6)
C3A—C4A—I2A118.5 (5)C1B—C6B—C5B122.1 (6)
C5A—C4A—I2A119.2 (5)C1B—C6B—I3B118.6 (5)
N1A—C5A—C4A122.0 (6)C5B—C6B—I3B119.2 (5)
N1A—C5A—C6A121.8 (6)O2B—C7B—O1B124.9 (6)
C4A—C5A—C6A116.2 (6)O2B—C7B—C1B125.3 (6)
C1A—C6A—C5A121.6 (6)O1B—C7B—C1B109.7 (5)
C1A—C6A—I3A120.1 (4)O1B—C8B—H8D109.5
C5A—C6A—I3A118.3 (4)O1B—C8B—H8E109.5
O2A—C7A—O1A124.4 (6)H8D—C8B—H8E109.5
O2A—C7A—C1A124.1 (6)O1B—C8B—H8F109.5
O1A—C7A—C1A111.4 (5)H8D—C8B—H8F109.5
O1A—C8A—H8A109.5H8E—C8B—H8F109.5
O1A—C8A—H8B109.5O4B—C9B—O3B125.0 (6)
H8A—C8A—H8B109.5O4B—C9B—C3B124.3 (6)
O1A—C8A—H8C109.5O3B—C9B—C3B110.7 (5)
H8A—C8A—H8C109.5O3B—C10B—H10D109.5
H8B—C8A—H8C109.5O3B—C10B—H10E109.5
O4A—C9A—O3A125.5 (6)H10D—C10B—H10E109.5
O4A—C9A—C3A122.5 (6)O3B—C10B—H10F109.5
O3A—C9A—C3A112.0 (6)H10D—C10B—H10F109.5
O3A—C10A—H10A109.5H10E—C10B—H10F109.5
C6A—C1A—C2A—C3A0.2 (9)C6B—C1B—C2B—C3B3.2 (10)
C7A—C1A—C2A—C3A175.5 (6)C7B—C1B—C2B—C3B174.7 (6)
C6A—C1A—C2A—I1A173.9 (5)C6B—C1B—C2B—I1B176.3 (5)
C7A—C1A—C2A—I1A1.4 (8)C7B—C1B—C2B—I1B1.6 (8)
C1A—C2A—C3A—C4A1.6 (9)C1B—C2B—C3B—C4B1.0 (10)
I1A—C2A—C3A—C4A175.7 (5)I1B—C2B—C3B—C4B174.2 (5)
C1A—C2A—C3A—C9A170.6 (6)C1B—C2B—C3B—C9B175.4 (6)
I1A—C2A—C3A—C9A3.6 (8)I1B—C2B—C3B—C9B2.3 (8)
C2A—C3A—C4A—C5A2.0 (10)C2B—C3B—C4B—C5B1.2 (10)
C9A—C3A—C4A—C5A170.1 (6)C9B—C3B—C4B—C5B177.6 (6)
C2A—C3A—C4A—I2A177.3 (4)C2B—C3B—C4B—I2B179.2 (5)
C9A—C3A—C4A—I2A10.5 (8)C9B—C3B—C4B—I2B4.5 (9)
C3A—C4A—C5A—N1A179.3 (6)C3B—C4B—C5B—N1B177.1 (6)
I2A—C4A—C5A—N1A0.0 (9)I2B—C4B—C5B—N1B0.8 (9)
C3A—C4A—C5A—C6A0.7 (9)C3B—C4B—C5B—C6B1.3 (10)
I2A—C4A—C5A—C6A178.7 (4)I2B—C4B—C5B—C6B179.2 (4)
C2A—C1A—C6A—C5A1.6 (10)C2B—C1B—C6B—C5B3.3 (10)
C7A—C1A—C6A—C5A176.7 (6)C7B—C1B—C6B—C5B174.6 (6)
C2A—C1A—C6A—I3A178.6 (5)C2B—C1B—C6B—I3B175.1 (5)
C7A—C1A—C6A—I3A3.5 (8)C7B—C1B—C6B—I3B7.1 (8)
N1A—C5A—C6A—C1A177.5 (6)N1B—C5B—C6B—C1B179.4 (6)
C4A—C5A—C6A—C1A1.1 (9)C4B—C5B—C6B—C1B1.0 (10)
N1A—C5A—C6A—I3A2.3 (8)N1B—C5B—C6B—I3B1.1 (9)
C4A—C5A—C6A—I3A179.1 (5)C4B—C5B—C6B—I3B177.3 (5)
C8A—O1A—C7A—O2A8.7 (9)C8B—O1B—C7B—O2B3.7 (9)
C8A—O1A—C7A—C1A170.6 (5)C8B—O1B—C7B—C1B178.6 (5)
C2A—C1A—C7A—O2A100.9 (8)C6B—C1B—C7B—O2B82.7 (9)
C6A—C1A—C7A—O2A74.4 (9)C2B—C1B—C7B—O2B99.4 (8)
C2A—C1A—C7A—O1A78.4 (7)C6B—C1B—C7B—O1B95.0 (7)
C6A—C1A—C7A—O1A106.3 (7)C2B—C1B—C7B—O1B82.9 (7)
C10A—O3A—C9A—O4A1.3 (9)C10B—O3B—C9B—O4B8.4 (9)
C10A—O3A—C9A—C3A179.4 (5)C10B—O3B—C9B—C3B170.5 (5)
C2A—C3A—C9A—O4A79.0 (8)C2B—C3B—C9B—O4B102.1 (8)
C4A—C3A—C9A—O4A93.0 (8)C4B—C3B—C9B—O4B74.3 (9)
C2A—C3A—C9A—O3A100.4 (7)C2B—C3B—C9B—O3B76.8 (8)
C4A—C3A—C9A—O3A87.6 (7)C4B—C3B—C9B—O3B106.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···I2A0.882.743.224 (5)116
N1A—H1A···O4Bi0.882.483.036 (7)122
N1A—H1B···I3A0.882.723.211 (5)117
N1B—H1C···I2B0.882.733.212 (5)116
N1B—H1D···I3B0.882.733.222 (5)116
N1B—H1D···O2Aii0.882.433.026 (7)125
C8B—H8E···O2Biii0.982.543.516 (9)171
C10A—H10A···O2Biv0.982.583.499 (9)155
C10A—H10B···O4Av0.982.543.519 (9)173
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+2; (iv) x, y+1, z1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8I3NO4
Mr586.87
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)8.4423 (17), 10.3545 (19), 18.365 (3)
α, β, γ (°)75.158 (5), 80.045 (5), 89.728 (6)
V3)1527.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.15
Crystal size (mm)0.40 × 0.33 × 0.13
Data collection
DiffractometerRigaku SPIDER
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.193, 0.495
No. of measured, independent and
observed [I > 2σ(I)] reflections
10344, 5251, 4488
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.067, 0.98
No. of reflections5251
No. of parameters325
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 1.19

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···I2A0.882.743.224 (5)116
N1A—H1A···O4Bi0.882.483.036 (7)122
N1A—H1B···I3A0.882.723.211 (5)117
N1B—H1C···I2B0.882.733.212 (5)116
N1B—H1D···I3B0.882.733.222 (5)116
N1B—H1D···O2Aii0.882.433.026 (7)125
C8B—H8E···O2Biii0.982.543.516 (9)171
C10A—H10A···O2Biv0.982.583.499 (9)155
C10A—H10B···O4Av0.982.543.519 (9)173
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+2; (iv) x, y+1, z1; (v) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

References

First citationBeck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol. 35, 1215–1220.  CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, G. B. & Rathore, H. G. S. (1980). Indian Drug. Pharm. Ind. 15, 35–38.  CAS Google Scholar
First citationStacul, F. (2001). Eur. Radiol. 11, 690–697.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, S. B. & Watson, A. D. (1999). Chem. Rev. 99, 2353–2378.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds