metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-Bis(di­phenyl­arsino)methane-1:2κ2As:As′][(4-bromo­phen­yl)di­phenyl­phosphine-3κP]nona­carbonyl-1κ3C,2κ3C,3κ3C-triangulo-tri­ruthenium(0) chloro­form 0.3-solvate

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 10 December 2009; accepted 23 December 2009; online 16 January 2010)

The asymmetric unit of the title triangulo-triruthenium compound, [Ru3(C25H22As2)(C18H14BrP)(CO)9]·0.3CHCl3, contains one mol­ecule of the triangulo-triruthenium complex and one partially occupied disordered chloro­form solvent mol­ecule. The bis­(diphenyl­arsino)methane ligand bridges an Ru—Ru bond and the monodentate phosphine ligand bonds to the third Ru atom. Both the arsine and phosphine ligands are equatorial with respect to the Ru3 triangle. In addition, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The phosphine-substituted benzene rings make dihedral angles of 67.5 (3), 76.1 (3) and 78.1 (3)° with each other. The dihedral angles between the two benzene rings are 79.0 (4) and 81.4 (3)° for the two diphenyl­arsino groups. In the crystal packing, the mol­ecules are linked into chains along the a axis by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]). For related structures, see: Shawkataly et al. (1998[Shawkataly, O. bin, Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.], 2009[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1620-m1621.]). For the synthesis of μ-bis­(diphenyl­arsino)methane­deca­carbonyl­triruthenium(0), see: Bruce et al. (1983[Bruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321-343.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C25H22As2)(C18H14BrP)(CO)9]·0.3CHCl3

  • Mr = 1404.55

  • Monoclinic, P 21 /c

  • a = 13.2415 (2) Å

  • b = 16.9463 (3) Å

  • c = 25.2224 (4) Å

  • β = 91.831 (1)°

  • V = 5656.88 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.78 mm−1

  • T = 296 K

  • 0.26 × 0.26 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.537, Tmax = 0.673

  • 63188 measured reflections

  • 16521 independent reflections

  • 10783 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.169

  • S = 1.08

  • 16521 reflections

  • 677 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.41 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O2i 0.93 2.59 3.180 (8) 122
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L = group 15 ligand) have been reported (Bruce et al., 1985, 1988a,b). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2009). Herein we report the synthesis and structure of title compound.

The asymmetric unit consists of one molecule of the triangulo-triruthenium complex and a 30% partially occupied molecule of disordered chloroform solvent (Fig. 1). The bond lengths and angles of title compound are comparable to those found in its related structure (Shawkataly et al., 2009). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both the phosphine and arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The phosphine-substituted benzene rings make dihedral angles (C26–C31/C32–C37, C26–C31/C38–C43 and C32–C37/C38–C43) of 67.5 (3), 76.1 (3) and 78.1 (3)° with each other respectively. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 79.0 (4) and 81.4 (3)° for the two diphenylarsino groups respectively.

In the crystal packing (Fig. 2), the molecules are linked into chains along the a axis by intermolecular C23—H23A···O2 hydrogen bonds (Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009). For the synthesis of µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983).

Experimental top

All manipulations were performed under a dry, oxygen-free dinitrogen atmosphere using standard Schlenk techniques, all solvents were dried over sodium and distilled from sodium benzophenone ketyl under nitrogen. (4-Bromophenyl)diphenylphosphine (Maybridge) was used as received and µ-bis(diphenylarsino)methane-decacarbonyl-triruthenium(0) (Bruce et al., 1983) were prepared by a reported procedure. The title compound was obtained by refluxing equimolar quantities of Ru3(CO)10(µ-Ph2AsCH2AsPh2) (105.5 mg, 0.1 mmol) and (4-bromophenyl)diphenylphosphine (34.12 mg, 0.1 mmol) in hexane under nitrogen atmosphere. Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH3OH into CH2Cl2.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C). The chloroform molecule is disordered over two positions with the site occupancies fixed to 0.15 for both components and with SADI command for the final refinement. The C53A and C53B atoms were refined isotropically. The maximum and minimum residual electron density peaks of 1.41 and -1.35 e Å-3, respectively, were located 0.56 Å and 0.96 Å from the Cl2B and Br1 atoms, respectively.

Structure description top

Triangulo-triruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L = group 15 ligand) have been reported (Bruce et al., 1985, 1988a,b). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of triangulo-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly et al., 1998, 2004, 2009). Herein we report the synthesis and structure of title compound.

The asymmetric unit consists of one molecule of the triangulo-triruthenium complex and a 30% partially occupied molecule of disordered chloroform solvent (Fig. 1). The bond lengths and angles of title compound are comparable to those found in its related structure (Shawkataly et al., 2009). The bis(diphenylarsino)methane ligand bridges the Ru1—Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both the phosphine and arsine ligands are equatorial with respect to the Ru3 triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The phosphine-substituted benzene rings make dihedral angles (C26–C31/C32–C37, C26–C31/C38–C43 and C32–C37/C38–C43) of 67.5 (3), 76.1 (3) and 78.1 (3)° with each other respectively. The dihedral angles between the two benzene rings (C1–C6/C7–C12 and C14–C19/C20–C25) are 79.0 (4) and 81.4 (3)° for the two diphenylarsino groups respectively.

In the crystal packing (Fig. 2), the molecules are linked into chains along the a axis by intermolecular C23—H23A···O2 hydrogen bonds (Table 1).

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b). For related structures, see: Shawkataly et al. (1998, 2004, 2009). For the synthesis of µ-bis(diphenylarsino)methanedecacarbonyltriruthenium(0), see: Bruce et al. (1983).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 20% probability ellipsoids for non-H atoms. All disordered components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing the molecules linked into chains along a axis. Hydrogen atoms not involved in the hydrogen-bonding (dashed lines) and the solvent molecules have been omitted for clarity.
[µ-Bis(diphenylarsino)methane-1:2κ2As:As'][(4- bromophenyl)diphenylphosphine-3κP]nonacarbonyl- 1κ3C,2κ3C,3κ3C-triangulo-triruthenium(0) chloroform 0.3-solvate top
Crystal data top
[Ru3(C25H22As2)(C18H14BrP)(CO)9]·0.3CHCl3F(000) = 2742
Mr = 1404.55Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9923 reflections
a = 13.2415 (2) Åθ = 2.2–27.8°
b = 16.9463 (3) ŵ = 2.78 mm1
c = 25.2224 (4) ÅT = 296 K
β = 91.831 (1)°Block, purple
V = 5656.88 (16) Å30.26 × 0.26 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
16521 independent reflections
Radiation source: fine-focus sealed tube10783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1518
Tmin = 0.537, Tmax = 0.673k = 2323
63188 measured reflectionsl = 3435
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0909P)2 + 1.7904P]
where P = (Fo2 + 2Fc2)/3
16521 reflections(Δ/σ)max < 0.001
677 parametersΔρmax = 1.41 e Å3
6 restraintsΔρmin = 1.35 e Å3
Crystal data top
[Ru3(C25H22As2)(C18H14BrP)(CO)9]·0.3CHCl3V = 5656.88 (16) Å3
Mr = 1404.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2415 (2) ŵ = 2.78 mm1
b = 16.9463 (3) ÅT = 296 K
c = 25.2224 (4) Å0.26 × 0.26 × 0.16 mm
β = 91.831 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
16521 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
10783 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.673Rint = 0.042
63188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0486 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.08Δρmax = 1.41 e Å3
16521 reflectionsΔρmin = 1.35 e Å3
677 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.23647 (3)0.31292 (2)0.159957 (17)0.03734 (11)
Ru20.04996 (3)0.23846 (2)0.182974 (15)0.03237 (10)
Ru30.19834 (3)0.15122 (2)0.129329 (15)0.03373 (11)
As10.16719 (4)0.44257 (3)0.18017 (2)0.03586 (13)
As20.01816 (3)0.34651 (3)0.234290 (19)0.03180 (12)
P10.31671 (10)0.08260 (8)0.07993 (5)0.0391 (3)
Br10.73998 (7)0.26067 (7)0.03555 (5)0.1197 (4)
O10.1908 (4)0.3326 (3)0.04092 (18)0.0692 (13)
O20.4533 (4)0.3563 (4)0.1392 (3)0.128 (3)
O30.2858 (4)0.2977 (3)0.2792 (2)0.0750 (14)
O40.1342 (4)0.1548 (3)0.28246 (18)0.0709 (13)
O50.1249 (4)0.1225 (3)0.1762 (2)0.0891 (17)
O60.0303 (3)0.3221 (3)0.08269 (17)0.0646 (12)
O70.0669 (4)0.1772 (3)0.02798 (19)0.0770 (14)
O80.0746 (3)0.0079 (3)0.15645 (19)0.0663 (12)
O90.3573 (3)0.1471 (2)0.21969 (19)0.0634 (12)
C10.2604 (4)0.5220 (3)0.2096 (2)0.0463 (13)
C20.2406 (5)0.6013 (4)0.2031 (3)0.0702 (19)
H2A0.18400.61750.18320.084*
C30.3065 (6)0.6578 (4)0.2265 (4)0.089 (3)
H3A0.29340.71140.22220.107*
C40.3881 (6)0.6337 (5)0.2549 (4)0.088 (3)
H4A0.43150.67090.27030.106*
C50.4079 (6)0.5570 (5)0.2613 (4)0.096 (3)
H5A0.46440.54160.28150.115*
C60.3448 (5)0.4995 (4)0.2380 (3)0.080 (2)
H6A0.36040.44630.24190.096*
C70.1009 (4)0.5021 (3)0.1233 (2)0.0451 (12)
C80.0047 (5)0.5283 (5)0.1246 (3)0.076 (2)
H8A0.03450.51710.15350.091*
C90.0355 (7)0.5722 (6)0.0823 (4)0.105 (3)
H9A0.10210.58940.08370.125*
C100.0150 (8)0.5901 (6)0.0414 (4)0.095 (3)
H10A0.01500.61980.01410.115*
C110.1142 (8)0.5653 (5)0.0379 (3)0.093 (3)
H11A0.15170.57850.00860.111*
C120.1568 (5)0.5199 (4)0.0791 (3)0.0703 (19)
H12A0.22270.50150.07700.084*
C130.0693 (4)0.4407 (3)0.2370 (2)0.0373 (11)
H13A0.02730.48760.23430.045*
H13B0.10550.44230.27100.045*
C140.0395 (4)0.3275 (3)0.30969 (19)0.0376 (11)
C150.0424 (4)0.3164 (4)0.3438 (2)0.0564 (16)
H15A0.10770.31970.33150.068*
C160.0267 (5)0.3004 (5)0.3969 (2)0.069 (2)
H16A0.08200.29270.42000.083*
C170.0679 (6)0.2958 (4)0.4156 (3)0.0707 (19)
H17A0.07700.28530.45130.085*
C180.1519 (5)0.3068 (5)0.3813 (3)0.0681 (19)
H18A0.21710.30370.39380.082*
C190.1358 (4)0.3225 (4)0.3283 (2)0.0511 (14)
H19A0.19090.32970.30500.061*
C200.1490 (3)0.3869 (3)0.21020 (19)0.0368 (11)
C210.2132 (4)0.3360 (4)0.1828 (3)0.0545 (15)
H21A0.19240.28480.17550.065*
C220.3100 (4)0.3616 (4)0.1660 (3)0.069 (2)
H22A0.35310.32770.14710.083*
C230.3408 (4)0.4376 (4)0.1778 (3)0.0614 (17)
H23A0.40500.45480.16710.074*
C240.2765 (4)0.4878 (3)0.2054 (2)0.0501 (14)
H24A0.29680.53890.21320.060*
C250.1817 (4)0.4617 (3)0.2214 (2)0.0428 (12)
H25A0.13870.49580.24020.051*
C260.4375 (4)0.1316 (3)0.0694 (2)0.0433 (12)
C270.4367 (5)0.2075 (4)0.0496 (2)0.0574 (15)
H27A0.37550.23320.04280.069*
C280.5284 (5)0.2465 (4)0.0394 (3)0.0693 (19)
H28A0.52810.29680.02480.083*
C290.6169 (5)0.2092 (5)0.0514 (3)0.069 (2)
C300.6201 (5)0.1363 (5)0.0732 (3)0.077 (2)
H30A0.68170.11300.08270.092*
C310.5310 (4)0.0971 (4)0.0813 (3)0.0603 (16)
H31A0.53320.04610.09500.072*
C320.2688 (4)0.0565 (3)0.0135 (2)0.0468 (13)
C330.1857 (5)0.0077 (4)0.0086 (3)0.0665 (18)
H33A0.15810.01310.03900.080*
C340.1424 (5)0.0111 (5)0.0403 (4)0.086 (3)
H34A0.08660.04430.04280.103*
C350.1842 (7)0.0212 (5)0.0873 (3)0.088 (3)
H35A0.15600.00900.12060.105*
C360.2638 (7)0.0686 (5)0.0828 (3)0.084 (2)
H36A0.29100.08980.11320.101*
C370.3079 (5)0.0874 (4)0.0327 (2)0.0645 (17)
H37A0.36360.12070.03050.077*
C380.3574 (4)0.0136 (3)0.1050 (2)0.0433 (12)
C390.3556 (4)0.0316 (4)0.1587 (2)0.0523 (14)
H39A0.32770.00440.18190.063*
C400.3944 (5)0.1020 (4)0.1784 (3)0.0623 (17)
H40A0.39250.11310.21450.075*
C410.4354 (5)0.1553 (4)0.1442 (3)0.0685 (19)
H41A0.46470.20150.15740.082*
C420.4335 (5)0.1402 (4)0.0897 (3)0.071 (2)
H42A0.45720.17770.06630.085*
C430.3966 (5)0.0703 (4)0.0715 (2)0.0571 (16)
H43A0.39740.06000.03530.069*
C440.2033 (4)0.3203 (3)0.0846 (3)0.0491 (14)
C450.3714 (4)0.3393 (4)0.1466 (3)0.0670 (19)
C460.2647 (5)0.2992 (3)0.2354 (3)0.0525 (14)
C470.1078 (4)0.1867 (3)0.2453 (2)0.0475 (13)
C480.0591 (4)0.1669 (3)0.1799 (3)0.0513 (14)
C490.0046 (4)0.2904 (3)0.1191 (2)0.0431 (12)
C500.1146 (4)0.1708 (4)0.0662 (2)0.0481 (13)
C510.1244 (4)0.0604 (3)0.1463 (2)0.0428 (12)
C520.2949 (4)0.1556 (3)0.1875 (2)0.0442 (12)
Cl1A0.3768 (15)0.4277 (14)0.0348 (9)0.097 (6)0.15
Cl2A0.5082 (16)0.3887 (11)0.1025 (9)0.118 (7)0.15
Cl3A0.326 (2)0.3053 (11)0.0909 (11)0.102 (7)0.15
C53A0.393 (2)0.382 (2)0.0880 (16)0.073 (13)*0.15
H53A0.35970.41630.11450.088*0.15
Cl1B0.3361 (12)0.4365 (13)0.0503 (7)0.084 (5)0.15
Cl2B0.4565 (12)0.3670 (9)0.1348 (7)0.085 (5)0.15
Cl3B0.3069 (15)0.2742 (9)0.0856 (6)0.064 (4)0.15
C53B0.348 (2)0.3668 (12)0.0994 (11)0.042 (8)*0.15
H53B0.29710.38450.12600.051*0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03017 (19)0.0334 (2)0.0485 (3)0.00255 (15)0.00296 (16)0.00460 (18)
Ru20.03149 (19)0.0291 (2)0.0367 (2)0.00158 (14)0.00485 (15)0.00434 (16)
Ru30.03338 (19)0.0313 (2)0.0368 (2)0.00096 (15)0.00430 (15)0.00422 (16)
As10.0338 (2)0.0305 (3)0.0433 (3)0.00346 (19)0.0004 (2)0.0003 (2)
As20.0318 (2)0.0296 (3)0.0341 (3)0.00008 (18)0.00137 (19)0.0033 (2)
P10.0365 (6)0.0405 (7)0.0407 (7)0.0001 (5)0.0085 (5)0.0065 (6)
Br10.0793 (6)0.1379 (9)0.1450 (9)0.0582 (6)0.0501 (6)0.0405 (7)
O10.082 (3)0.077 (3)0.049 (3)0.009 (3)0.007 (2)0.007 (2)
O20.047 (3)0.155 (6)0.182 (7)0.041 (3)0.029 (4)0.067 (5)
O30.106 (4)0.060 (3)0.058 (3)0.003 (3)0.017 (3)0.005 (2)
O40.094 (4)0.061 (3)0.057 (3)0.022 (3)0.002 (2)0.015 (2)
O50.062 (3)0.061 (3)0.147 (5)0.029 (2)0.029 (3)0.022 (3)
O60.054 (2)0.085 (3)0.054 (3)0.009 (2)0.001 (2)0.010 (2)
O70.090 (3)0.082 (4)0.058 (3)0.016 (3)0.022 (3)0.008 (3)
O80.069 (3)0.046 (3)0.084 (3)0.013 (2)0.006 (2)0.007 (2)
O90.060 (3)0.049 (3)0.080 (3)0.013 (2)0.027 (2)0.013 (2)
C10.039 (3)0.040 (3)0.059 (4)0.010 (2)0.001 (2)0.005 (3)
C20.065 (4)0.042 (4)0.102 (6)0.003 (3)0.022 (4)0.005 (4)
C30.077 (5)0.042 (4)0.146 (8)0.015 (3)0.027 (5)0.014 (4)
C40.064 (4)0.060 (5)0.139 (8)0.016 (4)0.027 (5)0.030 (5)
C50.083 (5)0.062 (5)0.138 (8)0.008 (4)0.059 (5)0.002 (5)
C60.071 (4)0.040 (4)0.126 (7)0.008 (3)0.044 (4)0.002 (4)
C70.051 (3)0.038 (3)0.046 (3)0.004 (2)0.001 (2)0.004 (2)
C80.058 (4)0.095 (6)0.074 (5)0.013 (4)0.001 (3)0.038 (4)
C90.089 (6)0.122 (8)0.100 (7)0.030 (5)0.021 (5)0.050 (6)
C100.111 (7)0.098 (7)0.075 (6)0.008 (6)0.026 (5)0.043 (5)
C110.158 (9)0.073 (5)0.048 (4)0.024 (6)0.005 (5)0.019 (4)
C120.075 (4)0.071 (5)0.065 (4)0.006 (4)0.008 (3)0.018 (4)
C130.042 (3)0.036 (3)0.035 (3)0.003 (2)0.002 (2)0.004 (2)
C140.044 (3)0.033 (3)0.036 (3)0.002 (2)0.005 (2)0.003 (2)
C150.047 (3)0.082 (5)0.041 (3)0.008 (3)0.001 (2)0.002 (3)
C160.062 (4)0.109 (6)0.037 (3)0.005 (4)0.005 (3)0.009 (3)
C170.083 (5)0.082 (5)0.047 (4)0.008 (4)0.013 (3)0.007 (4)
C180.064 (4)0.088 (5)0.053 (4)0.008 (4)0.015 (3)0.005 (4)
C190.042 (3)0.064 (4)0.048 (3)0.004 (3)0.001 (2)0.004 (3)
C200.034 (2)0.041 (3)0.036 (3)0.002 (2)0.0006 (19)0.003 (2)
C210.041 (3)0.049 (3)0.073 (4)0.003 (2)0.007 (3)0.019 (3)
C220.036 (3)0.073 (5)0.097 (5)0.004 (3)0.017 (3)0.028 (4)
C230.039 (3)0.072 (4)0.073 (4)0.017 (3)0.009 (3)0.000 (3)
C240.046 (3)0.041 (3)0.063 (4)0.008 (2)0.006 (3)0.001 (3)
C250.040 (3)0.038 (3)0.049 (3)0.001 (2)0.004 (2)0.005 (2)
C260.038 (3)0.053 (3)0.039 (3)0.004 (2)0.005 (2)0.009 (2)
C270.055 (3)0.055 (4)0.063 (4)0.004 (3)0.013 (3)0.002 (3)
C280.072 (4)0.063 (4)0.074 (5)0.017 (3)0.026 (4)0.001 (3)
C290.045 (3)0.089 (5)0.075 (5)0.028 (3)0.026 (3)0.027 (4)
C300.044 (3)0.094 (6)0.094 (6)0.013 (4)0.012 (3)0.014 (5)
C310.046 (3)0.066 (4)0.070 (4)0.001 (3)0.001 (3)0.000 (3)
C320.043 (3)0.050 (3)0.047 (3)0.003 (2)0.000 (2)0.015 (3)
C330.058 (4)0.069 (4)0.073 (5)0.003 (3)0.002 (3)0.020 (4)
C340.061 (4)0.085 (6)0.110 (7)0.001 (4)0.023 (4)0.042 (5)
C350.108 (7)0.086 (6)0.068 (5)0.016 (5)0.029 (5)0.029 (5)
C360.108 (6)0.091 (6)0.051 (4)0.007 (5)0.012 (4)0.011 (4)
C370.065 (4)0.080 (5)0.049 (4)0.003 (3)0.002 (3)0.010 (3)
C380.040 (3)0.039 (3)0.051 (3)0.003 (2)0.010 (2)0.004 (2)
C390.057 (3)0.046 (3)0.054 (4)0.008 (3)0.008 (3)0.008 (3)
C400.077 (4)0.050 (4)0.061 (4)0.011 (3)0.012 (3)0.003 (3)
C410.069 (4)0.044 (4)0.093 (5)0.017 (3)0.016 (4)0.004 (4)
C420.079 (5)0.049 (4)0.087 (5)0.016 (3)0.034 (4)0.008 (4)
C430.070 (4)0.050 (4)0.053 (4)0.014 (3)0.018 (3)0.007 (3)
C440.041 (3)0.048 (3)0.058 (4)0.008 (2)0.011 (3)0.004 (3)
C450.040 (3)0.069 (4)0.092 (5)0.011 (3)0.007 (3)0.020 (4)
C460.060 (4)0.037 (3)0.060 (4)0.006 (3)0.004 (3)0.001 (3)
C470.053 (3)0.037 (3)0.053 (4)0.008 (2)0.008 (3)0.003 (3)
C480.043 (3)0.042 (3)0.070 (4)0.005 (2)0.014 (3)0.010 (3)
C490.035 (2)0.051 (3)0.044 (3)0.000 (2)0.001 (2)0.001 (3)
C500.049 (3)0.051 (3)0.044 (3)0.007 (3)0.000 (3)0.007 (3)
C510.041 (3)0.041 (3)0.046 (3)0.002 (2)0.001 (2)0.000 (2)
C520.047 (3)0.035 (3)0.051 (3)0.002 (2)0.002 (2)0.011 (2)
Cl1A0.087 (13)0.096 (12)0.106 (14)0.037 (11)0.019 (10)0.010 (10)
Cl2A0.130 (16)0.092 (12)0.136 (17)0.018 (11)0.087 (13)0.028 (12)
Cl3A0.117 (16)0.054 (12)0.135 (17)0.003 (10)0.007 (12)0.008 (11)
Cl1B0.062 (9)0.110 (13)0.081 (11)0.027 (9)0.012 (8)0.000 (9)
Cl2B0.098 (11)0.060 (8)0.099 (11)0.058 (8)0.034 (8)0.020 (8)
Cl3B0.090 (9)0.046 (9)0.054 (7)0.010 (7)0.012 (6)0.027 (7)
Geometric parameters (Å, º) top
Ru1—C451.883 (6)C15—C161.388 (8)
Ru1—C441.940 (7)C15—H15A0.9300
Ru1—C461.942 (7)C16—C171.354 (9)
Ru1—As12.4410 (6)C16—H16A0.9300
Ru1—Ru22.8495 (5)C17—C181.400 (10)
Ru1—Ru32.8870 (6)C17—H17A0.9300
Ru2—C481.885 (6)C18—C191.386 (8)
Ru2—C491.915 (6)C18—H18A0.9300
Ru2—C471.935 (6)C19—H19A0.9300
Ru2—As22.4323 (6)C20—C251.371 (7)
Ru2—Ru32.8366 (5)C20—C211.382 (7)
Ru3—C511.880 (5)C21—C221.405 (8)
Ru3—C521.916 (6)C21—H21A0.9300
Ru3—C501.940 (6)C22—C231.388 (9)
Ru3—P12.3423 (13)C22—H22A0.9300
As1—C71.941 (5)C23—C241.376 (8)
As1—C11.957 (5)C23—H23A0.9300
As1—C131.964 (5)C24—C251.379 (7)
As2—C201.942 (5)C24—H24A0.9300
As2—C141.958 (5)C25—H25A0.9300
As2—C131.972 (5)C26—C271.381 (8)
P1—C381.823 (6)C26—C311.393 (8)
P1—C321.828 (6)C27—C281.412 (8)
P1—C261.828 (5)C27—H27A0.9300
Br1—C291.902 (6)C28—C291.358 (10)
O1—C441.129 (7)C28—H28A0.9300
O2—C451.143 (7)C29—C301.352 (11)
O3—C461.132 (7)C30—C311.375 (9)
O4—C471.130 (7)C30—H30A0.9300
O5—C481.153 (7)C31—H31A0.9300
O6—C491.149 (6)C32—C331.380 (8)
O7—C501.140 (7)C32—C371.390 (8)
O8—C511.142 (6)C33—C341.381 (10)
O9—C521.149 (6)C33—H33A0.9300
C1—C61.362 (8)C34—C351.433 (12)
C1—C21.378 (8)C34—H34A0.9300
C2—C31.412 (9)C35—C361.326 (11)
C2—H2A0.9300C35—H35A0.9300
C3—C41.342 (10)C36—C371.412 (9)
C3—H3A0.9300C36—H36A0.9300
C4—C51.333 (11)C37—H37A0.9300
C4—H4A0.9300C38—C391.390 (8)
C5—C61.401 (9)C38—C431.390 (7)
C5—H5A0.9300C39—C401.385 (8)
C6—H6A0.9300C39—H39A0.9300
C7—C81.349 (8)C40—C411.372 (9)
C7—C121.390 (8)C40—H40A0.9300
C8—C91.393 (10)C41—C421.397 (10)
C8—H8A0.9300C41—H41A0.9300
C9—C101.283 (12)C42—C431.356 (9)
C9—H9A0.9300C42—H42A0.9300
C10—C111.385 (12)C43—H43A0.9300
C10—H10A0.9300Cl1A—C53A1.57 (2)
C11—C121.398 (10)Cl2A—C53A1.58 (2)
C11—H11A0.9300Cl3A—C53A1.58 (2)
C12—H12A0.9300C53A—H53A0.9800
C13—H13A0.9700Cl1B—C53B1.721 (17)
C13—H13B0.9700Cl2B—C53B1.720 (16)
C14—C151.375 (7)Cl3B—C53B1.699 (16)
C14—C191.376 (7)C53B—H53B0.9800
C45—Ru1—C4489.8 (3)C14—C15—C16119.4 (6)
C45—Ru1—C4692.9 (3)C14—C15—H15A120.3
C44—Ru1—C46176.3 (2)C16—C15—H15A120.3
C45—Ru1—As1100.9 (2)C17—C16—C15121.0 (6)
C44—Ru1—As194.12 (17)C17—C16—H16A119.5
C46—Ru1—As187.98 (17)C15—C16—H16A119.5
C45—Ru1—Ru2167.2 (2)C16—C17—C18120.2 (6)
C44—Ru1—Ru293.30 (15)C16—C17—H17A119.9
C46—Ru1—Ru283.58 (18)C18—C17—H17A119.9
As1—Ru1—Ru291.263 (18)C19—C18—C17118.5 (6)
C45—Ru1—Ru3109.7 (2)C19—C18—H18A120.7
C44—Ru1—Ru376.52 (17)C17—C18—H18A120.7
C46—Ru1—Ru3100.10 (17)C14—C19—C18120.9 (6)
As1—Ru1—Ru3147.83 (2)C14—C19—H19A119.5
Ru2—Ru1—Ru359.268 (13)C18—C19—H19A119.5
C48—Ru2—C4992.4 (3)C25—C20—C21119.1 (5)
C48—Ru2—C4791.4 (3)C25—C20—As2123.1 (4)
C49—Ru2—C47175.0 (2)C21—C20—As2117.7 (4)
C48—Ru2—As2102.07 (17)C20—C21—C22119.9 (5)
C49—Ru2—As289.41 (16)C20—C21—H21A120.0
C47—Ru2—As293.03 (16)C22—C21—H21A120.0
C48—Ru2—Ru3100.77 (17)C23—C22—C21119.6 (6)
C49—Ru2—Ru392.41 (15)C23—C22—H22A120.2
C47—Ru2—Ru383.63 (15)C21—C22—H22A120.2
As2—Ru2—Ru3156.99 (2)C24—C23—C22120.1 (5)
C48—Ru2—Ru1160.77 (17)C24—C23—H23A120.0
C49—Ru2—Ru182.88 (15)C22—C23—H23A120.0
C47—Ru2—Ru192.46 (17)C23—C24—C25119.5 (5)
As2—Ru2—Ru196.525 (18)C23—C24—H24A120.2
Ru3—Ru2—Ru161.024 (13)C25—C24—H24A120.2
C51—Ru3—C52101.4 (2)C20—C25—C24121.8 (5)
C51—Ru3—C5092.2 (2)C20—C25—H25A119.1
C52—Ru3—C50166.3 (2)C24—C25—H25A119.1
C51—Ru3—P194.43 (16)C27—C26—C31117.7 (5)
C52—Ru3—P189.15 (16)C27—C26—P1118.6 (4)
C50—Ru3—P191.29 (16)C31—C26—P1123.6 (5)
C51—Ru3—Ru286.79 (16)C26—C27—C28120.3 (6)
C52—Ru3—Ru294.01 (15)C26—C27—H27A119.8
C50—Ru3—Ru285.20 (16)C28—C27—H27A119.8
P1—Ru3—Ru2176.33 (4)C29—C28—C27118.9 (7)
C51—Ru3—Ru1143.46 (16)C29—C28—H28A120.5
C52—Ru3—Ru169.60 (16)C27—C28—H28A120.5
C50—Ru3—Ru198.52 (18)C30—C29—C28122.1 (6)
P1—Ru3—Ru1119.95 (4)C30—C29—Br1119.3 (6)
Ru2—Ru3—Ru159.708 (13)C28—C29—Br1118.6 (6)
C7—As1—C1100.8 (2)C29—C30—C31119.1 (7)
C7—As1—C13104.7 (2)C29—C30—H30A120.4
C1—As1—C1399.0 (2)C31—C30—H30A120.4
C7—As1—Ru1118.55 (17)C30—C31—C26121.7 (7)
C1—As1—Ru1117.51 (16)C30—C31—H31A119.1
C13—As1—Ru1113.54 (15)C26—C31—H31A119.1
C20—As2—C14102.0 (2)C33—C32—C37117.9 (6)
C20—As2—C13104.0 (2)C33—C32—P1118.6 (5)
C14—As2—C13101.7 (2)C37—C32—P1123.3 (5)
C20—As2—Ru2116.18 (14)C32—C33—C34121.7 (7)
C14—As2—Ru2117.40 (15)C32—C33—H33A119.2
C13—As2—Ru2113.62 (14)C34—C33—H33A119.2
C38—P1—C32101.1 (3)C33—C34—C35119.4 (7)
C38—P1—C26101.9 (3)C33—C34—H34A120.3
C32—P1—C26104.9 (2)C35—C34—H34A120.3
C38—P1—Ru3117.08 (17)C36—C35—C34119.1 (7)
C32—P1—Ru3112.92 (17)C36—C35—H35A120.4
C26—P1—Ru3117.05 (18)C34—C35—H35A120.4
C6—C1—C2119.0 (5)C35—C36—C37121.2 (8)
C6—C1—As1120.3 (5)C35—C36—H36A119.4
C2—C1—As1120.7 (4)C37—C36—H36A119.4
C1—C2—C3119.9 (6)C32—C37—C36120.7 (7)
C1—C2—H2A120.0C32—C37—H37A119.7
C3—C2—H2A120.0C36—C37—H37A119.7
C4—C3—C2119.5 (7)C39—C38—C43117.3 (5)
C4—C3—H3A120.2C39—C38—P1121.3 (4)
C2—C3—H3A120.2C43—C38—P1121.3 (4)
C5—C4—C3120.9 (7)C40—C39—C38121.4 (5)
C5—C4—H4A119.6C40—C39—H39A119.3
C3—C4—H4A119.6C38—C39—H39A119.3
C4—C5—C6121.0 (7)C41—C40—C39119.4 (6)
C4—C5—H5A119.5C41—C40—H40A120.3
C6—C5—H5A119.5C39—C40—H40A120.3
C1—C6—C5119.6 (6)C40—C41—C42120.1 (6)
C1—C6—H6A120.2C40—C41—H41A119.9
C5—C6—H6A120.2C42—C41—H41A119.9
C8—C7—C12118.3 (6)C43—C42—C41119.3 (6)
C8—C7—As1123.9 (5)C43—C42—H42A120.4
C12—C7—As1117.7 (5)C41—C42—H42A120.4
C7—C8—C9119.7 (7)C42—C43—C38122.3 (6)
C7—C8—H8A120.1C42—C43—H43A118.8
C9—C8—H8A120.1C38—C43—H43A118.8
C10—C9—C8123.0 (9)O1—C44—Ru1171.8 (5)
C10—C9—H9A118.5O2—C45—Ru1178.8 (7)
C8—C9—H9A118.5O3—C46—Ru1173.6 (6)
C9—C10—C11119.9 (8)O4—C47—Ru2174.7 (5)
C9—C10—H10A120.0O5—C48—Ru2177.5 (6)
C11—C10—H10A120.0O6—C49—Ru2174.3 (5)
C10—C11—C12118.7 (7)O7—C50—Ru3175.4 (5)
C10—C11—H11A120.7O8—C51—Ru3176.1 (5)
C12—C11—H11A120.7O9—C52—Ru3169.5 (5)
C7—C12—C11120.2 (7)Cl1A—C53A—Cl3A111 (2)
C7—C12—H12A119.9Cl1A—C53A—Cl2A109 (2)
C11—C12—H12A119.9Cl3A—C53A—Cl2A127 (2)
As1—C13—As2112.8 (2)Cl1A—C53A—H53A102.5
As1—C13—H13A109.0Cl3A—C53A—H53A102.5
As2—C13—H13A109.0Cl2A—C53A—H53A102.5
As1—C13—H13B109.0Cl3B—C53B—Cl2B112.6 (15)
As2—C13—H13B109.0Cl3B—C53B—Cl1B116.8 (16)
H13A—C13—H13B107.8Cl2B—C53B—Cl1B117.9 (14)
C15—C14—C19119.9 (5)Cl3B—C53B—H53B102.0
C15—C14—As2119.7 (4)Cl2B—C53B—H53B102.0
C19—C14—As2120.4 (4)Cl1B—C53B—H53B102.0
C45—Ru1—Ru2—C4851.6 (12)C13—As1—C1—C695.6 (6)
C44—Ru1—Ru2—C4852.1 (6)Ru1—As1—C1—C627.0 (6)
C46—Ru1—Ru2—C48125.9 (6)C7—As1—C1—C224.0 (6)
As1—Ru1—Ru2—C48146.3 (6)C13—As1—C1—C283.0 (6)
Ru3—Ru1—Ru2—C4820.1 (6)Ru1—As1—C1—C2154.4 (5)
C45—Ru1—Ru2—C49128.2 (10)C6—C1—C2—C31.2 (11)
C44—Ru1—Ru2—C4924.6 (2)As1—C1—C2—C3177.4 (6)
C46—Ru1—Ru2—C49157.5 (2)C1—C2—C3—C40.1 (13)
As1—Ru1—Ru2—C4969.63 (17)C2—C3—C4—C50.0 (15)
Ru3—Ru1—Ru2—C4996.76 (17)C3—C4—C5—C60.8 (16)
C45—Ru1—Ru2—C4749.9 (10)C2—C1—C6—C52.1 (12)
C44—Ru1—Ru2—C47153.5 (2)As1—C1—C6—C5176.5 (7)
C46—Ru1—Ru2—C4724.5 (2)C4—C5—C6—C11.9 (15)
As1—Ru1—Ru2—C47112.29 (16)C1—As1—C7—C8107.4 (6)
Ru3—Ru1—Ru2—C4781.33 (16)C13—As1—C7—C85.0 (6)
C45—Ru1—Ru2—As2143.2 (10)Ru1—As1—C7—C8122.8 (6)
C44—Ru1—Ru2—As2113.15 (17)C1—As1—C7—C1271.4 (5)
C46—Ru1—Ru2—As268.87 (17)C13—As1—C7—C12173.8 (5)
As1—Ru1—Ru2—As218.95 (2)Ru1—As1—C7—C1258.3 (5)
Ru3—Ru1—Ru2—As2174.66 (2)C12—C7—C8—C90.3 (12)
C45—Ru1—Ru2—Ru331.5 (10)As1—C7—C8—C9178.5 (7)
C44—Ru1—Ru2—Ru372.19 (17)C7—C8—C9—C100.5 (16)
C46—Ru1—Ru2—Ru3105.79 (17)C8—C9—C10—C110.3 (17)
As1—Ru1—Ru2—Ru3166.39 (2)C9—C10—C11—C120.8 (15)
C48—Ru2—Ru3—C5121.9 (3)C8—C7—C12—C111.4 (10)
C49—Ru2—Ru3—C51114.8 (2)As1—C7—C12—C11177.5 (6)
C47—Ru2—Ru3—C5168.3 (2)C10—C11—C12—C71.6 (12)
As2—Ru2—Ru3—C51151.05 (17)C7—As1—C13—As292.9 (3)
Ru1—Ru2—Ru3—C51164.73 (17)C1—As1—C13—As2163.3 (3)
C48—Ru2—Ru3—C52123.1 (3)Ru1—As1—C13—As237.9 (3)
C49—Ru2—Ru3—C52144.0 (2)C20—As2—C13—As1107.9 (3)
C47—Ru2—Ru3—C5232.8 (2)C14—As2—C13—As1146.4 (3)
As2—Ru2—Ru3—C5249.86 (17)Ru2—As2—C13—As119.3 (3)
Ru1—Ru2—Ru3—C5263.54 (17)C20—As2—C14—C15164.4 (5)
C48—Ru2—Ru3—C5070.6 (3)C13—As2—C14—C1557.1 (5)
C49—Ru2—Ru3—C5022.3 (2)Ru2—As2—C14—C1567.5 (5)
C47—Ru2—Ru3—C50160.8 (2)C20—As2—C14—C1917.8 (5)
As2—Ru2—Ru3—C50116.46 (19)C13—As2—C14—C19125.1 (5)
Ru1—Ru2—Ru3—C50102.79 (18)Ru2—As2—C14—C19110.3 (4)
C48—Ru2—Ru3—Ru1173.4 (2)C19—C14—C15—C160.1 (10)
C49—Ru2—Ru3—Ru180.49 (16)As2—C14—C15—C16177.9 (5)
C47—Ru2—Ru3—Ru196.39 (17)C14—C15—C16—C170.3 (11)
As2—Ru2—Ru3—Ru113.68 (5)C15—C16—C17—C180.4 (12)
C45—Ru1—Ru3—C51146.7 (4)C16—C17—C18—C190.1 (11)
C44—Ru1—Ru3—C51128.4 (3)C15—C14—C19—C180.3 (9)
C46—Ru1—Ru3—C5150.0 (3)As2—C14—C19—C18178.2 (5)
As1—Ru1—Ru3—C5152.4 (3)C17—C18—C19—C140.3 (10)
Ru2—Ru1—Ru3—C5126.2 (3)C14—As2—C20—C2574.7 (5)
C45—Ru1—Ru3—C5265.3 (3)C13—As2—C20—C2530.7 (5)
C44—Ru1—Ru3—C52150.1 (2)Ru2—As2—C20—C25156.4 (4)
C46—Ru1—Ru3—C5231.4 (3)C14—As2—C20—C21102.1 (5)
As1—Ru1—Ru3—C52133.90 (18)C13—As2—C20—C21152.5 (4)
Ru2—Ru1—Ru3—C52107.67 (17)Ru2—As2—C20—C2126.8 (5)
C45—Ru1—Ru3—C50107.7 (3)C25—C20—C21—C221.0 (9)
C44—Ru1—Ru3—C5022.9 (2)As2—C20—C21—C22177.9 (5)
C46—Ru1—Ru3—C50155.5 (2)C20—C21—C22—C230.9 (11)
As1—Ru1—Ru3—C5053.08 (17)C21—C22—C23—C240.6 (11)
Ru2—Ru1—Ru3—C5079.31 (16)C22—C23—C24—C250.3 (10)
C45—Ru1—Ru3—P111.3 (3)C21—C20—C25—C240.8 (8)
C44—Ru1—Ru3—P173.58 (16)As2—C20—C25—C24177.5 (4)
C46—Ru1—Ru3—P1107.99 (19)C23—C24—C25—C200.5 (9)
As1—Ru1—Ru3—P1149.55 (6)C38—P1—C26—C27179.3 (5)
Ru2—Ru1—Ru3—P1175.78 (5)C32—P1—C26—C2774.3 (5)
C45—Ru1—Ru3—Ru2173.0 (3)Ru3—P1—C26—C2751.7 (5)
C44—Ru1—Ru3—Ru2102.20 (16)C38—P1—C26—C311.9 (5)
C46—Ru1—Ru3—Ru276.23 (18)C32—P1—C26—C31106.8 (5)
As1—Ru1—Ru3—Ru226.23 (4)Ru3—P1—C26—C31127.2 (5)
C45—Ru1—As1—C794.2 (3)C31—C26—C27—C283.0 (9)
C44—Ru1—As1—C73.7 (2)P1—C26—C27—C28178.1 (5)
C46—Ru1—As1—C7173.3 (3)C26—C27—C28—C292.5 (10)
Ru2—Ru1—As1—C789.72 (18)C27—C28—C29—C300.6 (11)
Ru3—Ru1—As1—C767.39 (19)C27—C28—C29—Br1178.0 (5)
C45—Ru1—As1—C127.4 (3)C28—C29—C30—C313.1 (11)
C44—Ru1—As1—C1118.0 (2)Br1—C29—C30—C31175.5 (5)
C46—Ru1—As1—C165.1 (3)C29—C30—C31—C262.5 (11)
Ru2—Ru1—As1—C1148.64 (19)C27—C26—C31—C300.5 (9)
Ru3—Ru1—As1—C1170.97 (19)P1—C26—C31—C30179.3 (5)
C45—Ru1—As1—C13142.2 (3)C38—P1—C32—C3364.5 (5)
C44—Ru1—As1—C13127.2 (2)C26—P1—C32—C33170.1 (5)
C46—Ru1—As1—C1349.7 (2)Ru3—P1—C32—C3361.4 (5)
Ru2—Ru1—As1—C1333.83 (16)C38—P1—C32—C37119.7 (5)
Ru3—Ru1—As1—C1356.16 (17)C26—P1—C32—C3714.1 (6)
C48—Ru2—As2—C2050.9 (3)Ru3—P1—C32—C37114.4 (5)
C49—Ru2—As2—C2041.4 (2)C37—C32—C33—C340.6 (10)
C47—Ru2—As2—C20143.0 (2)P1—C32—C33—C34176.6 (5)
Ru3—Ru2—As2—C20136.14 (17)C32—C33—C34—C350.3 (11)
Ru1—Ru2—As2—C20124.12 (16)C33—C34—C35—C360.1 (12)
C48—Ru2—As2—C1470.0 (3)C34—C35—C36—C370.3 (13)
C49—Ru2—As2—C14162.3 (2)C33—C32—C37—C360.4 (10)
C47—Ru2—As2—C1422.1 (2)P1—C32—C37—C36176.2 (5)
Ru3—Ru2—As2—C14102.88 (17)C35—C36—C37—C320.1 (12)
Ru1—Ru2—As2—C14114.89 (17)C32—P1—C38—C39149.9 (5)
C48—Ru2—As2—C13171.6 (3)C26—P1—C38—C39102.2 (5)
C49—Ru2—As2—C1379.3 (2)Ru3—P1—C38—C3926.8 (5)
C47—Ru2—As2—C1396.3 (2)C32—P1—C38—C4333.6 (5)
Ru3—Ru2—As2—C1315.51 (18)C26—P1—C38—C4374.4 (5)
Ru1—Ru2—As2—C133.49 (17)Ru3—P1—C38—C43156.6 (4)
C51—Ru3—P1—C3838.5 (3)C43—C38—C39—C402.2 (9)
C52—Ru3—P1—C3862.9 (3)P1—C38—C39—C40174.5 (5)
C50—Ru3—P1—C38130.8 (3)C38—C39—C40—C410.0 (10)
Ru1—Ru3—P1—C38128.6 (2)C39—C40—C41—C423.2 (11)
C51—Ru3—P1—C3278.3 (3)C40—C41—C42—C434.2 (11)
C52—Ru3—P1—C32179.6 (3)C41—C42—C43—C382.0 (11)
C50—Ru3—P1—C3214.1 (3)C39—C38—C43—C421.1 (9)
Ru1—Ru3—P1—C32114.7 (2)P1—C38—C43—C42175.5 (5)
C51—Ru3—P1—C26159.8 (3)C51—Ru3—C52—O960 (3)
C52—Ru3—P1—C2658.5 (3)C50—Ru3—C52—O9127 (3)
C50—Ru3—P1—C26107.8 (3)P1—Ru3—C52—O935 (3)
Ru1—Ru3—P1—C267.2 (2)Ru2—Ru3—C52—O9147 (3)
C7—As1—C1—C6157.4 (6)Ru1—Ru3—C52—O9157 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O2i0.932.593.180 (8)122
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ru3(C25H22As2)(C18H14BrP)(CO)9]·0.3CHCl3
Mr1404.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.2415 (2), 16.9463 (3), 25.2224 (4)
β (°) 91.831 (1)
V3)5656.88 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.78
Crystal size (mm)0.26 × 0.26 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.537, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
63188, 16521, 10783
Rint0.042
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.169, 1.08
No. of reflections16521
No. of parameters677
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 1.35

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O2i0.93002.59003.180 (8)122.00
Symmetry code: (i) x1, y, z.
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Postdoctoral Fellowship and to Gokhale Centenary College, Ankola, Karnataka, India, for postdoctoral study leave. HKF thanks USM for the Research University Golden Goose grant 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Matisons, J. G. & Nicholson, B. K. (1983). J. Organomet. Chem. 247, 321–343.  CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009). Acta Cryst. E65, m1620–m1621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Web of Science CSD CrossRef Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds