metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of aqua­(di­hydrogen ethyl­enedi­amine­tetra­acetato-κ5O,O′,N,N′,O′′)nickel(II)

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J.Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: juraj.kuchar@upjs.sk

(Received 8 January 2010; accepted 15 January 2010; online 23 January 2010)

The crystal structure of the title compound, [Ni(C10H14N2O8)(H2O)] or [Ni(H2edta)(H2O)] (H4edta is ethyl­ene­diamine­tetra­acetic acid), originally determined by Smith & Hoard [J. Am. Chem. Soc. (1959), 81, 556–561] has been redetermined to a significantly higher precision. The NiII atom is coordinated in a distorted octa­hedral geometry by two N atoms and three O atoms from three carboxyl­ate groups of the H2edta2− ligand and by an O atom of a water mol­ecule. The complex mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds into layers perpendicular to [100].

Related literature

For the crystal structures of nickel(II) complexes with deprotonized derivates of H4edta, see: Agre, Trunov et al. (1980[Agre, V. M., Trunov, V. K. & Sysoeva, T. F. (1980). Dokl. Akad. Nauk SSSR, 250, 1123-1126.]); Agre, Sysoeva et al. (1980[Agre, V. M., Sysoeva, T. F., Trunov, V. K., Efremov, V. A., Fridman, A. Y. & Barkhanova, N. N. (1980). Zh. Strukt. Khim. 21, 110-117.]); Agre et al. (1981[Agre, V. M., Sysoeva, T. F., Trunov, V. K., Fridman, A. Y. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 114-120.]); Coronado et al. (1986[Coronado, E., Drillon, M., Fuertes, A., Beltran, D., Mosset, A. & Galy, J. (1986). J. Am. Chem. Soc. 108, 900-905.]); Sysoeva et al. (1981[Sysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M., Fridman, A. Ya. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 99-105.]); Porai-Koshits et al. (1975[Porai-Koshits, M. A., Nesterova, Y. M., Polynova, T. N. & de Garcia Banus, D. T. (1975). Koord. Khim. 1, 682.]); Sysoeva et al. (1986[Sysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M. & Fridman, A. Ya. (1986). Zh. Strukt. Khim. 27, 108-114.]); Zubkowski et al. (1995[Zubkowski, J. D., Perry, D. L., Valente, E. J. & Lott, S. (1995). Inorg. Chem. 34, 6409-6411.]); Stephens (1969[Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1723-1734.]). For the earlier determination of the title compound, see: Smith & Hoard (1959[Smith, G. S. & Hoard, J. L. (1959). J. Am. Chem. Soc. 81, 556-561.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H14N2O8)(H2O)]

  • Mr = 366.96

  • Monoclinic, P 21 /c

  • a = 11.6786 (2) Å

  • b = 6.9358 (1) Å

  • c = 16.6343 (2) Å

  • β = 91.140 (1)°

  • V = 1347.12 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 291 K

  • 0.35 × 0.31 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire2 detector

  • Absorption correction: numerical [Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) in CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])] Tmin = 0.690, Tmax = 0.830

  • 43864 measured reflections

  • 2935 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.055

  • S = 1.06

  • 2935 reflections

  • 198 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.82 1.77 2.5557 (14) 159
O3—H3⋯O5ii 0.82 1.79 2.5864 (13) 164
O6—H6A⋯O9iii 0.88 2.15 2.9294 (12) 148
O6—H6B⋯O2iv 0.86 1.81 2.6394 (11) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2007[Crystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We are interested in the synthesis and characterization of Cu—Ni heterobimetallic complexes as models of magnetic alternate chains. Few Cu—Ni heterobimetallic complexes based on edta-type ligands (H4edta = ethylenediaminetetraacetic acid) have been already structurally characterized (Agre, Trunov et al., 1980; Agre, Sysoeva et al., 1980; Agre et al., 1981). Previously, the crystal structures of one-dimensional [Ni(H2O)4(edta)Ni].2H2O (Coronado et al., 1986), dinuclear [Ni2(en)(edta)(H2O)3].H2O (Sysoeva et al., 1981), ionic [Ni(H2O)6][Ni(Hedta)]2.2H2O (Porai-Koshits et al., 1975) and ionic [Ni(en)3][Ni(edta)].4H2O (Sysoeva et al., 1986) complexes with the edta(4-) ligand were reported. As a part of our synthetic experiments on Cu—Ni heterobimetallic complexes from the aqueous system Ni2+-H4edta we have isolated the title compound. Its crystal structure was already studied by Smith & Hoard (1959). They obtained a correct structural model, however only two common isotropic thermal parameters were used and the positions of the hydrogen atoms were not determined. Consequently, the precision of the geometric parameters was limited.

In the crystal structure of the title compound (Fig. 1) the nickel(II) atom exhibits an elongated octahedral coordination geometry. Five coordinations sites are occupied by the partially deprotonized, pentadentate chelate H2edta2- ligand, which coordinates through both nitrogen atoms and three oxygen atoms from carboxylate groups, among these two are deprotonized. The sixth coordination site is occupied by the oxygen atom of a water molecule. The fourth carboxylate group is not coordinated to the metal. The same type of coordination provided by the H2edta2- ligand was observed e.g. in analogous complexes [Co(H2edta)(H2O)].H2O (Zubkowski et al., 1995) and [Cu(H2edta)(H2O)] (Stephens, 1969). As expected, the intrachelate angles D1—Ni—D2 (D's are N and O donor atoms) in the title compound are significantly smaller then the ideal value of 90°. In the crystal packing, the H atoms of the water molecule and of two carboxylic groups are involved in intermolecular O—H···O hydrogen bonds (Fig. 2; Table 1) forming layers perpendicular to [100] (Fig. 3).

Related literature top

For the crystal structures of nickel(II) complexes with deprotonized derivates of H4edta, see: Agre, Trunov et al. (1980); Agre, Sysoeva et al. (1980); Agre et al. (1981); Coronado et al. (1986); Sysoeva et al. (1981); Porai-Koshits et al. (1975); Sysoeva et al. (1986); Zubkowski et al. (1995); Stephens (1969). For the earlier determination of the title compound, see: Smith & Hoard (1959).

Experimental top

Chemicals of reagent grade quality were obtained from commercial sources and were used as received. Solid NiCO3.2Ni(OH)2 (0.304 g, 1 mmol), ethylenediaminetetraacetic acid (0.877 g, 3 mmol) and tetraethylammonium bromide (0.421 g, 2 mmol) were dissolved under stirring in 10 cm3 of water at room temperature. The formed blue solution was filtered and left aside for crystallization at room temperature. After eight months, few blue prismatic crystals of the title compound appeared along with white microcrystalline material on slow evaporation of the solvent.

Refinement top

In order to allow a direct comparison of the present crystal structure determination with the previously published one (Smith & Hoard, 1959) the same labelling of the atoms was adopted. The hydrogen atoms of the water molecule were located in difference Fourier map, and refined with the O—H bond and the H···H separation restrained to 0.85 and 1.380 Å, respectively, and with Uiso(H) = 1.5 Ueq(O). The hydrogen atoms of the H2edta2- ligand were positioned geometrically with C—H = 0.97 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Uiso(C).

Structure description top

We are interested in the synthesis and characterization of Cu—Ni heterobimetallic complexes as models of magnetic alternate chains. Few Cu—Ni heterobimetallic complexes based on edta-type ligands (H4edta = ethylenediaminetetraacetic acid) have been already structurally characterized (Agre, Trunov et al., 1980; Agre, Sysoeva et al., 1980; Agre et al., 1981). Previously, the crystal structures of one-dimensional [Ni(H2O)4(edta)Ni].2H2O (Coronado et al., 1986), dinuclear [Ni2(en)(edta)(H2O)3].H2O (Sysoeva et al., 1981), ionic [Ni(H2O)6][Ni(Hedta)]2.2H2O (Porai-Koshits et al., 1975) and ionic [Ni(en)3][Ni(edta)].4H2O (Sysoeva et al., 1986) complexes with the edta(4-) ligand were reported. As a part of our synthetic experiments on Cu—Ni heterobimetallic complexes from the aqueous system Ni2+-H4edta we have isolated the title compound. Its crystal structure was already studied by Smith & Hoard (1959). They obtained a correct structural model, however only two common isotropic thermal parameters were used and the positions of the hydrogen atoms were not determined. Consequently, the precision of the geometric parameters was limited.

In the crystal structure of the title compound (Fig. 1) the nickel(II) atom exhibits an elongated octahedral coordination geometry. Five coordinations sites are occupied by the partially deprotonized, pentadentate chelate H2edta2- ligand, which coordinates through both nitrogen atoms and three oxygen atoms from carboxylate groups, among these two are deprotonized. The sixth coordination site is occupied by the oxygen atom of a water molecule. The fourth carboxylate group is not coordinated to the metal. The same type of coordination provided by the H2edta2- ligand was observed e.g. in analogous complexes [Co(H2edta)(H2O)].H2O (Zubkowski et al., 1995) and [Cu(H2edta)(H2O)] (Stephens, 1969). As expected, the intrachelate angles D1—Ni—D2 (D's are N and O donor atoms) in the title compound are significantly smaller then the ideal value of 90°. In the crystal packing, the H atoms of the water molecule and of two carboxylic groups are involved in intermolecular O—H···O hydrogen bonds (Fig. 2; Table 1) forming layers perpendicular to [100] (Fig. 3).

For the crystal structures of nickel(II) complexes with deprotonized derivates of H4edta, see: Agre, Trunov et al. (1980); Agre, Sysoeva et al. (1980); Agre et al. (1981); Coronado et al. (1986); Sysoeva et al. (1981); Porai-Koshits et al. (1975); Sysoeva et al. (1986); Zubkowski et al. (1995); Stephens (1969). For the earlier determination of the title compound, see: Smith & Hoard (1959).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding network in the title compound. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Symmetry codes: (i) 1 - x,1 - y,1 - z; (ii) x,-0.5 - y,1/2 + z; (iii) 1 - x,-y,1 - z; (iv) 1 - x,-1/2 + y,1.5 - z
[Figure 3] Fig. 3. Hydrogen bonded layers in the crystal structure of the title compound. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
aqua(dihydrogen ethylenediaminetetraacetato- κ5O,O',N,N',O'')nickel(II) top
Crystal data top
[Ni(C10H14N2O8)(H2O)]F(000) = 760
Mr = 366.96Dx = 1.809 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23028 reflections
a = 11.6786 (2) Åθ = 2.9–29.7°
b = 6.9358 (1) ŵ = 1.49 mm1
c = 16.6343 (2) ÅT = 291 K
β = 91.140 (1)°Prism, blue
V = 1347.12 (3) Å30.35 × 0.31 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
2935 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3438 pixels mm-1θmax = 27.0°, θmin = 3.0°
ω scansh = 1414
Absorption correction: numerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
k = 88
Tmin = 0.690, Tmax = 0.830l = 2121
43864 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1019P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
[Ni(C10H14N2O8)(H2O)]V = 1347.12 (3) Å3
Mr = 366.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6786 (2) ŵ = 1.49 mm1
b = 6.9358 (1) ÅT = 291 K
c = 16.6343 (2) Å0.35 × 0.31 × 0.15 mm
β = 91.140 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
2935 independent reflections
Absorption correction: numerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
2534 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.830Rint = 0.030
43864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2935 reflectionsΔρmin = 0.18 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.328740 (14)0.17883 (3)0.575762 (10)0.01636 (7)
C10.31560 (12)0.2378 (2)0.75097 (8)0.0200 (3)
H1A0.35560.14400.78450.024*
H1B0.26350.30810.78500.024*
C20.40253 (12)0.3781 (2)0.71795 (9)0.0228 (3)
C30.13224 (12)0.2211 (2)0.67502 (9)0.0201 (3)
H3A0.09790.24830.72640.024*
H3B0.08310.13080.64620.024*
C40.14153 (12)0.4066 (2)0.62701 (8)0.0199 (3)
H4A0.06590.46150.61820.024*
H4B0.18780.49940.65680.024*
C50.11558 (13)0.2632 (2)0.49152 (9)0.0214 (3)
H5A0.10840.33820.44250.026*
H5B0.04040.25570.51500.026*
C60.15460 (13)0.0613 (2)0.47048 (9)0.0235 (3)
C70.24547 (12)0.5370 (2)0.51157 (9)0.0201 (3)
H7A0.26880.62780.55310.024*
H7B0.18890.59950.47690.024*
C80.34815 (11)0.4803 (2)0.46292 (8)0.0190 (3)
C90.24045 (13)0.0747 (2)0.70537 (9)0.0226 (3)
H9A0.31770.12590.70830.027*
H9B0.20150.13660.66030.027*
C100.17986 (12)0.1308 (2)0.78149 (8)0.0205 (3)
N10.24747 (9)0.13322 (17)0.68850 (7)0.0161 (2)
N20.19470 (10)0.36547 (16)0.54870 (7)0.0155 (2)
O10.37976 (9)0.61360 (17)0.41363 (7)0.0304 (3)
H10.44300.58700.39620.046*
O20.45601 (11)0.4832 (2)0.76438 (7)0.0434 (3)
O30.18039 (11)0.31910 (15)0.79037 (7)0.0333 (3)
H30.15310.34710.83390.050*
O40.13713 (9)0.01849 (16)0.82733 (6)0.0293 (3)
O50.09695 (7)0.02364 (13)0.41745 (5)0.0374 (3)
O60.45974 (7)0.01221 (13)0.58721 (5)0.0402 (3)
H6A0.48110.10500.55470.060*
H6B0.49700.03180.63150.060*
O70.41759 (8)0.37646 (16)0.64146 (6)0.0234 (2)
O80.23968 (9)0.00858 (15)0.50781 (6)0.0280 (2)
O90.39642 (9)0.32508 (15)0.47244 (6)0.0232 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01745 (10)0.01728 (10)0.01441 (10)0.00186 (7)0.00174 (6)0.00042 (7)
C10.0201 (7)0.0249 (8)0.0149 (7)0.0024 (6)0.0003 (5)0.0006 (6)
C20.0189 (7)0.0290 (8)0.0205 (7)0.0038 (6)0.0002 (6)0.0009 (6)
C30.0146 (6)0.0271 (8)0.0187 (7)0.0010 (6)0.0028 (5)0.0029 (6)
C40.0194 (7)0.0231 (8)0.0172 (7)0.0046 (6)0.0031 (5)0.0012 (6)
C50.0212 (7)0.0236 (8)0.0190 (7)0.0046 (6)0.0042 (6)0.0006 (6)
C60.0257 (8)0.0259 (8)0.0191 (7)0.0088 (6)0.0063 (6)0.0056 (6)
C70.0218 (7)0.0150 (7)0.0236 (7)0.0007 (6)0.0033 (6)0.0014 (6)
C80.0179 (7)0.0226 (8)0.0165 (7)0.0058 (6)0.0020 (5)0.0006 (6)
C90.0312 (8)0.0165 (8)0.0203 (7)0.0005 (6)0.0067 (6)0.0000 (6)
C100.0228 (7)0.0214 (8)0.0172 (7)0.0028 (6)0.0009 (6)0.0000 (6)
N10.0177 (6)0.0157 (6)0.0151 (6)0.0010 (4)0.0018 (4)0.0003 (5)
N20.0170 (5)0.0144 (6)0.0150 (5)0.0014 (4)0.0010 (4)0.0014 (4)
O10.0223 (5)0.0333 (6)0.0359 (6)0.0026 (5)0.0076 (5)0.0145 (5)
O20.0451 (7)0.0591 (9)0.0260 (6)0.0309 (7)0.0008 (5)0.0090 (6)
O30.0559 (8)0.0203 (6)0.0240 (6)0.0024 (5)0.0132 (5)0.0044 (5)
O40.0390 (6)0.0272 (6)0.0222 (5)0.0020 (5)0.0111 (5)0.0003 (5)
O50.0315 (6)0.0481 (8)0.0327 (6)0.0110 (6)0.0007 (5)0.0250 (6)
O60.0448 (7)0.0493 (8)0.0263 (6)0.0301 (6)0.0022 (5)0.0052 (6)
O70.0203 (5)0.0324 (6)0.0176 (5)0.0079 (4)0.0021 (4)0.0005 (4)
O80.0352 (6)0.0183 (5)0.0304 (6)0.0005 (5)0.0026 (5)0.0066 (5)
O90.0245 (5)0.0244 (6)0.0210 (5)0.0030 (4)0.0060 (4)0.0019 (4)
Geometric parameters (Å, º) top
Ni1—O82.0006 (10)C5—H5A0.9700
Ni1—O72.0260 (10)C5—H5B0.9700
Ni1—O62.0300 (9)C6—O51.2468 (16)
Ni1—N22.0738 (11)C6—O81.2582 (19)
Ni1—N12.1421 (11)C7—N21.4708 (17)
Ni1—O92.1591 (10)C7—C81.5121 (19)
C1—N11.4852 (18)C7—H7A0.9700
C1—C21.517 (2)C7—H7B0.9700
C1—H1A0.9700C8—O91.2239 (17)
C1—H1B0.9700C8—O11.2945 (17)
C2—O21.2245 (18)C9—N11.4717 (18)
C2—O71.2880 (17)C9—C101.514 (2)
C3—N11.4903 (18)C9—H9A0.9700
C3—C41.519 (2)C9—H9B0.9700
C3—H3A0.9700C10—O41.2054 (17)
C3—H3B0.9700C10—O31.3140 (18)
C4—N21.4818 (17)O1—H10.8200
C4—H4A0.9700O3—H30.8200
C4—H4B0.9700O6—H6A0.880
C5—N21.4922 (17)O6—H6B0.859
C5—C61.516 (2)
O8—Ni1—O7177.83 (4)O5—C6—O8125.26 (14)
O8—Ni1—O690.65 (4)O5—C6—C5116.05 (13)
O7—Ni1—O690.80 (4)O8—C6—C5118.68 (13)
O8—Ni1—N284.33 (4)N2—C7—C8110.17 (11)
O7—Ni1—N294.08 (4)N2—C7—H7A109.6
O6—Ni1—N2172.75 (4)C8—C7—H7A109.6
O8—Ni1—N199.45 (4)N2—C7—H7B109.6
O7—Ni1—N181.88 (4)C8—C7—H7B109.6
O6—Ni1—N199.65 (4)H7A—C7—H7B108.1
N2—Ni1—N186.36 (4)O9—C8—O1125.02 (13)
O8—Ni1—O992.86 (4)O9—C8—C7121.86 (13)
O7—Ni1—O985.40 (4)O1—C8—C7113.09 (13)
O6—Ni1—O995.41 (4)N1—C9—C10116.13 (12)
N2—Ni1—O979.67 (4)N1—C9—H9A108.3
N1—Ni1—O9160.37 (4)C10—C9—H9A108.3
N1—C1—C2114.38 (11)N1—C9—H9B108.3
N1—C1—H1A108.7C10—C9—H9B108.3
C2—C1—H1A108.7H9A—C9—H9B107.4
N1—C1—H1B108.7O4—C10—O3124.91 (14)
C2—C1—H1B108.7O4—C10—C9124.69 (13)
H1A—C1—H1B107.6O3—C10—C9110.40 (12)
O2—C2—O7123.39 (14)C9—N1—C1112.09 (11)
O2—C2—C1119.36 (13)C9—N1—C3112.08 (11)
O7—C2—C1117.23 (13)C1—N1—C3112.03 (11)
N1—C3—C4110.60 (11)C9—N1—Ni1109.82 (8)
N1—C3—H3A109.5C1—N1—Ni1107.45 (8)
C4—C3—H3A109.5C3—N1—Ni1102.85 (8)
N1—C3—H3B109.5C7—N2—C4113.14 (11)
C4—C3—H3B109.5C7—N2—C5111.51 (11)
H3A—C3—H3B108.1C4—N2—C5112.76 (11)
N2—C4—C3109.56 (12)C7—N2—Ni1106.69 (8)
N2—C4—H4A109.8C4—N2—Ni1104.89 (8)
C3—C4—H4A109.8C5—N2—Ni1107.26 (8)
N2—C4—H4B109.8C8—O1—H1109.5
C3—C4—H4B109.8C10—O3—H3109.5
H4A—C4—H4B108.2Ni1—O6—H6A129.9
N2—C5—C6113.66 (12)Ni1—O6—H6B123.5
N2—C5—H5A108.8H6A—O6—H6B105.4
C6—C5—H5A108.8C2—O7—Ni1117.40 (9)
N2—C5—H5B108.8C6—O8—Ni1115.17 (10)
C6—C5—H5B108.8C8—O9—Ni1109.95 (9)
H5A—C5—H5B107.7
N1—C1—C2—O2173.79 (14)C3—C4—N2—C573.50 (14)
N1—C1—C2—O77.7 (2)C3—C4—N2—Ni142.89 (12)
N1—C3—C4—N258.79 (15)C6—C5—N2—C7116.31 (13)
N2—C5—C6—O5173.79 (12)C6—C5—N2—C4115.13 (13)
N2—C5—C6—O87.39 (19)C6—C5—N2—Ni10.16 (13)
N2—C7—C8—O917.75 (18)O8—Ni1—N2—C7123.50 (9)
N2—C7—C8—O1164.25 (12)O7—Ni1—N2—C755.03 (9)
N1—C9—C10—O40.8 (2)N1—Ni1—N2—C7136.61 (9)
N1—C9—C10—O3179.23 (13)O9—Ni1—N2—C729.54 (8)
C10—C9—N1—C163.40 (16)O8—Ni1—N2—C4116.22 (9)
C10—C9—N1—C363.58 (16)O7—Ni1—N2—C465.25 (9)
C10—C9—N1—Ni1177.24 (10)N1—Ni1—N2—C416.33 (9)
C2—C1—N1—C9133.66 (13)O9—Ni1—N2—C4149.82 (9)
C2—C1—N1—C399.34 (14)O8—Ni1—N2—C53.90 (8)
C2—C1—N1—Ni112.92 (14)O7—Ni1—N2—C5174.63 (8)
C4—C3—N1—C9157.70 (11)N1—Ni1—N2—C5103.78 (9)
C4—C3—N1—C175.29 (14)O9—Ni1—N2—C590.06 (9)
C4—C3—N1—Ni139.81 (12)O2—C2—O7—Ni1175.79 (13)
O8—Ni1—N1—C948.50 (10)C1—C2—O7—Ni12.69 (18)
O7—Ni1—N1—C9133.23 (10)O6—Ni1—O7—C291.55 (10)
O6—Ni1—N1—C943.79 (9)N2—Ni1—O7—C293.81 (11)
N2—Ni1—N1—C9132.13 (10)N1—Ni1—O7—C28.08 (11)
O9—Ni1—N1—C9176.63 (11)O9—Ni1—O7—C2173.09 (11)
O8—Ni1—N1—C1170.66 (9)O5—C6—O8—Ni1170.31 (11)
O7—Ni1—N1—C111.06 (9)C5—C6—O8—Ni110.99 (17)
O6—Ni1—N1—C178.38 (8)O6—Ni1—O8—C6166.26 (10)
N2—Ni1—N1—C1105.71 (9)N2—Ni1—O8—C68.50 (10)
O9—Ni1—N1—C161.20 (17)N1—Ni1—O8—C693.84 (11)
O8—Ni1—N1—C370.97 (9)O9—Ni1—O8—C670.82 (11)
O7—Ni1—N1—C3107.30 (9)O1—C8—O9—Ni1169.74 (12)
O6—Ni1—N1—C3163.26 (8)C7—C8—O9—Ni18.00 (16)
N2—Ni1—N1—C312.65 (8)O8—Ni1—O9—C8105.34 (9)
O9—Ni1—N1—C357.16 (16)O7—Ni1—O9—C873.36 (9)
C8—C7—N2—C4148.46 (11)O6—Ni1—O9—C8163.74 (9)
C8—C7—N2—C583.18 (14)N2—Ni1—O9—C821.64 (9)
C8—C7—N2—Ni133.64 (12)N1—Ni1—O9—C823.69 (18)
C3—C4—N2—C7158.79 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.821.772.5557 (14)159
O3—H3···O5ii0.821.792.5864 (13)164
O6—H6A···O9iii0.882.152.9294 (12)148
O6—H6B···O2iv0.861.812.6394 (11)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C10H14N2O8)(H2O)]
Mr366.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)11.6786 (2), 6.9358 (1), 16.6343 (2)
β (°) 91.140 (1)
V3)1347.12 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.35 × 0.31 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire2 (large Be window) detector
Absorption correctionNumerical
[Clark & Reid (1995) in CrysAlis PRO (Oxford Diffraction, 2009)]
Tmin, Tmax0.690, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
43864, 2935, 2534
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.055, 1.06
No. of reflections2935
No. of parameters198
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.821.772.5557 (14)159
O3—H3···O5ii0.821.792.5864 (13)164
O6—H6A···O9iii0.882.152.9294 (12)148
O6—H6B···O2iv0.861.812.6394 (11)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Slovak grant agency APVV (contract Nos. APVV-VVCE-0058–07 and APVV-0006–07) and the grant agency VEGA (grant No. 1/0089/09). Support from P. J. Šafárik University (VVGS 37/09–10) is also gratefully acknowledged.

References

First citationAgre, V. M., Sysoeva, T. F., Trunov, V. K., Efremov, V. A., Fridman, A. Y. & Barkhanova, N. N. (1980). Zh. Strukt. Khim. 21, 110–117.  CAS Google Scholar
First citationAgre, V. M., Sysoeva, T. F., Trunov, V. K., Fridman, A. Y. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 114–120.  CAS Google Scholar
First citationAgre, V. M., Trunov, V. K. & Sysoeva, T. F. (1980). Dokl. Akad. Nauk SSSR, 250, 1123–1126.  CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoronado, E., Drillon, M., Fuertes, A., Beltran, D., Mosset, A. & Galy, J. (1986). J. Am. Chem. Soc. 108, 900–905.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrystal Impact (2007). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPorai-Koshits, M. A., Nesterova, Y. M., Polynova, T. N. & de Garcia Banus, D. T. (1975). Koord. Khim. 1, 682.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. S. & Hoard, J. L. (1959). J. Am. Chem. Soc. 81, 556–561.  CSD CrossRef CAS Web of Science Google Scholar
First citationStephens, F. S. (1969). J. Chem. Soc. A, pp. 1723–1734.  CrossRef Google Scholar
First citationSysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M. & Fridman, A. Ya. (1986). Zh. Strukt. Khim. 27, 108–114.  CAS Google Scholar
First citationSysoeva, T. F., Agre, V. M., Trunov, V. K., Dyatlova, N. M., Fridman, A. Ya. & Barkhanova, N. N. (1981). Zh. Strukt. Khim. 22, 99–105.  CAS Google Scholar
First citationZubkowski, J. D., Perry, D. L., Valente, E. J. & Lott, S. (1995). Inorg. Chem. 34, 6409–6411.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds