metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4′-All­yl­oxy-2,2′:6′,2′′-terpyridine)(di­benzoyl­methanido)dinitratoerbium(III) aceto­nitrile solvate

aJiangsu Key Laboratory of Organic Electronics & Information Displays and, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, People's Republic of China, and bInstitute of Molecular Engineering & Applied Chemistry, College of Metallurgy and Resources, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: tongbihai@163.com

(Received 16 December 2009; accepted 22 December 2009; online 9 January 2010)

The title complex, [Er(C15H11O2)(NO3)2(C18H15N3O)]·CH3CN, has been synthesized from 4′-all­yloxy-2,2′:6′,2′′-terpyridine (altpy), dibenzoyl­methane and erbium nitrate. The distorted monocapped square anti­prismatic coordination polyhedron is formed by a bidentate dibenzoyl­methanide residue, a tridentate altpy ligand and two nitrate anions that act as bidentate ligands and occupy mutually trans sites.

Related literature

For the use of lanthanide complexes as functional materials, see: Sun et al. (2005[Sun, L. N., Zhang, H. J., Meng, Q. G. & Liu, F. Y. (2005). J. Phys. Chem. B, 109, 6174-6182.]). For antenna effects, see: Sabbatini et al. (1993[Sabbatini, N., Guardigli, M. & Lehn, J. M. (1993). Coord. Chem. Rev. 123, 201-228.]). For related structures, see: Niu et al. (1997[Niu, S., Yang, Z., Yang, Q., Yang, B., Chao, J., Yang, G. & Shen, E. Z. (1997). Polyhedron, 16, 1629-1635.]); Neelgund et al. (2007[Neelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74-m76.]); Fukuda et al. (2002[Fukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527-533.]); Hunter et al. (2007[Hunter, A. P., Lees, A. M. J. & Platt, A. W. G. (2007). Polyhedron, 26, 4865-4876.]).

[Scheme 1]

Experimental

Crystal data
  • [Er(C15H11O2)(NO3)2(C18H15N3O)]·C2H3N

  • Mr = 844.90

  • Monoclinic, P 21 /n

  • a = 13.245 (4) Å

  • b = 15.871 (4) Å

  • c = 16.135 (5) Å

  • β = 103.374 (6)°

  • V = 3299.8 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.61 mm−1

  • T = 173 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.550, Tmax = 0.598

  • 15598 measured reflections

  • 6429 independent reflections

  • 4383 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.04

  • 6429 reflections

  • 460 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Er1—O3 2.224 (3)
Er1—O2 2.228 (4)
Er1—O4 2.410 (4)
Er1—O9 2.425 (4)
Er1—N2 2.447 (4)
Er1—N3 2.460 (4)
Er1—O5 2.465 (4)
Er1—O8 2.468 (4)
Er1—N1 2.515 (4)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, much attention has been paid to near-infrared (NIR) luminescence of trivalent lanthanide ions such as erbium (Er3+) and neodymium (Nd3+), because they show luminescence in the telecommunication low-loss NIR-regions of silica (Sun et al., (2005)). However, it is difficult to generate this luminescence by direct excitation of these NIR-luminescence lanthanide ions due to some quenching effects as well as their poor absorption abilities. A method to avoid quenching of the excited state is to shield the lanthanide ion from the deactivating groups by a shell of organic ligands. Another benefit of using organic ligands is that energy absorbed by a ligand containing a chromophoric group, can be transferred to the lanthanide ion. This mechanism is called the antenna effect (Sabbatini et al., (1993)). In the title compound, [Er(altpy)(dbm)(NO3)2].CH3CN(altpy=4'-allyloxy-2, 2':6', 2''-terpyridine, dbm=dibenzoylmethanate), each Er(III) atom is in a nine coordinate environment comprising two oxygen atoms from the bidentate dbm ligand, three nitrogen atoms from the tridentate altpy ligand and four oxygen atoms from two tertiary nitrate anions that act as bidentate ligands and occupy mutually trans sites in the coordination polyhedron. The coordination polyhedron is a distorted monocapped square antiprism. The Er—O distances lie in two groups, those to the beta-diketone oxygen atoms in the range 2.224 (3)–2.228 (4) Å and those to nitrate O atoms in the range 2.410 (4)–2.468 (4) Å. These are comparable to those [2.485 (19), 2.600 (15) Å] in the nine-coordinate complex [Er2(O2CMe)4(NO3)2(phen)2] (phen=1,10-phenanthroline) which also contains bidentate chelating nitrate anions (Niu et al., 1997). The O—Er—O angle (76.97 (13) °) of the beta-diketonate ligand is somewhat higher as compared to those found in the erbium tris(beta-diketonates) type of complexes (73.65 (49) °) (Neelgund et al., (2007)). The average Er—N distance (2.474 (4) Å) is slightly shorter than that in the nine-coordinate complex [Er(terpy) (acac) (NO3)2-] (2.503 (4) Å)(Fukuda et al., (2002)). The geometrical parameters of the [NO3]- anions in the title complex are as expected with normal distances and angles, comparable to those reported by Hunter et al., (2007) for a complex also containing bidentate chelating nitrate anions.

Related literature top

For the use of lanthanide complexes as functional materials, see: Sun et al. (2005). For antenna effects, see: Sabbatini et al. (1993). For related structures, see: Niu et al. (1997); Neelgund et al. (2007); Fukuda et al. (2002); Hunter et al. (2007).

Experimental top

The title compound was obtained by refluxing erbium nitrate, 4'-allyloxy-2, 2':6',2''-terpyridine and dibenzoylmethanate in ethanol to give the title compound as a yellow precipitate in 81% yield. Recrystallization from ethanol and acetonitrile (1:1) gave yellow block-like crystals suitable for an X-ray diffraction determination. Anal.Calcd. for C35H29ErN6O9: C, 52.60, H, 3.46, N, 9.95%. Found:C, 51.70, H, 3.71, N, 9.87%.

Refinement top

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C).

Structure description top

Recently, much attention has been paid to near-infrared (NIR) luminescence of trivalent lanthanide ions such as erbium (Er3+) and neodymium (Nd3+), because they show luminescence in the telecommunication low-loss NIR-regions of silica (Sun et al., (2005)). However, it is difficult to generate this luminescence by direct excitation of these NIR-luminescence lanthanide ions due to some quenching effects as well as their poor absorption abilities. A method to avoid quenching of the excited state is to shield the lanthanide ion from the deactivating groups by a shell of organic ligands. Another benefit of using organic ligands is that energy absorbed by a ligand containing a chromophoric group, can be transferred to the lanthanide ion. This mechanism is called the antenna effect (Sabbatini et al., (1993)). In the title compound, [Er(altpy)(dbm)(NO3)2].CH3CN(altpy=4'-allyloxy-2, 2':6', 2''-terpyridine, dbm=dibenzoylmethanate), each Er(III) atom is in a nine coordinate environment comprising two oxygen atoms from the bidentate dbm ligand, three nitrogen atoms from the tridentate altpy ligand and four oxygen atoms from two tertiary nitrate anions that act as bidentate ligands and occupy mutually trans sites in the coordination polyhedron. The coordination polyhedron is a distorted monocapped square antiprism. The Er—O distances lie in two groups, those to the beta-diketone oxygen atoms in the range 2.224 (3)–2.228 (4) Å and those to nitrate O atoms in the range 2.410 (4)–2.468 (4) Å. These are comparable to those [2.485 (19), 2.600 (15) Å] in the nine-coordinate complex [Er2(O2CMe)4(NO3)2(phen)2] (phen=1,10-phenanthroline) which also contains bidentate chelating nitrate anions (Niu et al., 1997). The O—Er—O angle (76.97 (13) °) of the beta-diketonate ligand is somewhat higher as compared to those found in the erbium tris(beta-diketonates) type of complexes (73.65 (49) °) (Neelgund et al., (2007)). The average Er—N distance (2.474 (4) Å) is slightly shorter than that in the nine-coordinate complex [Er(terpy) (acac) (NO3)2-] (2.503 (4) Å)(Fukuda et al., (2002)). The geometrical parameters of the [NO3]- anions in the title complex are as expected with normal distances and angles, comparable to those reported by Hunter et al., (2007) for a complex also containing bidentate chelating nitrate anions.

For the use of lanthanide complexes as functional materials, see: Sun et al. (2005). For antenna effects, see: Sabbatini et al. (1993). For related structures, see: Niu et al. (1997); Neelgund et al. (2007); Fukuda et al. (2002); Hunter et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
(4'-Allyloxy-2,2':6',2''-terpyridine)(dibenzoylmethanido)dinitratoerbium(III) acetonitrile solvate top
Crystal data top
[Er(C15H11O2)(NO3)2(C18H15N3O)]·C2H3NF(000) = 1684
Mr = 844.90Dx = 1.701 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4650 reflections
a = 13.245 (4) Åθ = 2.6–26.6°
b = 15.871 (4) ŵ = 2.61 mm1
c = 16.135 (5) ÅT = 173 K
β = 103.374 (6)°Block, yellow
V = 3299.8 (16) Å30.26 × 0.24 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6429 independent reflections
Radiation source: fine-focus sealed tube4383 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1116
Tmin = 0.550, Tmax = 0.598k = 1919
15598 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
6429 reflections(Δ/σ)max = 0.002
460 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Er(C15H11O2)(NO3)2(C18H15N3O)]·C2H3NV = 3299.8 (16) Å3
Mr = 844.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.245 (4) ŵ = 2.61 mm1
b = 15.871 (4) ÅT = 173 K
c = 16.135 (5) Å0.26 × 0.24 × 0.22 mm
β = 103.374 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
4383 reflections with I > 2σ(I)
Tmin = 0.550, Tmax = 0.598Rint = 0.052
15598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.04Δρmax = 1.65 e Å3
6429 reflectionsΔρmin = 1.14 e Å3
460 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.756234 (17)0.801711 (15)0.037240 (16)0.01847 (8)
O20.6625 (3)0.6940 (2)0.0666 (2)0.0255 (9)
O90.7831 (3)0.8367 (3)0.1870 (3)0.0384 (11)
N50.6926 (4)0.8638 (3)0.1844 (3)0.0277 (12)
O30.8761 (3)0.7066 (2)0.0928 (2)0.0278 (9)
O80.6304 (3)0.8630 (3)0.1117 (2)0.0306 (10)
N20.7337 (3)0.9511 (3)0.0000 (3)0.0227 (10)
C130.4028 (4)0.8715 (4)0.1717 (4)0.0326 (15)
H13A0.33650.88420.20690.039*
N10.9170 (3)0.8903 (3)0.0826 (3)0.0257 (11)
N30.5943 (3)0.8339 (3)0.0678 (3)0.0244 (11)
C260.7835 (4)0.5834 (4)0.1087 (3)0.0235 (13)
H260.79010.52460.12000.028*
C240.5947 (4)0.5659 (3)0.1060 (4)0.0240 (13)
C60.8061 (4)1.0085 (4)0.0366 (4)0.0244 (13)
C200.4118 (4)0.5409 (4)0.0781 (4)0.0333 (15)
H20A0.34310.55740.05110.040*
C230.6107 (4)0.4949 (4)0.1589 (4)0.0280 (14)
H23A0.67920.47860.18640.034*
O70.6658 (3)0.8903 (3)0.2473 (3)0.0425 (12)
C11.0107 (4)0.8569 (4)0.1162 (4)0.0296 (14)
H1A1.01680.79730.12010.035*
C180.9133 (5)1.2961 (4)0.0249 (4)0.0433 (16)
H18A0.93521.28550.08430.052*
H18B0.96271.31110.00680.052*
C331.0601 (4)0.6243 (4)0.1839 (4)0.0282 (14)
H33A1.05370.68080.20130.034*
C270.8725 (4)0.6284 (4)0.1095 (4)0.0254 (13)
C250.6834 (4)0.6185 (4)0.0921 (3)0.0233 (13)
C40.9941 (4)1.0266 (4)0.1053 (4)0.0290 (14)
H4A0.98671.08610.10120.035*
C31.0896 (4)0.9908 (4)0.1391 (3)0.0284 (14)
H3A1.14901.02550.15790.034*
C190.4941 (4)0.5886 (4)0.0659 (3)0.0272 (14)
H19A0.48210.63680.03010.033*
C50.9095 (4)0.9748 (3)0.0775 (4)0.0246 (13)
C280.9739 (4)0.5836 (4)0.1333 (4)0.0252 (13)
C110.5651 (4)0.9147 (4)0.0845 (3)0.0228 (13)
C220.5273 (4)0.4488 (4)0.1709 (4)0.0326 (15)
H22A0.53860.40200.20870.039*
C140.4322 (4)0.7896 (4)0.1555 (3)0.0283 (14)
H14A0.38740.74480.17980.034*
C150.5281 (4)0.7731 (4)0.1033 (3)0.0247 (13)
H15A0.54820.71610.09200.030*
C290.9859 (4)0.5007 (4)0.1094 (4)0.0371 (16)
H29A0.92830.47130.07580.044*
C100.6405 (4)0.9802 (3)0.0439 (3)0.0244 (13)
C120.4691 (4)0.9361 (4)0.1370 (4)0.0294 (14)
H12A0.45000.99330.14860.035*
C90.6173 (4)1.0647 (4)0.0499 (3)0.0260 (14)
H9A0.55141.08300.08180.031*
C70.7868 (4)1.0951 (3)0.0333 (4)0.0262 (13)
H7A0.83921.13360.06000.031*
C170.8142 (5)1.2901 (4)0.0134 (4)0.0371 (16)
H17A0.79461.30110.07290.045*
C80.6904 (4)1.1238 (4)0.0091 (4)0.0277 (14)
O10.6601 (3)1.2051 (2)0.0152 (3)0.0344 (10)
C321.1545 (4)0.5835 (4)0.2091 (4)0.0345 (15)
H32A1.21230.61200.24350.041*
C210.4271 (4)0.4697 (4)0.1288 (4)0.0329 (15)
H21A0.37000.43590.13460.040*
C311.1647 (5)0.5019 (4)0.1844 (4)0.0431 (17)
H31A1.22940.47370.20170.052*
C340.9374 (6)0.2095 (5)0.2523 (4)0.0456 (18)
C351.0307 (5)0.2525 (5)0.2958 (5)0.064 (2)
H35A1.02810.31120.27670.096*
H35B1.09120.22460.28280.096*
H35C1.03610.25080.35740.096*
N60.8619 (6)0.1790 (4)0.2183 (4)0.069 (2)
O50.7447 (3)0.6999 (3)0.0800 (3)0.0328 (9)
O40.8224 (3)0.8173 (3)0.0890 (3)0.0379 (11)
N40.7853 (4)0.7484 (3)0.1245 (3)0.0319 (12)
C21.0982 (4)0.9046 (4)0.1452 (4)0.0293 (14)
H2A1.16310.87870.16900.035*
C160.7312 (4)1.2670 (4)0.0308 (4)0.0345 (16)
H16A0.76361.24460.08800.041*
H16B0.69191.31840.03860.041*
C301.0801 (5)0.4608 (4)0.1338 (5)0.051 (2)
H30A1.08740.40460.11590.061*
O60.7867 (4)0.7318 (3)0.1977 (3)0.0538 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01372 (12)0.01403 (13)0.02633 (15)0.00049 (12)0.00190 (9)0.00175 (13)
O20.0199 (19)0.022 (2)0.034 (2)0.0043 (18)0.0059 (16)0.0071 (19)
O90.024 (2)0.043 (3)0.046 (3)0.005 (2)0.0030 (19)0.002 (2)
N50.026 (3)0.029 (3)0.026 (3)0.003 (2)0.001 (2)0.001 (2)
O30.020 (2)0.018 (2)0.045 (3)0.0015 (17)0.0047 (17)0.0048 (19)
O80.029 (2)0.037 (3)0.024 (2)0.0065 (19)0.0013 (18)0.0023 (19)
N20.018 (2)0.020 (3)0.029 (3)0.000 (2)0.0032 (19)0.000 (2)
C130.023 (3)0.044 (4)0.029 (4)0.005 (3)0.003 (3)0.002 (3)
N10.020 (3)0.025 (3)0.031 (3)0.003 (2)0.004 (2)0.001 (2)
N30.026 (3)0.019 (3)0.029 (3)0.001 (2)0.007 (2)0.001 (2)
C260.019 (3)0.020 (3)0.031 (4)0.005 (2)0.004 (2)0.005 (3)
C240.021 (3)0.022 (3)0.030 (3)0.002 (2)0.008 (2)0.002 (3)
C60.013 (3)0.026 (3)0.034 (4)0.004 (2)0.006 (2)0.006 (3)
C200.023 (3)0.026 (4)0.050 (4)0.001 (3)0.006 (3)0.004 (3)
C230.023 (3)0.029 (4)0.029 (4)0.002 (3)0.000 (3)0.003 (3)
O70.042 (3)0.052 (3)0.036 (3)0.006 (2)0.014 (2)0.014 (2)
C10.019 (3)0.020 (3)0.048 (4)0.000 (3)0.004 (3)0.000 (3)
C180.048 (4)0.040 (4)0.044 (4)0.009 (4)0.015 (3)0.003 (3)
C330.024 (3)0.028 (3)0.035 (4)0.000 (3)0.011 (3)0.004 (3)
C270.024 (3)0.023 (3)0.029 (3)0.003 (3)0.006 (3)0.002 (3)
C250.019 (3)0.029 (3)0.018 (3)0.003 (2)0.003 (2)0.001 (3)
C40.031 (3)0.022 (3)0.033 (4)0.006 (3)0.004 (3)0.001 (3)
C30.024 (3)0.031 (4)0.027 (4)0.008 (3)0.000 (3)0.003 (3)
C190.025 (3)0.028 (3)0.028 (3)0.003 (3)0.005 (3)0.010 (3)
C50.021 (3)0.020 (3)0.033 (4)0.002 (2)0.005 (3)0.004 (3)
C280.018 (3)0.027 (3)0.030 (4)0.004 (3)0.005 (2)0.009 (3)
C110.020 (3)0.027 (3)0.022 (3)0.001 (3)0.005 (2)0.003 (3)
C220.037 (4)0.028 (4)0.034 (4)0.002 (3)0.010 (3)0.008 (3)
C140.022 (3)0.037 (4)0.023 (3)0.006 (3)0.000 (2)0.006 (3)
C150.027 (3)0.022 (3)0.024 (3)0.003 (2)0.002 (3)0.002 (2)
C290.025 (3)0.030 (4)0.052 (4)0.002 (3)0.001 (3)0.004 (3)
C100.023 (3)0.023 (3)0.027 (3)0.002 (2)0.006 (2)0.003 (3)
C120.023 (3)0.033 (4)0.031 (4)0.006 (3)0.002 (3)0.004 (3)
C90.022 (3)0.027 (3)0.028 (3)0.006 (3)0.002 (2)0.002 (3)
C70.025 (3)0.015 (3)0.038 (4)0.005 (2)0.006 (3)0.001 (3)
C170.050 (4)0.027 (4)0.033 (4)0.001 (3)0.006 (3)0.003 (3)
C80.030 (3)0.020 (3)0.034 (4)0.001 (3)0.010 (3)0.002 (3)
O10.031 (2)0.020 (2)0.047 (3)0.0040 (19)0.0023 (19)0.001 (2)
C320.017 (3)0.045 (4)0.036 (4)0.001 (3)0.005 (3)0.002 (3)
C210.026 (3)0.030 (4)0.047 (4)0.009 (3)0.017 (3)0.003 (3)
C310.027 (4)0.043 (4)0.055 (5)0.016 (3)0.003 (3)0.001 (4)
C340.058 (5)0.048 (5)0.027 (4)0.005 (4)0.003 (3)0.001 (3)
C350.047 (5)0.084 (6)0.062 (6)0.002 (5)0.015 (4)0.008 (5)
N60.083 (5)0.072 (5)0.038 (4)0.017 (4)0.012 (4)0.001 (3)
O50.034 (2)0.027 (2)0.039 (2)0.004 (2)0.0119 (18)0.001 (2)
O40.039 (3)0.029 (3)0.051 (3)0.005 (2)0.021 (2)0.001 (2)
N40.037 (3)0.020 (3)0.039 (4)0.006 (2)0.011 (3)0.001 (3)
C20.016 (3)0.030 (4)0.037 (4)0.000 (3)0.003 (3)0.005 (3)
C160.040 (4)0.014 (3)0.047 (4)0.006 (3)0.005 (3)0.002 (3)
C300.041 (4)0.039 (4)0.068 (5)0.017 (3)0.004 (4)0.012 (4)
O60.083 (4)0.049 (3)0.036 (3)0.004 (3)0.026 (3)0.008 (2)
Geometric parameters (Å, º) top
Er1—O32.224 (3)C33—H33A0.9500
Er1—O22.228 (4)C27—C281.490 (7)
Er1—O42.410 (4)C4—C51.378 (7)
Er1—O92.425 (4)C4—C31.379 (7)
Er1—N22.447 (4)C4—H4A0.9500
Er1—N32.460 (4)C3—C21.375 (8)
Er1—O52.465 (4)C3—H3A0.9500
Er1—O82.468 (4)C19—H19A0.9500
Er1—N12.515 (4)C28—C291.390 (8)
Er1—N42.853 (6)C11—C121.397 (7)
Er1—N52.872 (5)C11—C101.486 (7)
O2—C251.275 (6)C22—C211.385 (7)
O9—N51.265 (6)C22—H22A0.9500
N5—O71.224 (6)C14—C151.377 (7)
N5—O81.268 (5)C14—H14A0.9500
O3—C271.274 (6)C15—H15A0.9500
N2—C101.355 (6)C29—C301.372 (8)
N2—C61.355 (7)C29—H29A0.9500
C13—C141.365 (8)C10—C91.373 (8)
C13—C121.381 (8)C12—H12A0.9500
C13—H13A0.9500C9—C81.399 (7)
N1—C11.343 (6)C9—H9A0.9500
N1—C51.347 (7)C7—C81.379 (7)
N3—C151.340 (7)C7—H7A0.9500
N3—C111.348 (7)C17—C161.488 (8)
C26—C271.376 (7)C17—H17A0.9500
C26—C251.406 (7)C8—O11.349 (6)
C26—H260.9500O1—C161.442 (7)
C24—C191.387 (7)C32—C311.370 (9)
C24—C231.398 (7)C32—H32A0.9500
C24—C251.501 (7)C21—H21A0.9500
C6—C71.396 (7)C31—C301.387 (9)
C6—C51.476 (7)C31—H31A0.9500
C20—C191.378 (7)C34—N61.132 (8)
C20—C211.382 (8)C34—C351.443 (10)
C20—H20A0.9500C35—H35A0.9800
C23—C221.376 (7)C35—H35B0.9800
C23—H23A0.9500C35—H35C0.9800
C1—C21.373 (7)O5—N41.256 (6)
C1—H1A0.9500O4—N41.279 (6)
C18—C171.318 (8)N4—O61.214 (6)
C18—H18A0.9500C2—H2A0.9500
C18—H18B0.9500C16—H16A0.9900
C33—C321.383 (7)C16—H16B0.9900
C33—C281.399 (7)C30—H30A0.9500
O3—Er1—O276.97 (13)C17—C18—H18B120.0
O3—Er1—O492.59 (14)H18A—C18—H18B120.0
O2—Er1—O4126.04 (14)C32—C33—C28121.1 (6)
O3—Er1—O980.05 (14)C32—C33—H33A119.5
O2—Er1—O985.66 (14)C28—C33—H33A119.5
O4—Er1—O9145.20 (14)O3—C27—C26125.4 (5)
O3—Er1—N2142.34 (13)O3—C27—C28116.3 (5)
O2—Er1—N2138.91 (13)C26—C27—C28118.3 (5)
O4—Er1—N274.94 (14)O2—C25—C26124.0 (5)
O9—Er1—N290.25 (15)O2—C25—C24116.9 (5)
O3—Er1—N3147.82 (14)C26—C25—C24119.1 (5)
O2—Er1—N382.30 (14)C5—C4—C3119.1 (5)
O4—Er1—N379.97 (15)C5—C4—H4A120.5
O9—Er1—N3122.85 (14)C3—C4—H4A120.5
N2—Er1—N365.93 (14)C2—C3—C4119.4 (5)
O3—Er1—O577.08 (14)C2—C3—H3A120.3
O2—Er1—O573.83 (13)C4—C3—H3A120.3
O4—Er1—O552.32 (13)C20—C19—C24119.8 (5)
O9—Er1—O5152.10 (14)C20—C19—H19A120.1
N2—Er1—O5117.65 (14)C24—C19—H19A120.1
N3—Er1—O573.64 (14)N1—C5—C4122.0 (5)
O3—Er1—O8124.80 (13)N1—C5—C6115.9 (5)
O2—Er1—O874.14 (13)C4—C5—C6122.0 (5)
O4—Er1—O8142.14 (13)C29—C28—C33117.9 (5)
O9—Er1—O852.00 (13)C29—C28—C27122.4 (5)
N2—Er1—O871.35 (14)C33—C28—C27119.7 (5)
N3—Er1—O870.99 (14)N3—C11—C12122.1 (5)
O5—Er1—O8134.65 (13)N3—C11—C10116.4 (5)
O3—Er1—N177.54 (14)C12—C11—C10121.5 (5)
O2—Er1—N1147.48 (14)C23—C22—C21120.9 (6)
O4—Er1—N174.91 (14)C23—C22—H22A119.6
O9—Er1—N170.29 (14)C21—C22—H22A119.6
N2—Er1—N164.97 (14)C13—C14—C15118.7 (5)
N3—Er1—N1128.97 (15)C13—C14—H14A120.7
O5—Er1—N1119.19 (14)C15—C14—H14A120.7
O8—Er1—N1105.04 (14)N3—C15—C14123.0 (5)
O3—Er1—N486.12 (14)N3—C15—H15A118.5
O2—Er1—N499.60 (14)C14—C15—H15A118.5
O4—Er1—N426.44 (13)C30—C29—C28120.8 (6)
O9—Er1—N4163.74 (14)C30—C29—H29A119.6
N2—Er1—N495.58 (15)C28—C29—H29A119.6
N3—Er1—N473.29 (14)N2—C10—C9122.1 (5)
O5—Er1—N426.02 (13)N2—C10—C11115.5 (5)
O8—Er1—N4144.24 (13)C9—C10—C11122.4 (5)
N1—Er1—N498.48 (15)C13—C12—C11118.0 (6)
O3—Er1—N5102.61 (14)C13—C12—H12A121.0
O2—Er1—N578.62 (13)C11—C12—H12A121.0
O4—Er1—N5153.86 (14)C10—C9—C8120.1 (5)
O9—Er1—N525.92 (12)C10—C9—H9A119.9
N2—Er1—N580.12 (14)C8—C9—H9A119.9
N3—Er1—N597.02 (14)C8—C7—C6119.0 (5)
O5—Er1—N5151.79 (13)C8—C7—H7A120.5
O8—Er1—N526.08 (12)C6—C7—H7A120.5
N1—Er1—N587.62 (14)C18—C17—C16123.9 (6)
N4—Er1—N5170.31 (13)C18—C17—H17A118.0
C25—O2—Er1134.4 (3)C16—C17—H17A118.0
N5—O9—Er197.2 (3)O1—C8—C7125.3 (5)
O7—N5—O9122.9 (5)O1—C8—C9116.4 (5)
O7—N5—O8121.3 (5)C7—C8—C9118.2 (5)
O9—N5—O8115.7 (5)C8—O1—C16117.8 (4)
O7—N5—Er1179.8 (4)C31—C32—C33120.0 (6)
O9—N5—Er156.9 (3)C31—C32—H32A120.0
O8—N5—Er158.9 (3)C33—C32—H32A120.0
C27—O3—Er1133.5 (3)C20—C21—C22118.6 (5)
N5—O8—Er195.0 (3)C20—C21—H21A120.7
C10—N2—C6117.8 (5)C22—C21—H21A120.7
C10—N2—Er1120.2 (3)C32—C31—C30119.7 (6)
C6—N2—Er1120.7 (3)C32—C31—H31A120.2
C14—C13—C12120.2 (5)C30—C31—H31A120.2
C14—C13—H13A119.9N6—C34—C35176.9 (9)
C12—C13—H13A119.9C34—C35—H35A109.5
C1—N1—C5117.8 (5)C34—C35—H35B109.5
C1—N1—Er1122.6 (4)H35A—C35—H35B109.5
C5—N1—Er1119.5 (3)C34—C35—H35C109.5
C15—N3—C11118.0 (5)H35A—C35—H35C109.5
C15—N3—Er1121.7 (4)H35B—C35—H35C109.5
C11—N3—Er1120.0 (3)N4—O5—Er194.5 (3)
C27—C26—C25124.3 (5)N4—O4—Er196.5 (3)
C27—C26—H26117.9O6—N4—O5121.9 (5)
C25—C26—H26117.9O6—N4—O4122.0 (5)
C19—C24—C23119.2 (5)O5—N4—O4116.0 (5)
C19—C24—C25119.0 (5)O6—N4—Er1171.8 (4)
C23—C24—C25121.7 (5)O5—N4—Er159.5 (3)
N2—C6—C7122.7 (5)O4—N4—Er157.0 (3)
N2—C6—C5116.2 (5)C1—C2—C3118.4 (5)
C7—C6—C5121.0 (5)C1—C2—H2A120.8
C19—C20—C21121.4 (5)C3—C2—H2A120.8
C19—C20—H20A119.3O1—C16—C17112.8 (5)
C21—C20—H20A119.3O1—C16—H16A109.0
C22—C23—C24120.0 (5)C17—C16—H16A109.0
C22—C23—H23A120.0O1—C16—H16B109.0
C24—C23—H23A120.0C17—C16—H16B109.0
N1—C1—C2123.2 (5)H16A—C16—H16B107.8
N1—C1—H1A118.4C29—C30—C31120.6 (6)
C2—C1—H1A118.4C29—C30—H30A119.7
C17—C18—H18A120.0C31—C30—H30A119.7

Experimental details

Crystal data
Chemical formula[Er(C15H11O2)(NO3)2(C18H15N3O)]·C2H3N
Mr844.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.245 (4), 15.871 (4), 16.135 (5)
β (°) 103.374 (6)
V3)3299.8 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.61
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.550, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
15598, 6429, 4383
Rint0.052
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.04
No. of reflections6429
No. of parameters460
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 1.14

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Er1—O32.224 (3)Er1—N32.460 (4)
Er1—O22.228 (4)Er1—O52.465 (4)
Er1—O42.410 (4)Er1—O82.468 (4)
Er1—O92.425 (4)Er1—N12.515 (4)
Er1—N22.447 (4)
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 50903001, 50803027), the Jiangsu Natural Science Foundation (No. 08KJD430020), the Natural Science Foundation of Anhui Province (grant No. 070414197) and the Nanjing University of Posts & Telecommunications Grant (NUPT) (No. NY207039) for financial support.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527–533.  Web of Science CSD CrossRef Google Scholar
First citationHunter, A. P., Lees, A. M. J. & Platt, A. W. G. (2007). Polyhedron, 26, 4865–4876.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeelgund, G. M., Shivashankar, S. A., Narasimhamurthy, T. & Rathore, R. S. (2007). Acta Cryst. C63, m74–m76.  CSD CrossRef IUCr Journals Google Scholar
First citationNiu, S., Yang, Z., Yang, Q., Yang, B., Chao, J., Yang, G. & Shen, E. Z. (1997). Polyhedron, 16, 1629–1635.  CSD CrossRef CAS Web of Science Google Scholar
First citationSabbatini, N., Guardigli, M. & Lehn, J. M. (1993). Coord. Chem. Rev. 123, 201–228.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, L. N., Zhang, H. J., Meng, Q. G. & Liu, F. Y. (2005). J. Phys. Chem. B, 109, 6174–6182.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds